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Separate Neural Mechanisms Underlie Choices and 

Strategic Preferences in Risky Decision Making 

Supporting Online Material 

Behavioral Experiment 1 

One hundred twenty eight young adults participated in the first behavioral experiment conducted 

at the Fuqua School of Business. All subjects were compensated for their participation in this 

study with a fixed payout ($8) not related to their choices. All subjects provided informed consent 

as a part of a protocol approved by the Institutional Review Board of Duke University. 

 

Subjects were presented with eight three-outcome and eight five-outcome mixed gambles on a 

computer using the Psychophysics Toolbox program in MATLAB (Brainard, 1997; Pelli, 1997). 

Cognitive load was also manipulated between-subjects by asking subjects to memorize 3 or 7-

letter pseudo-words for each trial. For compatibility with the imaging data, only results from the 

eight five-outcome gambles, collapsed across both the load conditions, are presented here. First, 

each subject was presented with a risky gamble and asked to rate its attractiveness. Subsequently, 

they were given two choices for modifying the gamble, one of which always involved adding a 

fixed amount to the reference to maximize the overall probability of winning (Pmax option) and 

another which involved adding the same amount to either the extreme loss to minimize the worst 

possible loss (Lmin) or the extreme gain outcome to maximize the best possible gain (Gmax option). 

Subjects were shown both versions of the modified gamble on the screen beside each other and 

were asked to choose one of the options. There was no time constraint for making the choice. In 

four gambles, the probabilities of the two outcomes were matched (equal expected value) while 

for the remaining four gambles, the probability associated with Pmax choice was less than the 

probability of the alternative choice by 5 or 10% (unequal expected value). 

 

As hypothesized, there were significant biases toward Pmax choice (overall proportion = 0.69) 

when expected value was matched (Supplementary Fig. 1). Even when choosing the Pmax option 

required sacrificing expected value (i.e., when the alternative option resulted in a bigger increase 

in value and/or probability), they preferred the Pmax option in 59% of the trials. The results of this 

experiment are consistent with and extend prior findings in the behavioral literature (Payne, 
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2005). We also found substantial inter-individual variability: some subjects nearly always 

preferred the Pmax option; others nearly always preferred the Gmax or Lmin options while still others 

switched based on trial variables, resulting in both intra- and inter-subject variability in strategy 

(Supplementary Fig. 2A). We further note that Pmax choices were also associated with faster 

response times (Supplementary Fig. 2C), consistent with it representing a simplifying strategy. 

Behavioral Experiment 2 

The second behavioral experiment (E2) manipulated the basic paradigm in three ways – to 

maintain, eliminate, or exaggerate the probability-maximizing choice – to rule out potential 

confounding factors and establish that these effects were indeed driven by the need to maximize 

the overall probability of winning. Seventy one young adults participated in a second behavioral 

experiment conducted at the Fuqua School of Business. Compensation for subjects was similar to 

the previous experiment. All subjects provided informed consent as a part of a protocol approved 

by the Institutional Review Board of Duke University. 

 

Subjects were presented with eight five-outcome mixed gambles similar to the first experiment on 

a computer. Four of these gambles were matched for expected value and the other four were not. 

Additionally, subjects were also presented with eight gambles where adding value to the middle 

option did not involve a change in overall probability. In these Pmax-unavailable trials, we made 

one very subtle change to the experimental design: we added or subtracted a small amount from 

the central choice option (e.g., adding value to an option that was already $5 and not $0; or 

adding money to an option that changes it from -$20 to -$5). Thus, there were no options in the 

gamble whose selection would change the overall probability of success. 

 

Finally, subjects were presented with four additional trials where adding values to the extreme 

loss or gain outcomes changed the overall probability of the gamble. In these Pmax-exaggerated 

trials, we altered the basic gambles so that one of options, if selected, would translate a certain 

loss gamble to an uncertain loss gamble (by modifying an all loss-outcome gamble to a gamble 

with one gain outcome) or translate an uncertain gain gamble to a certain gain gamble (by 

modifying a gamble with one loss outcome to an all gain-outcome gamble). These gambles were 

created by selecting two basic gambles from the set of four equal expected value core problems 

above and transposing them by adding or subtracting a constant value from all outcomes. For e.g., 

the core gamble: {60, 0.2; 45, 0.2; -20, 0.2; -40, 0.2; -80, 0.2} was transposed it to the new 

gamble: {130, 0.2; 115, 0.2; 50, 0.2; 30, 0.2; -10, 0.2} and subjects were given a choice between 
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adding $30 to the -$10 option (making it a certain win gamble) or to the $50 reference option 

(which would correspond to the Pmax option in the untranslated version). 

 

In the control trials, which replicates the design of the first behavioral experiment, subjects still 

showed a systematic bias (65%) towards the Pmax choices (Supplementary Fig. 1). Again, the 

preference for Pmax response reduced slightly (58%, but was still the majority response) when it 

was associated with lower expected value. In the critical Pmax-unavailable trials, we found a 

significant shift in the pattern of subjects’ choices: subjects now chose the option nearest to $0 

only 39% of the time. This result provides confirmation that many subjects do preferentially 

select the choice that improves the overall probability of winning when it is available, but readily 

switch to magnitude-sensitive choices otherwise. Moreover, these results also indicate that the 

choices of subjects for these mixed gambles cannot be explained solely by parameters within 

standard descriptive economic models, because the addition of $5 to one option of a complex, 

large-magnitude gamble should have negligible effects upon the predictions of those models. 

Finally, in the Pmax-exaggerated trials, subjects overwhelmingly preferred the probability-

maximizing option (83%). Thus, our behavioral data not only demonstrate the robustness of the 

preferences toward the Pmax choices, but more importantly that this bias can be reversed or 

accentuated by experimental manipulations. 

 

Consistent with our first behavioral experiment, we also found substantial inter-individual 

variability in this subject population (Supplementary Fig. 2B). Again, Pmax choices were 

associated with faster response times (Supplementary Fig. 2C). Moreover, across subjects, the 

proportion of Pmax choices was negatively correlated with an independent measure of behavioral 

maximizing (Schwartz et al., 2002) (r = -0.26; p < 0.05), which assesses an individual’s tendency 

to seek the best possible option in all situations. Finally, the proportion of Pmax choices was also 

significantly negatively correlated with a trait measure of sadness  (Fordyce, 1988) (r = -0.29; p < 

0.05). 

Does Pmax Represent a Simplifying Strategy? 

Across both experiments, we find four lines of evidence that support the view that Pmax choices 

represent an effort-reduction simplifying strategy. First, Pmax choices were significantly faster in 

terms or response times, as would be expected of a less effortful strategy. Second, individual 

differences in the preference for Pmax were significantly and negatively correlated with a trait 

measure of maximizing in E2, consistent with effort-reduction. Third, individual variability in 
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proportion of Pmax choices also significantly and negatively correlated with a trait measure of 

sadness in E2, consistent with sadness being associated with reduced heuristic processing 

(Bodenhausen et al., 1994; Schwarz et al., 1991). Finally, the proportion of Pmax choices 

decreased with increasing cost in terms of expected value. Together, these findings are consistent 

with Pmax representing a simplifying strategy. Additionally, as discussed below in the comparison 

of choice models, these choices were also inconsistent with compensatory models like expected 

utility and cumulative prospect theory. 

Supplementary Methods: fMRI Experiment 

Stimuli: Trial Types. 

There were a total of five different types of conditions: (i) the value (amount added to the option) 

and probability were higher for the central reference outcome (Ref_EV+), (ii) the value and 

probability were the same for both reference and extreme outcomes (Ref_EV=), (iii) the value was 

the same but the probability of the reference outcome was lower (Ref_P-), (iv) the probability was 

the same but value added to the reference outcome was lower (Ref_V-) and (v) both the 

probability and the value were lower for the reference option (Ref_EV-). The proportion of Pmax 

choices was systematically modulated by the tradeoff in expected value of the two types of 

choices, indicating that subjects were not simply insensitive to expected value (Supplementary 

Table 1). As seen from the table, the greatest conflict existed when the expected values were 

equal or similar (when only one of value or probability was lower). Therefore, only these trials 

were included for analyzing the neural correlates of decisions. 

 

Subject Payments. 

Subjects were informed at the beginning of the fMRI session that a portion of their earnings 

would depend on their choices. Specifically, they would gain or lose money based on the 

outcomes of two randomly selected gambles (plus a fixed $40 participation payment). They were 

told that the outcome of each trial would be multiplied by an unknown, but fixed percentage, and 

that they could lose some or all of a monetary endowment that was given to them at the start of 

the experiment. To ensure that choices were incentive-compatible, we gave each subject (before 

they entered the scanner) a sealed envelope containing both a cash endowment and a message 

indicating the payment multiplier. The values of the endowment and multiplier were both 

unknown to the subjects. For all subjects, the endowment was set at $20 and the multiplier was 

set at 10%. The final total payoffs ranged from $46 to $76 (mean = $61, s.d. = $8.66). 
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Behavioral Trait Measures. 

At the end of the scanning session, subjects completed a series of questionnaires. These included: 

(i) A Maximization Scale that consists of 13 questions aimed at distinguishing people 

based on those who try to get the best out of a situation from those who settle for 

something good enough (Schwartz et al., 2002), 

(ii) Barratt’s Impulsiveness Scale (BIS) that consists of 30 questions categorized into 

cognitive, planning and motor subscales (Patton et al., 1995),  

(iii) A cognition-intuition questionnaire, where the two subscales are faith-in-intuition that 

leads to more heuristic experiential processing and need-for-cognition that leads to 

more analytic rational processing (Epstein et al., 1996), 

(iv) A decision-making styles inventory (DMSI) with sub-scales as rational, intuitive, 

avoidant, dependent and spontaneous (Scott and Bruce, 1995) and  

(v) A second decision styles inventory (WN_DMSI) with the sub-scales as analytical, 

intuitive and regret (Nygren and White, 2002). 

 

Factor Analysis. 

Individual subject responses from all subscales of these five questionnaires, along with the 

behavioral measure of choice tendency from the fMRI experiment, were then subjected to a factor 

analysis using SPSS. We used principal components analysis to extract the factors and performed 

varimax rotation of the resulting loading matrices to facilitate interpretation. The extraction 

criterion was set to an eigenvalue of one or greater.  

 

The behavioral data loaded onto four factors which together accounted for approximately 75% of 

the total variance; these can be broadly labeled as impulsiveness, magnitude-focus, intuitiveness, 

and regretfulness in decreasing order of explained variance. The rotated factor matrix for each of 

the four factors is summarized in Supplementary Table 3. Loading values with absolute value of 

0.5 and greater are shown in the table. We then calculated scores for each factor for each subject, 

which were then used as covariates in the third-level fMRI analyses to evaluate the robustness 

and specificity of our findings to strategic variability. 

 

We included subjects’ scores on each of these factors as across-subjects regressors in out third-

level analysis looking at differences between magnitude-sensitive compensatory and simplifying 

Pmax choices. We found that the difference in activation between the two choices within the 

dmPFC was significantly negatively correlated with the magnitude-focus factor (the preference 
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for simplifying strategy loaded negatively on this factor) but not with any other factor, replicating 

the interaction effect in Fig. 3 in the main text of the manuscript (Supplementary Fig. 7). 

 

Dorsomedial Prefrontal Cortex: Strategy or Response Conflict? 

We conducted two additional analysis to rule out the possibility that dmPFC activation was 

related to response conflict, as has been found in several previous studies (Botvinick et al., 1999; 

Kerns et al., 2004). First, we evaluated whether there was any correlation, across subjects, 

between response time and dmPFC activation, as would be expected in the case of response 

conflict. No such correlations were found, whether considering each strategy independently or 

their interaction (Supplementary Fig. 8A-C). Second, subjects who were indifferent to 

compensatory and simplifying strategies (hence having maximal response conflict as they choose 

both options equally often) exhibited low dmPFC activation that was equal for both choices 

(Supplementary Fig. 8D), a finding that is inconsistent with a response-conflict explanation. 
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Comparison of Choice Models. 
 

Given the significant preference for Pmax choices across our subjects, we sought to characterize if 

these biases were consistent with traditional economic models. We focused mainly on Expected 

Utility (EU) and Cumulative Prospect Theory (CPT) models. Note that we do not discuss 

Original Prospect Theory (OPT) as it was primarily introduced for simple two-outcome gambles 

and it violates first-order stochastic dominance, which is particularly important consideration in 

multi-outcome gambles like the ones used in this study. We stress that the model testing to be 

reported should not be viewed as implying that an overall probability of winning is a new and 

“better” general model of risky choice behavior. Clearly this “simplifying strategy” does not even 

apply to risky choice problems that involve only “pure” gain or loss options. This purpose of 

model comparisons is simply to highlight the potential value added by incorporating an overall 

probability of winning metric in any descriptive theory of how people respond to complex risky 

choices. 

 

The gambles used in this study were of the form G = {x1,p1; x2,p2; x3,p3; x4,p4; x5,p5} with xi 

representing the outcomes and pi the associated probabilities  The outcomes are ordered so that x1 

is the largest gain, x5 is the largest loss, and k is the index of the smallest gain (k=2 or k=3 for the 

gambles in this paper). The values for the gambles presented during the imaging study were 

chosen such that expected value, expected utility and cumulative prospect theory make unique 

predictions.  

 

The expected utility (EU) of a gamble G is given by: 
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For the first level of model comparisons, we made predictions for each of the 72 nearly equal 

expected-value gambles (the set of gambles that were used in choice analyses) using standard 

parameter values for each of the models. This included using a concave utility function for the 

expected utility model with β = 0.88. For the cumulative prospect theory model, we used the 

following values for each of the parameters: γ+ = 0.61, γ- = 0.69 and λ = 2.25 based on previous 

experimental studies (Tversky and Kahneman, 1992). The findings were inconsistent with 

observed behavior. For example, for equal EV problems, expected utility predicts that subjects 

should choose Pmax option only in trials involving comparison to Gmax and not in trials where Pmax 

is contrasted against Lmin. However, subjects showed no such difference in their choices, choosing 

the Pmax option in 70% of trials when compared to Gmax and 68% of trials when compared to Lmin. 

Similarly, in all trials where the Pmax option is associated with equal or lesser expected value 

compared to the alternative option, CPT model with the parameters above predicts the choice of 

Gmax or Lmin option, inconsistent with the actual choices observed in this study. These findings 

suggest that existing models of risky choice fail to account for this bias towards the choice that 

maximizes overall probability of winning, which plays an important role in multi-outcome mixed 

gambles. 

 

To account for the fact that there could be individual differences in parameter values for each 

subject, we performed a split-sample analysis. We selected one half of the choices of each 

participant and estimated a subset of parameters for the above models that best fit the subject’s 

choices. We estimated one parameter, β, for the EU model and two parameters,{β,γ}, for the CPT 

model, keeping λ fixed at 2.25. Note that we also simplified the equation for CPT in our 

estimation by assuming γ+ = γ-. We then assessed how well the fitted models predicted the other 
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half of that subject’s data, comparing the performance of the EU and CPT models. These findings 

are summarized in Supplementary Fig. 3. As seen from the figure, the parameters estimates 

from one half of the sample failed to significantly predicted choices in the complementary sample 

across subjects. However, the proportion of Pmax choices was highly correlated across the two 

samples, indicating that subjects were highly consistent in their choices across the experiment. 



Venkatraman et. al.  Neural Strategic Variability 

p. 10 

Supplementary Tables 
 
 
Supplementary Table 1: Summary of the proportion of Pmax choices made by subjects (N=23) 

and response times across all condition types, within our fMRI experiment. 

 
 Proportion of Pmax Choices (%) Response Time (s) 

 Mean S.E Mean S.E. 

Ref_EV+ 
90.58 2.63 0.883 0.068 

Ref_EV= 
69.38 5.18 0.994 0.083 

Ref_V- 
45.65 5.45 1.091 0.118 

Ref_P- 
33.70 5.47 1.031 0.117 

Ref_EV- 
29.17 5.45 0.992 0.088 
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Supplementary Table 2: Regions whose activation was significantly modulated by the decision 

that was made (i.e., compensatory magnitude-sensitive or simplifying probability-maximizing) or 

whose choice-related activation was modulated by the proportion of Pmax choices across subjects. 

The coordinates and z-values correspond to the peak activated voxel within the region. 

 

MNI Coordinates  

x Y Z 

Brodmann 

Area 

z-value 

Compensatory > Simplifying      

Right anterior Insula 38 28 0 13 3.42 

Right ventromedial PFC 16 21 -23 11 2.74 

      

Simplifying > Compensatory      

Right Posterior Parietal Cortex 20 -76 57 40 3.40 

Precuneus 3 -72 57 7 2.79 

Right dorsolateral Prefrontal Cortex 44 44 27 46 2.99 

      

(Compensatory - Simplifying) * 

Strategy Preference 

     

Right Inferior Frontal Gyrus 47 42 8 46 3.64 

Right dorsolateral Prefrontal Cortex 42 25 22 44 3.14 

Dorsomedial Prefrontal Cortex 10 22 45 32 2.99 

 10 42 29 32 2.77 
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Supplementary Table 3: Behavioral data from twenty subjects loaded onto four main factors 

that could be categorized as reflecting impulsiveness, maximizing, intuitiveness, and 

regretfulness; here ordered in increasing proportion of explained variance. Only responses with 

rotated component matrix loading of greater than 0.5 (or lesser than -0.5 for negative loadings) 

are shown. 

 
 Factor 1 Factor 2 Factor 3 Factor 4 

Inferred Factor Label Impulsiveness Magnitude-

focus 

Intuitiveness Regretfulness 

BIS     

Nonplanning 0.76 - - - 

Cognitive - 0.67 - - 

Motor 0.87 - - - 

WN-DMSI     

Analytical -0.78 - - - 

Intuitive - - 0.90 - 

Regret-based - - - 0.56 

DMSI     

Spontaneity 0.86 - - - 

Avoidant - 0.75 - - 

Dependent - 0.51 - 0.55 

Intuitive - - 0.91 - 

Rational -0.80 - - - 

Cognitive-Intuitive     

Need for Cognition - - - -0.88 

Faith in Intuition - - 0.76 - 

Maximizing Scale - 0.78 - - 

Preference for Simplifying 

Strategy 
- -0.71 - - 
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Supplementary Figure Captions 
 

Supplementary Figure 1. Subjects prefer choices that increase the overall probability of 

winning. In behavioral experiment E1 (N=128), subjects show a significant bias towards Pmax 

choices. This effect is replicated in E2 (N=71). More importantly, the preference for the Pmax 

choices can be reversed or accentuated by experimental manipulations. When values were 

modified slightly such that none of the options could change the overall probability, subjects now 

avoided the middle option in the gamble (i.e., they now preferred to add money to an extreme 

value). Similarly, when provided with an option to eliminate the chance of losing or to create a 

chance for winning where none existed, Pmax choices increased dramatically. Finally, the bias 

towards Pmax choices was replicated in the fMRI experiment. Note that the Pmax-unavailable 

condition did not have any choice that changed the overall probability, and the value in the plot 

represents the proportion of choices of the central outcome in these gambles. 

 

Supplementary Figure 2. Results from the behavioral experiments. (A,B) To provide 

validation of our experimental task in a large sample, subjects made decisions about a series of 

eight gambles in two experiments (E1: N=128 and E2: N=71), each constructed according to the 

rules described in the Supplementary Methods. In both experiments, subjects’ choices were 

biased toward the Pmax option, with substantial inter-individual variability. (C) Response times 

were significantly faster (p < 0.05) when subjects chose the Pmax option in both behavioral 

experiments, consistent with a speeding of choices that involve a simplifying strategy. 

 

Supplementary Figure 3. Evidence that a focus on overall probability of winning (and not 

economic models) best explain subjects’ choices. We used a split-sample analysis to evaluate 

the relative consistency of possible choice parameters. (A) The proportion of Pmax choices (mean-

subtracted) in one sample significantly predicted the proportion of Pmax choices in the 

complementary sample. However, choice models based on (B) expected utility (EU) and (C) 

cumulative prospect theory (CPT) were poor predictors of choices, even though those latter 

models included additional free parameters.  

 

Supplementary Figure 4. Individual differences in strategy correlated with a trait measure 

of Maximization. The participants’ strategic preferences during the fMRI experiment (x-axis) 

had a strong negative correlation with an independent trait measure of maximization (y-axis). 
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Supplementary Figure 5. Differences in dmPFC connectivity strength predict subjects’ 

choices. Functional connectivity analysis showed differential connectivity of the dmPFC with 

posterior parietal cortex and anterior insula as a function of choice. Individual differences in the 

strength of these connections tracked strategic variability. These findings suggest that differences 

in the magnitude of functional connectivity between dmPFC and PPC predict Pmax choices while 

differences in the magnitude of functional connectivity between dmPFC and aINS predict 

magnitude-sensitive compensatory choices. 

 

Supplementary Figure 6. Activation of the ventral striatum was predicted by an 

independent behavioral measure of maximization. Within the ventral striatum region that 

exhibited a significant activation difference between observed monetary gains and losses (x = 14, 

y = 16, z = -10; indicated with arrow; see also Fig. 4), we found a significant correlation with an 

independent behavioral maximization scale. Subjects with lower values on the maximization 

scale exhibited a very large difference between gain- and loss-related activation in this region.  

Conversely, experienced gains and losses had little effect on subjects with larger values on the 

maximization scale. 

 

Supplementary Figure 7. Areas of activation associated with specific decision factors.  

Subjects in our sample were differentiated into four main factors based on their responses to a 

battery of questionnaire-based decision-making responses. Each of these factors were then used 

as a covariate, across subjects, for the activation difference between compensatory magnitude-

sensitive and simplifying choices. This generated a set of four maps, each reflecting a different 

decision * trait interaction.  (A) The cognitive impulsiveness factor positively predicted activation 

in the posterior parietal cortex. (B) The magnitude focused factor negatively predicted activation 

in dorsomedial prefrontal cortex (i.e., exhibited greater difference in activation between the two 

choices for subjects loading heavily on this factor). This region overlaps with the dmPFC region 

that predicts strategy in Fig. 3. (C) Intuitiveness positively predicted activity in ventromedial 

prefrontal cortex. (D) Activation in ventral striatum negatively predicted the fourth factor, which 

we roughly characterize as reflecting regretfulness. 

 

Supplementary Figure 8. Dorsomedial prefrontal cortex activation is not correlated with 

responses. To evaluate whether decision difficulty could explain the observed activation in 

dorsomedial prefrontal cortex (dmPFC), we evaluated the correlation between response time (x-

axes) and  (A) Magnitude-sensitive choice activation, (B) Pmax choice activation, and (C) the 
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difference in activation between choices. Response time was not significantly correlated with any 

activation measure. (D) We split our fMRI subject sample into three groups of subjects, the 

middle of which consisted of individuals (N = 6) who were equally likely to prefer the 

compensatory or simplifying strategy. These subjects can be assumed to have poorly developed 

strategies (i.e., minimal strategy conflict) such that no particular choice is preferred on each trial 

(i.e., maximal response conflict). Under a strategy-conflict explanation, these individuals would 

be expected to have low dmPFC activation, whereas under a response-conflict explanation they 

should have high dmPFC activation. We found that the neutral subjects had low-amplitude 

dmPFC activation that was equal between the two choices, supporting the strategy-conflict 

interpretation. 
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