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Figure S1. (a) 3 1P{lH } and (b) Partial 'H NMR (Acetone-ds, 300MHz) spectrum of the [6 + 4]

metal-organic supramolecule 3.
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Figure S2. Full ESI MS spectrum of the [6 + 4] metal-organic supramolecule 3.
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Figure S3. (a) "H NMR spectrum (Acetone-de, 300 MHz) of the discrete [6 + 4] metal-organic
supramolecule (3); (b and ¢) "H NMR spectra of component substitution of 3 to 5; (d) 'H NMR
spectrum of self-assembly of 5 by individual molecular components.

Figure S4. MMFF models of (a) the discrete [6 + 4] metal-organic supramolecule 3 and (b) the three-

component modified supramolecule 5.
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Figure S5. (a) "H NMR spectrum of the discrete [6+4] metal-organic supramolecule 3; (b and ¢) 'H
NMR spectra of component substitution of 3 to 7; (d) "H NMR spectrum of self-assembly of 7 by
individual molecular components.

Figure S6. MMFF models of (a) the structurally modified supramolecule 7 and (b) the non-functional
scaffold 9.
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Figure S7.*'P{'H } NMR (Acetone-ds, 300MHz) spectra of the non-functional scaffold 9 (a) and the

ferrocenyl functionalized supramolecule 11 (b).
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Figure S8. Full ESI-MS spectrum of the triflate salt of non-functional scaffold 9.
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Figure S9. Calculated (top, blue) and experimental (bottom, red) isotopically resolved ESI-MS

spectra of the PFg salt of ferrocenyl functionalized supramolecule 11.
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Figure S10. (a) *'P{'H } NMR (Acetone-ds, 300MHz) spectrum of the host-guest complex 13 and

(b) different views of the MMFF model of 13.
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Figure S11. Variable temperature 'H NMR (Acetone-ds, S00MHz) spectra of the host-guest complex
13.
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Experimental details for the Pulsed Field Gradient Spin Echo (PGSE) NMR measurements

Pulsed gradient spin-echo (PGSE) NMR diffusion measurements were done by pulse-sequence

method developed by Stejskal and Tanner:

In(I/)) = v 8°G*(A — 8/3)D

vx : Gyromagnetic ratio of the x-nucleus

d: Length of the gradient pulse
G: Gradient strength
A: Delay between the midpoints of gradients
D: Diffusion coefficient

Temp: 298K

Instrument: Inova 500 MHz

Stokes-Einstein Equation: The molecular size is obtained from the diffusion coefficient via the
Stokes-Einstein equation shown below:

D = kgT/67nr

kg: Boltzmann constant
T: Absolute temperature

r: Hydrodynamic radius of the species under investigation
D: Diffusion coefficient

Gradient Calibration: The gradient strengths need to be carefully calibrated to obtain accurate D
values to fit equation (1). Gradient strengths were calibrated using the width (in Hz) of a sample of
known length along the NMR-tube (Z) axis, back-calculation of the coil constant from a diffusion
experiment on D,O using D = 1.9 x 10~ cm?/s for D,0 at 298K was used to calculate the gradient

strengths of both the probes.
D(3) =(5.37 £ 0.13) x 10 cm?/s; D(5) = (5.42 £ 0.16) x 10 cm?/s;
D(7) = (5.46 + 0.12) x 10 cm?/s; D(9) = (5.25 + 0.09) x 10°® cm?/s;

D(11) = (4.38 £ 0.18) x 10 ° cm?/s; D(13) = (5.50 + 0.18) x 10 °cm?s.
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Electrochemistry analysis of 3, 9. and 11

All electrochemical measurements were performed in a Faraday cage using a Pine Instrument
Co. RDE3 potentiostat/waveform generator, or using a Dagan Cornerstone Chem-Clamp potentiostat
combined with the RDE3 waveform generator. These instruments were interfaced to a computer
through a PCI 6251 data acquisition board (National Instruments). Voltammetric curves and current-
time data were recorded using in-house virtual instrumentation written in LabVIEW 8.0 (National

Instruments).

(a) Cyclic voltammetry
The working electrode was a 0.3 mm diameter Pt disk shrouded in glass. A Ag/AgCl and Pt
mesh electrode were used as the reference electrode and auxiliary electrode, respectively.
Voltammetric experiments on 3 and 9, Figure S12, show that these molecules are not

electrochemically active in acetone within the voltage range examined.
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Figure S12. Cyclic voltammetry of (a) 3 and (b) 9 at different scan rates (25-150 mV/s) at a ~0.3 mm
diameter Pt electrode. Solution: 0.61 mM 3 and 0.60 mM 9 in acetone containing 0.1 M n-BusNPFg,
respectively.
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(b) Steady-state electrochemical measurements

Two-electrode steady-state voltammetric measurements of 11 (0.61 mM) in acetone containing
0.1 M n-BusNPF¢ were performed using a ~25 um diameter Pt microdisk electrode as the working
electrode and a Ag/AgCl electrode as the combined auxiliary/reference electrode. The radius of the
Pt microdisk was provided by the Pt wire manufacturer and further verified from the voltammetric
limiting current (i, = 4nFDca) for the oxidation of ferrocene. The limiting current for

supramolecule is given by:'

i, =4nFDca0

sites

(SIT)
where 7 is the number of electrons transferred per ferrocene (= 1), F' is Faraday’s constant, D is the
diffusion coefficient of the supramolecule, ¢ is the molecule bulk concentration, a is the electrode
radius, and O, 1s the number of ferrocenyl sites per molecule, respectively. A plot of E vs log[(ijim-
i)/i] from the steady-state i-V curves (Figure S13) was used to determine if the oxidation of 11
proceeds by independent serial oxidation of the ferrocenyl sites. The slope of this plot was measured
to be -0.0678 V, slightly larger than the theoretical expectation of -0.059 V for oxidation of
noninteracting ferrocenyl sites, indicating that the redox species almost react independently of one

another.
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Figure S13. Plot of E vs. log[(iim-i)/i] from the steady-state voltammetric response.
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(c) Chronoamperometry measurements
Chronoamperometry measurements were performed to measure the diffusion coefficient of
11. The potential was stepped from a nonreaction potential to a diffusion-controlled potential, and

the resulting time-dependent current (i}) was monitored. The time-dependent current is given by:

i 2 N
—t=l+ﬁa(Dt) 03

Lim ) (S12)

The slope of a plot of i/im vs £ yields D. This method has been previously used to determine
values of D for related supramolecules.3 Figure S14 shows a plot of i,/ijim Vs %3 for the oxidation of

11, yielding D (eq SI2) and g5 (€q SI1).
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Figure S14. Plot of iy/ijim vs. % for the oxidation of 11 in acetone containing 0.1 M n-BuyNPF¢ using
a ~25 um diameter Pt disk electrode. The black squares are the experimental data and the red line is

the fit line in the long-time region.
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