
Voum 12Nme 94NcecAisRsac

Della system tools

Thomas D.Schneider, Gary D.Stormo, Matthew A.Yarus and Larry Gold

Department of Molecular-, Cellular, and Developmental Biology, University of Colorado, Boulder,
CO 80309, USA

Received 12 August 1983

ABSTRACT

We introduce three new computer programs and associated tools of the
Delila nucleic-acid sequence analysis system. The first program, Module,
allows rapid transportation of new sequence analysis tools between scientists
using different computers. The second program, DBpull, allows efficient
access to the large nucleic-acid sequence databases being collected in the
United States and Europe. The third program, Encode, provides a flexible way
to process sequence data for analysis by other programs.

1. INTRODUCTION
In a previous paper (1) we described-a system of programs useful for the

analysis of nucleic-acid sequences. The central program is called Delila
(DEoxyribonucleic-acid LIbrary LAnguage). Delila is connected to a collection

of sequences called a Library, and can be instructed (in the language Delila)
to extract a subset of sequences for analysis by a number of auxiliary

programs.
Some of the auxiliary programs have been described previously (2,3). In

this paper, we present several new auxiliary programs that are useful tools

for transportation of programs to other groups of people (Module), for access

to the large international databases (DBpull), and for analysis of sequences

(Encode).

2. THE MODULE SYSTEM
A. Program Transportation

The Delila system is designed to be transported. Transportation from

one computer to another is frequently a difficult, if not impossible, task.

After reading the tape (or other media), the programs must be modified so they
function on the new computer. Unfortunately many programs are poorly
designed, so hundreds of changes may be necessary. The effort involved also

discourages transportation of improved versions.

Nucleic Acids ResearchVolume 12 Number 1 1984

0 1 R L Press Limited, Oxford, England. 129

Nucleic Acids Research

The author of a program can, however, write the program with these

problems in mind. A first step is picking a language that is high level and

likely to be portable. One must then stick to the language standards. This

means avoiding special features specific to ones own computer. When one
cannot avoid using a non-standard feature, one can collect all occurrences of

non-standard code into a few procedures or subroutines. This reduces the

number of repetitious changes that have to be made by the recipient.

In our attempts to construct the large set of Delila auxiliary programs,
we faced a problem related to those of transportation. Many auxiliary
programs must be able to read a Library. If there were 50 programs, how could
we change the form of the Library without changing each of the 50 programs by
hand? As with the transportation problem, we could collect a set of
procedures that read the Library's format. We would then distribute these
procedures to all of the 50 programs.

One obvious way to distribute procedures cannot be done with the
programming language in which the Delila System is written. Pascal has no

provision for separate compilation of program parts (4). In other words, we

cannot simply collect all the procedures, compile them and then distribute the

compiled code to the 50 programs with a linking program.

Many Pascal compilers do provide a mechanism for inserting sections of
source code into a program at the time the program is compiled. This is also

an unacceptable solution for us because it is not standard Pascal, and would
hinder transportation. Instead, an insertion tool can be written (in standard
Pascal) to insert the procedures into the source code (5).

Many insertion mechanisms function by searching the source code for a

signal such as

(*$I "name-of -procedure"*)
The signal is then replaced by the appropriate procedure. Although
functional, this forces one to keep two copies of the program because the

insertion symbol is destroyed upon insertion. Alternatively, one could
perform the insertion every time the program is to be compiled, but this would

be quite tedious during program development. One could instead modify the

program after insertion. Unfortunately, if one of the inserted procedures (in
the collection) is changed later, then it is impossible to insert the

procedure into the program again using the original mechanism. To avoid these

problems, we have designed a new kind of insertion tool.

130

Nucleic Acids Research

B. The Module Program

The program Module uses two insertion signals contained inside Pascal

comments:
(* BEGIN MODULE name.of.procedure *)

code of the procedure

(* END MODULE name.of.procedure *)

The entire procedure and its two signals is called a module. A collection of

modules is called a module library (MODLIB). Since each module has two

signals, the transfer mechanism need not be an insertion, but rather a

replacement of the previous module contents.

For example, suppose a source program contained the following module:

(* BEGIN MODULE A.PROCEDURE *)
THIS WILL BE REPLACED

(* END MODULE A.PROCEDURE *)

and the module library contained in it:
(* BEGIN MODULE A.PROCEDURE *)

REAL CODE GOES HERE
(* END MODULE A.PROCEDURE *)

then after running the Module program, the source program would contain:
(* BEGIN MODULE A.PROCEDURE *)

REAL CODE GOES HERE
(* END MODULE A. PROCEDURE *)

To perform this operation, the Module program copies the source input (SIN) to

the source output (SOUT). During the copy, the text is searched for modules.
When a module is found in SIN, the contents of the module by the same name in

the MODLIB are copied to SOUT, and the contents of the module in the SIN are

skipped. This effectively replaces the module in the source program. Further
details of the transfer mechanism are in the document used to define the

module system, MODDEF (available upon request).
The collection of Library reading procedures is called Delmods. We made

Delmods into a program that tests the modules. This has the advantage that

when the Delila System is received, one only needs to compile and run Delmods

and the other module libraries in order to assure that ALL the auxiliary
programs will function. For example, nonstandard access to the computer's
clock is buried within a procedure inside Delmods. After transportation, this

procedure must be changed to fit the new computer. Once this is done, and the

module containing the procedure is transferred, all auxiliary programs that

131

Nucleic Acids Research

use the clock will function correctly.
A collection of nonstandard modules for interactive input/output is kept

in the program Prgmods. To allow these modules to be used along with those in

Delmods, the Module program can successively pick up modules from several

module libraries. When a module is not found in a module library, the

contents of the SIN module are copied to the SOUT.
The Module program also has a recursive mechanism that allows one to pick

up many modules in one package. A module found inside another module in the

module library will be inserted into the SOUT. For example, the module

library:
(* BEGIN MODULE PACKAGE *)

(* BEGIN MODULE PROCEDURE.1 *)
(* END MODULE PROCEDURE.1 *)

(* BEGIN MODULE PROCEDURE.2 *)
(* END MODULE PROCEDURE.2 *)

(* END MODULE PACKAGE *)

(* BEGIN MODULE PROCEDURE.1 *)
CODE OF PROCEDURE 1

(* END MODULE PROCEDURE.1 *)

(* BEGIN MODULE PROCEDURE.2 *)
CODE OF PROCEDURE 2

(* END MODULE PROCEDURE.2 *)

allows one to pick up either procedure alone, or both together in one

package. (The dashes are used in this example only to separate parts of the

package module.)
We can define another feature to reduce the amount of source code sent on

a tape. If the file MODLIB is empty, then during the copying of SIN to SOUT,
the contents of the modules are skipped. This effectively "strips" a program

in preparation for transport or storage. It also allows one to look at the

structure of the modules in a program.

C. The Break Program
Every page of the manual for the Delila system is a module. This allows

one to extract pages of the manual. In addition, the Break program breaks the

manual (or a program) into pages, numbers each page, and adds an

index to the end. New pages can easily be added to the manual, since

pagination is automatic.
D. The Show Program

Every page of the Delila manual has a multi-part name. The parts of the

132

Nucleic Acids Research

names are separated by periods, as are file names on many computer systems.
The Show program allows one to interactively explore the manual, since the
multi-part names make the manual pages have a tree-like structure. In other
words, the Show program provides a mechanism for looking at pages of a large
document on-line.

One can also explore program source code. Some of our most recent
programs (see the DB System, below) are entirely modular to facilitate this.

Like geneticists who exchange organisms by sending them through the mail,
we envision widespread exchange of sequence analysis programs. This can be
greatly facilitated by the isolation of non-standard procedures into modules.

3. THE DB SYSTEM
There are currently at least two major international collections for

nucleic-acid sequence data. One is the Genetic Sequence Data Bank, or simply
GenBank (TM), which is based at Bolt Beranek and Newman Inc. in Cambridge,
Massachusetts and at the Los Alamos Scientific Laboratory in New Mexico. The
other is the European Molecular Biology Laboratory collection (EMBL), which is

based in Heidelberg, West Germany. These two collections are similar enough
in format that we have been able to write a small set of programs that handles

them both.
There has been a virtual explosion in the amount of nucleic-acid

sequencing being done around the world. GenBank, for instance, has. more than

two million base pairs in its entries. Since that is too much information for
most computer programs to handle quickly, and because most people are only
interested in looking at particular sequences at a given time, some way of

easily extracting subsets of the data bases had to be found.
That task is made possible by the structuring of GenBank and EMBL. Both

collections are divided into series of entries. Each entry contains a unique
name, several lines of relevant information, and a section of nucleic-acid
sequence. The division of the data into subsets is further aided by the fact
that within each entry, each line or section begins with a code or word
indicating what kind of information it contains.

The first of our programs is called DBcat, short for "Data Base

cataloguer". It reads through EMBL and GenBank and makes a record of the line
number of the beginning of each entry, the file the entry is found in, and the

name of the entry. Since DBcat produces a file of these records for output,
it is not intended for human use as much as it is to increase the speed of our

second program, DBpull.

133

Nucleic Acids Research

DBpull takes input in the form of a few lines of simple instructions, and

gives back part or all of one or more entries. Below are two examples of

input instruction sets.

Example 1: GENBANK Example 2: EMBL
M13 ALL EVERY ID DE
T7 RAW GENBANK

RNA LOCUS ORIGIN
The lines which have "EMBL" or "GENBANK" on them are used to indicate

which data base format is requested on the following lines. In example 1,

"M13" and "T7" are names of entries. The word "ALL" tells DBpull to extract

all of the "M13" entry while the word "RAW" results in only the sequence data

of "T7" being pulled. In example 2, "EVERY" is a command that pulls every

entry of a data base. "*RNA*" is a wildcard request where "*" represents any

number of unspecified characters. This results in any GenBank entry whose

name has "RNA" anywhere within it being extracted. The phrases "ID", "DE",

"LOCUS", and "ORIGIN" are line codes. These are the codes that begin each

entry line. DBpull is instructed in example 2 to pull only the lines of EMBL

entries that begin with "ID" or "DE" and only the lines of GenBank that begin
with "LOCUS" or "ORIGIN".

Once one has extracted EMBL and GenBank entries one may want to analyze
their sequences using a Delila auxiliary program. The program DBbk, short for

"Data Base into Delila book", converts the other formats into entries that

Delila programs can read.
Like the Delila program (1), DBpull can act on its own output. For

example, this allows one to construct a small database of human DNA sequences

on which further extractions or analyses can be performed.
These three "DB" programs are a good foundation for any plans one has to

use the rapidly expanding international sequence data collections.

4. ENCODING OF SEQUENCES
It is often convenient to replace raw sequence data with a numerical

representation of that data. The four numbers that represent the

mononucleotide composition of a sequence is an example. Another common

example is to represent a coding sequence by the number of times each codon is

used. Such an encoding has been shown to be useful in distinguishing the

phyla from which the sequence originated (6). We have encoded ribosome

binding site sequences into strings of l's and O's in order to apply pattern
learning techniques to the problem of distinguishing ribosome binding sites

from other sites in messenger RNA (3). We are now using encoded sequences and

134

Nucleic Acids Research

a. rIIB gene start
-10 0 10
* * * * *

5' T A A G G A A A A T T A T G T A C A A T A T T 3'
fMET - TYR - ASN - ILE

Perceptron encoding:

A 0 1 1 0 0 1 1 1 1 0 0 1 00 0 1 0 1 1 0 1 0 0
C 00000000000000001000000
G 000 1 1 00000000 1 0000 00000
T 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1

b. Encode progrm pareaters for the perceptron encoding above:

-11 to +11 region
1 window size
1 window shift
1 coding level
1 coding shift

c. bnonucleotide composition:

-11 to +11
23 A 11
23 C 1
1 ---> G 3
1 T 8

e. Dinucleotide composition of
the Shine and Dalgarno region:

-11 to -6 AA 2
6 AC O
6 ---> AG 1
2:0 AT O
1 CA O

CC 0
CG 0
CT 0
GA 1
GC 0
GG 1
GT 0
TA 1
TC 0
TG 0
TT 0

d. bnonucleotide composition of codons:

Oto 11 0 3 6 9
3 A 1 1 z 1
3 CO 1 0 0
1 ---> G 1 0 0 0
1 T 1 1 1 2

f. Dinucleotide camposition of
the first two bases of codons:

O to 11 M 1
12 AC O
12 ---> AG O
2:0 AT 2
3 CA O

CC 0
CG 0
CT 0
GA O
GC O
GG O
GT 0
TA 1
TC 0
TG 0
TT O

Figure 1. Encoding of the rIIB gene from -11 to +11

multiple regression analysis to find functions which will relate sequence
features with their quantitative biological activities.

In each of the above examples, sequence data are replaced by numerical
data which can then be processed by a variety of vector analysis techniques.
We have designed an algorithm that allows the user to specify a few parameters
and encode a sequence in a large variety of ways. Five parameters are

essential to maximize the flexibility of the algorithm, and they are each

135

Nucleic Acids Research

discussed in detail below. As a sequence example we will use the region of
bacteriophage T4 from 11 bases before the rIIB initiation codon through the

fourth codon (7). (This is -11 to +11 from the first nucleotide of the
initiating ATG, which is numbered 0.) In our "perceptron" paper (3), we

encoded this sequence as in Figure la. Many more encodings are possible, and

by specifying the following parameters the user may choose among a wide

variety of alternatives.
A. Region

In the perceptron example, all the nucleotides were encoded identically
at all positions. We might, however, want to encode different regions
differently. For example, from the ATG rightward we may only be interested in

the codons, and not the mononucleotides. In the Shine and Dalgarno region 5'
to the ATG (8), we may care about the dinucleotides and we may not care at all

about the nucleotides between that region and the ATG. Therefore the

algorithm allows the user to specify which region of a sequence is to be

encoded by the remaining parameters (sections B to E), and the entire sequence
may be encoded as a combination of those independently coded regions.
B. Window Size

Within a region of encoding we can specify the "window" size for the

nucleotides being counted. In the perceptron encoding the window was 1 base

wide because each nucleotide was assigned to a particular position. But we

may not care exactly where a nucleotide or oligonucleotide is, only that it

occur in some window of possible positions. In the extreme, where the window
is the whole region, we end up just counting the composition with total

disregard for position within the region (figure lc).
C. Window Shift

In the case where many windows exist within the region, we can also
specify the movement from one window to the next. For instance, we may not

care about the codons per se, but do care about the composition within each

codon. Then our window would be 3 bases wide and the next- window would be 3
bases over (figure ld).
D. Coding Level

A fundamental parameter to specify is the coding unit; are we encoding as

mono-, di-, tri-, or longer oligonucleotides? For oligos longer than monos we

can also decide if we want to skip bases between the ones we count. For

instance, if we specify a coding parameter of 2:0, then we are counting
dinucleotides as they occur in the sequence with zero skips in between (figure

136

Nucleic Acids Research

le). But we might want to know the number of times each dinucleotide occurs,

separated by one unspecified base (i.e., AXA, AXC ... TXT). This encoding
parameter we would specify by 2:1 (dinucleotides with one base skipped). We
might want trinucleotides from the sequence, so we would specify 3:0 0

(trinucleotides with no skips between any of the bases). If we wanted the

trinucleotide count for the corresponding positions in three adjacent codons

we would specify 3:2 2 (i.e., we are counting the number of AXXAXXA, AXXAXXC

... TXXTXXT). Skips are specified independently between each of the encoded

bases (3:1 2 counts AXAXXA, AXAXXC ... TXTXXT).

E. Coding Shift
Lastly, we can also specify the shift to the new coding site. For

instance, if we want to keep track of frames we would shift the coding site by

three each time (figure lf).
Figure lb shows how the perceptron encoding of figure la is specified by

these parameters. Figure lc to f shows further example parameters and their

corresponding encodings. (In ld, 0 to 9 are the first bases of each codon.)
We have recently been using encoded sequences to determine whether a

region is translated, and if so, in which frame (in preparation). In

bacteriophage T4, which is 63% A+T, coding sequences have a very non-random

distribution of mononucleotides. For instance, 57% of the G's occur in the

first position of codons and 50% of T's occur in the third position. We can

take the collection of known T4 coding sequences (there now exist sequences

from 21 genes) and make an encoded vector of the mononucleotides at each codon

position. This standard can then be used to evaluate, via a simple

correlation coefficient, other sequences of unknown function. In conjunction

with other methods, this has allowed us to predict several new protein

products from the T4 genome.

5. CONCLUSION

In this paper we have described three kinds of tools: those that help

transportation of other tools, those that gain one access to sequence data and
those that facilitate analysis of the sequences. Since the Delila System
contains more than 50 programs at present, we have presented only the key

ones. One line descriptions of each program are given in Table I. The Delila

Manual, containing page-long descriptions of each program, is available upon

request.

137

Nucleic Acids Research

Table I. Delila System Programs
(Note: A Book is a subset of a Library)

MODULE LIBRARIES

AuxMods
Del Mods
MatMods
PrgMods
VaxMods

TOOLS

Bi gLet
Break
Calico
Chacha
Code
Concat
Copy
Flag
Merge
Module
Rembla
Repro
Shift
Show
Split
Ver
Verbop
Whatch
Worcha

Auxiliary Program Modules
Delila Modules
Mathematics Modules
Programming Modules
Modules for Transportation to the VAX Computer

Text Enlargement
Breaks Up Files into Pages
Character And LIne COunts of a File
Change Characters
COmment DEnsity of Pascal Programs
Concatinate Files Together
Copy Files
Flags Long Lines in a File
Merge Raw Sequences, Compare Files
Module Transfers
Remove blanks from Ends of Lines in a File
Reproduce Copies of a File
Shift Files to the Right
On-Line Access to the Delila Manual and Module
Splits Files Vertically
Look at the Version of a Program
Increment the Version Number of a Program
What Characters are in a File?
Change Words in Pascal Programs

Li bra ri es

LIBRARIAN

Delila Sequence Manipulation

AUXILIARY PROGRAMS FOR DATA BASE CONSTRUCTION

Reform
Rawbk
Makebk

Invert, Complement or Reformat a Raw Sequence
Convert Raw Sequences to a Book (for Rapid Analysis)
Make a Book from Raw Sequence (for Library Insertion)

AUXILIARY PROGRAMS FOR THE CATALOGUE

Catal Cataloguer of Delila Libraries
Loocat Look at a Catalogue (for Debugging)

138

Nucleic Acids Research

AUXILIARY PROGRAMS FOR SEQUENCE LISTING

Lister List Sequence Content of a Book with Translation
Parse List Parts of a Book

AUXILIARY PROGRAS FOR ALIGNED SEQUENCES

Alist Aligned Listing of a Book
Hist Histogram of Aligned Book
HistAn Histogram Analysis

AUXILIARY PROGRAMS FOR ANALYSIS

Comp Composition of a Book
CompAn Analysis of a Book Composition
Count Count the Bases in a Book
DotMat Dot Matrices between Two Books
Helix List Helicies between Two Books
Index Alphabetical Listed Oligonucleotides in a Book
IndAna Analysis of an Index
Matrix Print Helicies from HELIX in Dot Matrix Form
Pemowe PEptide MOlecular WEights
Search Search a Book for Strings

AUXILIARY PROGRAMS FOR PATTERN LEARNING

PatLrn Pattern Learning (The Perceptron)
PatLst Pattern Lister - Prints out the Pattern
PatAna Analysis of Each Column in a Perceptron Pattern
PatSer Pattern Search in a Book
PatVal Evaluates Sequences in an Aligned Book Using a Pattern

AUXILIARY PROGRAMS FOR ENCODED SEQUENCES

Encode Encode a Book of Sequences into Strings of Integers
EncFrq Encoded Sequence Frequency Analysis
EncSum Sum of the Vectors of Encoded Sequences
Frame Correlations between Coding Frames

AUXILIARY PROGRAMS FOR OTHER USES
Refer Lists References in a Library
Sepa Separates Delila Instruction Sets

ACCESS TO INTERNATIONAL DATA BASES

DBpull Extracts Data Base Entries
DBcat Generates Catalogues for DBpull
DBbk Converts Entries to Delila Format
DBlook Allows one to Look at DBcat Catalogues (for Debugging)

139

Nucleic Acids Research

ACKNOWLEDGEMENTS
This work is supported by grant number GM28755 from NIH. We are grateful

for the continuing support of the University of Colorado Academic Computing
Services. We also thank Patrick Roche for writing Break; Billie Lemmon for
suggesting Show; Kathie Piekarski for typing the manuscript; and John
Hoffhines, Melissa Mockensturm and John Childs for reading the manuscript.

REFERENCES

1. Schneider, T.D., Stormo, G.D., Haemer, J.S. and Gold, L. (1982). Nucl.
Acids Res. 10, 3013-3024.

2. Stormo, G.D., SZFneider, T.D. and Gold, L.M. (1982). Nucl. Acid Res. 10:
2971 -2996.

3. Stormo, G.D., Schneider, T.D., Gold, L. and Ehrenfeucht, A. (1982).
Nucl. Acid Res. 10: 2997-3011.

4. Jensen, K. and Wirth, N. (1974). Pascal User Manual and Report, Second
Edition, Springer-Verlag, New York.

5. Kernighan, B.W. and Plauger, P.J. (1981). Software Tools in Pascal,
Addison-Wesley, Reading, Mass.

6. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Mercier, R.
(1981). Nucl. Acid Res. 9, r43-r74.

7. Pribnow, D., Sigurdson, D.C., Gold, L., Singer, B.S., Napoli, C., Brosius,
J., Dull, T.J. and Noller, H.F. (1981). J. Mol. Biol. 149, 337-376.

8. Shine, J. and Dalgarno, L. (1974). Proc. Natl. Acad. Sci. UV 71,
1342-1346.

140

