

## Supporting Online Material for

### A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants

Laura J. Scott, Karen L. Mohlke, Lori L. Bonnycastle, Cristen J. Willer, Yun Li, William L. Duren, Michael R. Erdos, Heather M. Stringham, Peter S. Chines, Anne U. Jackson, Ludmila Prokunina-Olsson, Chia-Jen Ding, Amy J. Swift, Narisu Narisu, Tianle Hu, Randall Pruim, Rui Xiao, Xiao-Yi Li, Karen N. Conneely, Nancy L. Riebow, Andrew G. Sprau, Maurine Tong, Peggy P. White, Kurt N. Hetrick, Michael W. Barnhart, Craig W. Bark, Janet L. Goldstein, Lee Watkins, Fang Xiang, Jouko Saramies, Thomas A. Buchanan, Richard M. Watanabe, Timo T. Valle, Leena Kinnunen, Gonçalo R. Abecasis, Elizabeth W. Pugh, Kimberly F. Doheny, Richard N. Bergman, Jaakko Tuomilehto, Francis S. Collins,\* Michael Boehnke\*

> \*To whom correspondence should be addressed. E-mail: boehnke@umich.edu (M.B.); francisc@mail.nih.gov (F.S.C.)

> > Published 26 April 2007 on Science Express

DOI: 10.1126/science.1142382

### This PDF file includes:

Author Contributions Materials and Methods Figures S1 to S3 Tables S1 to S7 References

### **Author Contributions**

Laura J. Scott: GWA study conception, conception and direction of analysis, selection of SNPs for stage 2 genotyping, statistical analysis, writing Karen L. Mohlke: GWA study conception, understanding biological function, selection of SNPs for stage 2 genotyping, writing Lori L. Bonnycastle: direction and performance of Sequenom genotyping and sample handling, overseeing human subjects issues, selection of SNPs for stage 2 genotyping Cristen J. Willer: conception and execution of statistical analysis, selection of SNPs for stage 2 genotyping Yun Li: imputation methods, statistical analysis William L. Duren: programming of statistical methods, statistical analysis Michael R. Erdos: direction and performance of Sequenom genotyping, primer design, troubleshooting SNP assays Heather M. Stringham: data management and quality assurance, sample selection, writing Peter S. Chines: sample and data management, incorporation of biological information and SNP annotation into data analysis Anne U. Jackson: direction and execution of statistical analysis Ludmila Prokunina-Olsson: conception and implementation of biological experiments Chia-Jen Ding: combined analysis of FUSION, DGI, and WTCCC data Amy J. Swift: genotyping and sample handling Narisu Narisu: sample and data management Tianle Hu: statistical analysis Randall Pruim: design and production of graphics, statistical analysis, writing Rui Xiao: genotype quality analysis Xiao-Yi Li: genotype quality analysis Karen N. Conneely: development of methods to handle multiple correlated tests Nancy L. Riebow: sample handling and Sequenom genotyping Andrew G. Sprau: Sequenom genotyping Maurine Tong: Sequenom genotyping Peggy P. White: data management and proofreading

Kurt N. Hetrick: GWA genotyping, data management, and quality assurance Michael W. Barnhart: sample and genotype tracking for GWA genotyping Craig W. Bark: GWA genotyping, data management, and quality assurance Janet L. Goldstein: sample and genotype tracking for GWA genotyping Lee Watkins: direction of sample and genotype tracking for GWA genotyping Fang Xiang: statistical analysis Jouko Saramies: study design, sample collection Thomas A. Buchanan: biological and physiological interpretation of results Richard M. Watanabe: study design, biological and physiological interpretation of results Timo T. Valle: study design, sample collection, and phenotype determination Leena Kinnunen: sample collection and DNA extraction Goncalo R. Abecasis: methods development, conception and direction of analysis Elizabeth W. Pugh: direction of GWA data management and genotype data quality assurance at CIDR, writing Kimberly F. Doheny: direction of GWA genotyping, data management and genotype data quality assurance at CIDR, writing Richard N. Bergman: FUSION study conception and design, direction of trait assays, biological and physiological interpretation of results Jaakko Tuomilehto: FUSION study conception and design, direction of sample collection and phenotype determination Francis S. Collins: FUSION study conception and design, GWA study conception, direction of genotyping and biological work, writing Michael Boehnke: FUSION study conception and design, GWA study conception, direction of analysis, writing

### Methods

### Sample description

Stage 1: In the results reported here, we analyzed 1,161 T2D cases and 1,174 NGT controls from the Finland-United States Investigation of NIDDM Genetics (FUSION) (1, 2) and Finrisk 2002 (3) studies as our stage 1 sample (Tables S1, S2A). T2D was defined according to 1999 World Health Organization (WHO) criteria (4) of fasting plasma glucose concentration  $\geq 7.0$ mmol/l or 2-h plasma glucose concentration  $\geq 11.1$  mmol/l, by report of diabetes medication use, or based on medical record review. FUSION cases with known or probable type 1 diabetes among their first degree relatives were excluded. Normal glucose tolerance (NGT) was defined as having fasting glucose < 6.1 mmol/l and 2-h glucose < 7.8 mmol/l (4). The 789 FUSION cases each reported at least one T2D sibling; the 372 Finrisk 2002 T2D cases came from a Finnish population-based risk factor survey. Controls included 219 subjects from Vantaa, Finland who were NGT at ages 65 and 70 years, 304 NGT spouses of FUSION subjects, and 651 Finrisk 2002 NGT subjects. The stage 1 controls were approximately frequency-matched to the stage 1 cases by five-year age category, sex, and birth province. We refer to these FUSION and Finrisk 2002 cases and controls in the text as the FUSION stage 1 sample. For quantitative trait and quality control analyses, we genotyped 122 FUSION offspring, yielding 119 mother-fatheroffspring trios, 1 mother-father-two-offspring quartet, and one parent-offspring pair. For quality control, we successfully genotyped 79 duplicate samples and five CEU HapMap parent-child trios.

*Stage* 2: 1,215 Finnish T2D cases and 1,258 Finnish NGT controls were selected for stage 2 from the Dehko 2D (D2D) (5), Health 2000 (6), Finrisk 1987 (7), Finrisk 2002 (3), Savitaipale

Diabetes (*8*), and Action LADA (*9*) studies (Tables S1, S2B) and classified according to WHO 1999 criteria (*4*). The D2D, Health 2000, Finrisk 1987, and Savitaipale Diabetes studies are population-based surveys; Action LADA is a study of latent autoimmune diabetes in adults (LADA) in recently-diagnosed diabetes patients. We chose T2D cases from Action LADA who were GAD antibody negative and therefore unlikely to have LADA. For all studies except Action LADA, NGT controls were approximately frequency-matched within each study to the T2D cases by five-year age category, sex, and birth province. Action LADA cases were approximately frequency-matched in the same way with additional controls from the other studies. Our stage 2 sample consists of 327 cases and 399 controls from D2D, 127 cases and 224 controls from Health 2000, 266 cases and 397 controls from Finrisk 1987, 52 controls from Finrisk 2002, 122 cases and 186 controls from Savitaipale, and 373 cases from Action LADA (Table S2B). For quality control in stage 2, we successfully genotyped 56 duplicate samples.

*Informed consent*: Informed consent was obtained from each study participant, and the study protocol was approved by the ethics committee or institutional review board in each of the participating centers.

### Genotyping

*GWA genotyping*: Stage 1 and quality control samples were genotyped on Illumina Infinium<sup>TM</sup> II HumanHap300 BeadChips v.1.0 in the Johns Hopkins University Genetic Resources Core Facility (GRCF) SNP Center at the Center for Inherited Disease Research (CIDR) using the Illumina Infinium II assay protocol (*10*). An in-house LIMS was used for sample and reagent

tracking and lab workflow control (11). ~1 µg of genomic DNA (15 µL at 70 ng/µl) was used as input for the Infinium II assay.

Intensity data for each sample were normalized using BeadStudio v.2.3.25 and, for quality control within CIDR, genotypes were determined using the Illumina-provided standard definition cluster-file for the HumanHap300 v.1.0 product. These cluster boundaries were determined by Illumina using 111 unique HapMap samples: 47 CEU, 36 YRI, and 28 CHB/JPT. BeadStudio sample sheets were generated from our in-house LIMS. Sample and batch level quality control was done by monitoring sample call rates, sex, heterozygote frequencies, and lab workflow related variables using data generated from BeadStudio and our LIMS. 35 genotyped samples fell below our sample call rate threshold of < 97.5% and were repeated; 28 of the repeated samples gave call rates > 97.5%. The remaining 7 samples were excluded from analyses.

To obtain genotypes for analysis, we re-clustered the genotype data using cluster boundaries determined with our own data. We removed samples for 15 people identified as likely first or second degree relatives of other sampled individuals based on their genotype data (*12*). We checked for consistency in genotyping within each of 79 duplicate sample pairs, with Mendelian inheritance among the 122 parent-offspring sets, and with Hardy-Weinberg Equilibrium (HWE) using the unrelated individuals (*13*). After initial analyses, we manually reviewed in BeadStudio the clustering of the genotype data for our most strongly associated SNPs.

SNPs were dropped from all analyses if the HWE p-value was  $< 10^{-6}$ , the total number of Mendelian inconsistencies and duplicate pair discrepancies was > 3, or the SNP call rate was < 3

90%; and flagged for further attention if the HWE p-value was  $< 10^{-4}$ , the total number of Mendelian inconsistencies and duplicate pair discrepancies was > 1, or the SNP call rate < 95%. All genotypes were oriented to the forward strand. There is little risk of strand ambiguities as there are no C/G or A/T polymorphisms included in the Illumina 300K HumanHap panel.

For the 315,635 SNPs that passed our quality control criteria, the genotype consistency rate among 79 duplicate sample pairs was 99.996%, the Mendelian consistency rate in 122 parent-child sets was 99.967%, and the concordance rate for 15 samples genotyped both in our study and by the HapMap consortium was 99.82%. 80.8% of SNPs had call frequency of 100%, and 99.68% of SNPs had call frequencies > 95%.

*Confirmation and replication genotyping*: We carried out focused, lower-throughput genotyping with the Sequenom Homogeneous MassEXTEND or iPLEX Gold SBE assays at the National Human Genome Research Institute (NHGRI). For 26 GWA SNPs re-genotyped in the stage 1 samples on a different genotyping platform (Sequenom), we observed a genotype consistency rate of 99.92%; these included the SNPs with the strongest evidence of T2D association. We also genotyped SNPs in the FUSION stage 2 samples or in the combined FUSION stage 1+2 samples to follow up interesting results based on (a) FUSION genotyped and imputed SNPs; (b) the FUSION-DGI-WTCCC GWA results comparison; and (c) prior T2D association results in our own or other studies. 80 of the 82 attempted SNPs had genotype call frequency > 94% and HWE p-value > .001. The genotype consistency rate among duplicate samples was 99.9% and the average call frequency was 97.1%.

7

### Statistical analysis

*T2D association*: We tested for T2D-SNP association using logistic regression under the additive genetic model that is multiplicative on the OR scale with adjustment for five-year age category, sex, and birthplace. This test is the logistic regression equivalent to the Cochran-Armitage test for trend (*14*) and is hence robust to departures from Hardy-Weinberg equilibrium. We repeated some analyses including BMI, waist, systolic blood pressure, or diastolic blood pressure as an additional covariate to assess the impact of these variables on evidence for SNP-T2D association. For X-chromosome markers, we treated hemizygous males as homozygotes, consistent with X inactivation for most of the chromosome. We presented and followed up on results based on this additive model for ease of comparison between groups. We also analyzed SNPs using recessive and dominant models; no SNP reached genome-wide significance in FUSION stage 1 data, although additional T2D-prediposing variants may be among the SNPs identified by these models.

To evaluate empirically the distribution of p-values observed in our GWA stage 1 study, we permuted case/control status and re-ran the entire GWA analysis 100 times. We counted the number of p-values  $< 10^{-5}$  or  $< 10^{-4}$  within each permuted dataset and found our study to fall within the permuted distribution.

*Statistical significance*: Following the recommendation of the International HapMap Consortium based on analysis of the ENCODE data, we declared a T2D-SNP association "genome-wide significant" if the nominal p-value for the SNP was  $< 5 \ge 10^{-8}$  (15). In so doing,

we dealt with the multiple comparisons problem suggested by carrying out the equivalent of  $\sim 1$  million tests.

*Sample size calculation*: For each SNP in Table 1, we calculated the sample size necessary to detect T2D-SNP association at significance level .05 and power 80% under an additive model. We converted the FUSION-DGI-WTCCC/UKT2D all-data OR to a risk ratio assuming T2D prevalence 10%, and used this risk ratio and FUSION stage 1+2 control risk allele frequency as the population allele frequency in the sample size calculation (*16*).

*Imputation*: We applied a computationally efficient hidden Markov model based algorithm (*17*, *18*) to impute genotypes in FUSION samples for 2.25 million autosomal SNPs genotyped by the International HapMap Consortium (*15*), but not present on the Illumina HumanHap300 BeadChip. The method combines our FUSION Illumina GWA genotype data with phased chromosomes for the HapMap CEU samples and then infers the unknown FUSION genotypes probabilistically by searching for similar stretches of flanking haplotype in the HapMap CEU reference sample. In this process, we used the genotype data from the 290,690 FUSION Illumina GWA autosomal SNPs which passed our quality control criteria and had minor allele frequency > 5%. For each individual at each imputed SNP, we calculated an average allele dosage score based on 90 iterations of the imputation algorithm. We assessed the quality of the results for each SNP by calculating (a) the proportion of iterations that agreed with the most likely genotype (imputation consistency) and (b) the ratio of the observed variance of dosage scores across samples to the expected variance given the imputed allele frequency of the SNP

(estimated  $r^2$ ). 2.15 million of the HapMap autosomal SNPs had minor allele frequency > 1% in the CEU sample; of these, 2.09 million met our quality control criterion of an estimated  $r^2$  > .30.

We evaluated the accuracy of our imputation procedure by comparing imputed genotypes to actual genotypes for 510 SNPs not present on the Illumina GWA panel but that we had previously genotyped in 1,190 individuals in our stage 1 samples (19). The average concordance rate between imputed and actual alleles (genotypes) was 98.5% (97.1%), suggesting that the HapMap CEU sample provides an appropriate basis for SNP genotype imputation in Finns, consistent with our previous findings that allele frequencies, haplotype frequencies, and linkage disequilibrium (LD) measures are remarkably similar between the CEU samples and a set of the Finnish individuals that overlaps with those included in this study (19). We also genotyped 23 SNPs imputed in our stage 1 data; 16 of these SNPs had stage 1 imputation-based p-values  $< 10^{\circ}$ <sup>5</sup>. For most of these SNPs, the p-values for the actual genotypes were very similar to those for the imputed genotypes, although often slightly less significant (Table S6); large differences occurred most often for estimated  $r^2$  values nearer the quality control threshold. Differences reflect variability in the imputation-based p-value estimates and our choice to follow up strong imputation-based association results, an example of the "winner's curse." This variability in pvalue estimates for imputed SNPs did not lead to an increased overall false positive rate for the study since we have chosen to genotype each such SNP in stage 1 as well as stage 2.

To test for disease-SNP association for imputed SNPs allowing for the effects of covariates, we used logistic regression models in which the SNP effect was represented by its mean imputed

allele dosage score, an approach that takes into account the degree of uncertainty of genotype imputation (*18*).

*Combined analysis*: We used a fixed effects model to estimate the combined ORs, 95% confidence intervals (CIs), and p-values for the GWA genotype or imputed data for FUSION and the GWA genotype data from DGI and WTCCC studies (*20*). We used the same approach to combine all available data from the FUSION, DGI, and WTCCC/UKT2D studies. All results are based on genotypes predicted from the forward strand of the genome sequence. When we describe results across studies for non-identical SNPs, we report LD estimates based on FUSION genotype data when available and on imputed data when not.

SNP selection for stage 2 genotyping: We selected SNPs for genotyping in the FUSION stage 2 samples based on the results of the FUSION GWA and the comparison of the FUSION, DGI, and WTCCC GWA results. To enrich for SNPs with interesting biological functions from the FUSION GWA, we weighted the association p-value according to our interest in the SNP based on genome annotation, using an algorithm similar to the one described by Roeder et al. (21), with weights as described in Table S7. Our algorithm advantaged genotyped SNPs that tagged any HapMap SNP annotated as non-synonymous, frameshift, or critical splice site variants, or located in or around interesting T2D candidate genes using an LD threshold of  $r^2 \ge .8$  in the CEU HapMap sample. It did so by dividing the p-value by the product of the maximal relevant weighting factor and the relevant bonus factors. For imputed SNPs, we assigned the weight based only on the imputed SNP itself. From SNPs with weighted p-values  $\le 10^{-4}$ , we formed sets of SNPs within 100 kb of each other and ranked these sets based on the smallest weighted p-

11

value. From each of these sets, we selected a strongly associated SNP for stage 2 genotyping, giving some preference to genotyped over imputed SNPs to reduce stage 1 genotyping requirements and to focus on SNPs for which we had more accurate genotype information. If an imputed SNP was chosen, we genotyped stage 1 and 2 samples.

*Risk prediction*: We predicted T2D risk in the FUSION sample based on the ten identified T2D susceptibility variants listed in Table 1. T2D cases and NGT controls with complete genotype data were included in the analysis. To obtain a sample with ~10% T2D prevalence, the 2,176 NGT controls were included nine times each and the 2,102 T2D cases once each in a logistic regression analysis. Figure 2 displays the proportion of T2D individuals for twenty equal intervals of predicted T2D risk. 95% CIs for the proportion of T2D cases were constructed using the original, not the expanded, sample.

*Linkage and association*: To assess the possible predictive value of T2D linkage for T2D association, we counted the number of our ten T2D-associated loci (Table 1) for which the T2D linkage LOD score was > 0.2 in our FUSION affected sibling pair families (2). We then divided the genome into 5 cM bins and noted that 22% of such bins had T2D LOD score > 0.2 in our T2D linkage scan. The observed count of six of the ten loci with T2D LOD > 0.2 is  $\sim$ 3-times greater than expected by chance, and has exact binomial p-value of .01, consistent with the hypothesis that very modest linkage evidence is somewhat predictive of the presence of a locus detectable by association methods.

#### Gene expression analysis

RNAs from human tissues were purchased from Clontech and represented pooled samples from several individuals. Purified human pancreatic islets were obtained from Islet Cell Resource Centers (IRB Exemption number 3072) and the National Disease Research Interchange (IRB Exemption number 3269) with approval by the National Institutes of Health Office of Human Subjects Research. Anonymous human blood donor samples from the NIH Clinical Center Division of Transfusion Medicine were provided as buffy coat isolations from whole blood centrifugation. Human adipocytes were purchased from Cambrex as differentiated cultures, and cell cultures -- 293T (human embryonic kidney), HeLa (human cervical carcinoma), and HepG2 (human hepatocellular carcinoma) -- were purchased from ATCC (the American Type Culture Collection). Lymphoblastoid cell lines from CEPH individuals were purchased from the Coriell Cell Repositories. RNA from cell cultures, islets, blood, and adipocytes was prepared with Trizol Reagent (Invitrogen) followed by RNeasy Kit (Qiagen). RNA from four individual samples was used to prepare pooled cDNA for islets, adipocytes, blood, and lymphoblasts. cDNA was prepared from 1 ug of total RNA, using SuperScript III reverse transcriptase and random hexamers (Invitrogen). cDNA equivalent to 25-50 ng of total RNA was used for each quantitative PCR. All PCRs were performed in 10 ul volume in replicates of 3 or 4 using the 7900 Real-Time PCR System (ABI) in 384 well plates; average values were used for calculations. The PCR with 2xSYBR Green PCR mix (Qiagen) and specific primers was designed over exon boundaries to amplify only from cDNA:

# CDKAL1\_f: GAAGAATCTTTTGATTCCAAGTTTT CDKAL1\_r: GCAGCACCATTCTGGAACTC CDKN2A\_f: ATCTATGCGGGGCATGGTTACT

## CDKN2A\_r: CAACGCACCGAATAGTTACG CDKN2B\_f: CGGGGGACTAGTGGAGAAGGT CDKN2B r: ACCAGCGTGTCCAGGAAG

PCRs were carried out for 15 min at 95 C, followed by 40 cycles of 15 sec at 95 C, 15 sec at 59 C, and 45 sec at 72 C. Post-PCR melting curve analysis was used after each run. Gel-purified PCR fragments were also sequenced to ensure the specificity of amplification and splicing. An expression assay for human beta-2 microglobulin (*B2M*) Hs00187842\_m1 was purchased from ABI and used according to the instructions. Ct values (cycle at threshold) were determined from real-time PCR. The expression of target genes was normalized to expression of B2M according to the equation dCt = Ct <sub>B2M</sub> - Ct <sub>target</sub>, compared to expression in pancreas by equation ddCt = dCt <sub>tissue</sub> - dCt <sub>pancreas</sub>, then converted to fold difference as fold difference = 2 <sup>ddCt</sup> (ABI, User Bulletin #2 on relative quantification). We were unable to assess confidently the tissue distribution of *IGF2BP2* mRNA because of very high similarity (> 95%) to three processed pseudogenes on chromosomes 1, 8, and 12.

### **Supplementary Figure Legends**

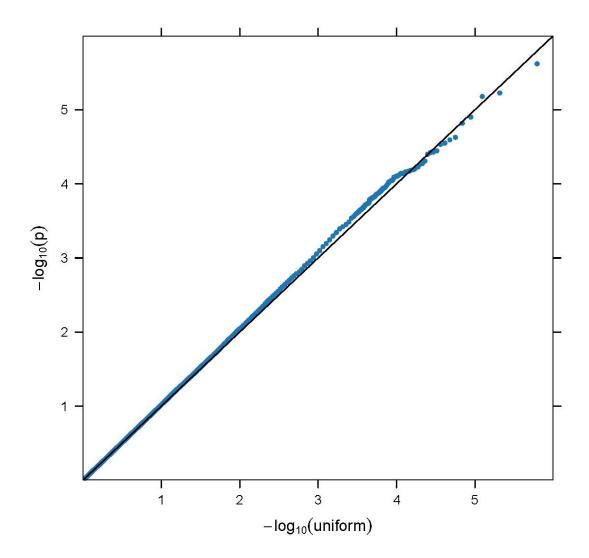

Figure S1. Quantile-quantile plot for T2D association -log<sub>10</sub> p-values for FUSION stage 1 samples and p-values expected under the null distribution for FUSION GWA SNPs.

Figure S2. Plot of T2D association and LD in FUSION stage 1 sample for region surrounding *SLC30A8*. The top panel contains RefSeq genes. The second panel shows the T2D association  $-\log_{10}$  p-values in FUSION stage 1 samples for SNPs genotyped in the GWA panel (•) or imputed (o). The third panel shows T2D association  $-\log_{10}$  p-values for each SNP in a logistic regression model correcting for the reference SNP rs13266634 (•, red dot). A decrease in the  $-\log_{10}$  p-value from the second to the third panel indicates that the association signal of the tested SNPs can be explained, at least in part, by the reference SNP. The reference SNP is a non-synonymous coding SNP, and was chosen because of its potential of being the actual functional variant responsible for the association signal; choice of another strongly associated SNP nearby would have resulted in a similar picture. The fourth panel shows recombination rate in cM per Mb for the HapMap CEU sample (*15*). The fifth and sixth panels show linkage disequilibrium r<sup>2</sup> and D' based on FUSION stage 1 genotyped and imputed data.

Figure S3. Expression of *CDKAL1* (first panel), *CDKN2A* (second panel), and *CDKN2B* (third panel) in human tissues and cells. The level of expression of each gene was determined by quantitative RT-PCR, and normalized to the beta-2-microglobulin (*B2M*) housekeeping gene. The data are presented as fold difference relative to expression in pancreas, which is set at 1.0.

293T cells are human embryonic kidney, HeLa are human cervical carcinoma, and HepG2 are human hepatocellular carcinoma.

Figure S1





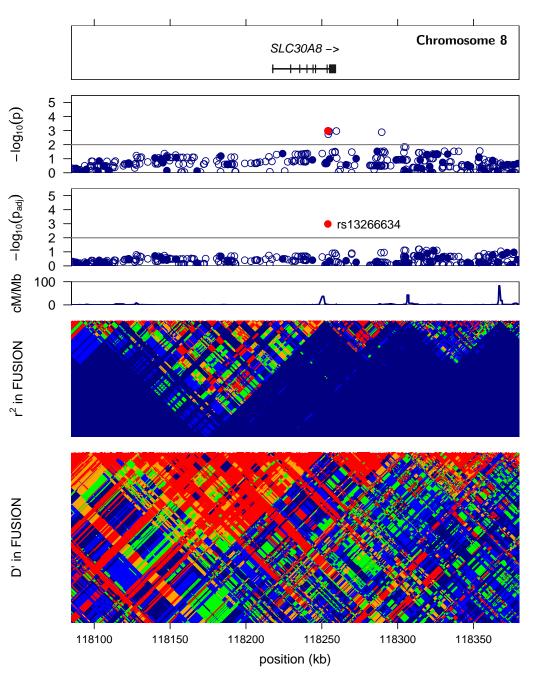
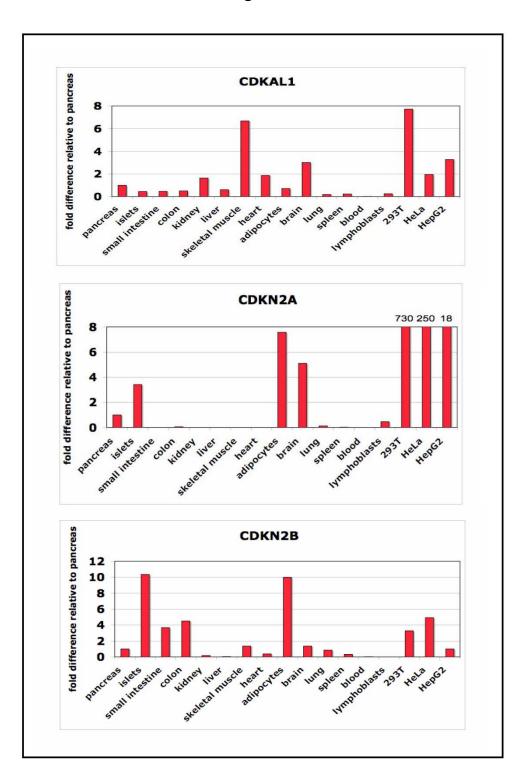




Figure S3



### Table S1. Characteristics of stage 1 and stage 2 case and control samples

|                                 |        | Sta  | ge 1   |       |                  | Sta              | ge 2             |                  |  |
|---------------------------------|--------|------|--------|-------|------------------|------------------|------------------|------------------|--|
|                                 | Cas    | ses  | Con    | trols | Ca               | ses              | Controls         |                  |  |
|                                 | Median | IQR  | Median | IQR   | Median           | IQR              | Median           | IQR              |  |
| N                               | 1161   |      | 1174   |       | 1215             |                  | 1258             |                  |  |
| Male                            | 653    |      | 574    |       | 724              |                  | 768              |                  |  |
| Female                          | 508    |      | 600    |       | 491              |                  | 490              |                  |  |
| Age of Diagnosis (years)        | 53.0   | 12.0 |        |       | 56.0             | 12.0             |                  |                  |  |
| Study Age (years)               | 63.4   | 11.2 | 64.0   | 11.7  | 60.0             | 11.5             | 59.0             | 10.6             |  |
| BMI (kg/m <sup>2</sup> )        | 29.8   | 6.1  | 26.8   | 5.0   | 30.1             | 6.7              | 26.4             | 4.9              |  |
| Fasting Plasma Glucose (mmol/l) | 8.4    | 3.9  | 5.4    | 0.7   | 7.2 <sup>a</sup> | 2.1 <sup>a</sup> | 5.4 <sup>b</sup> | 0.6 <sup>b</sup> |  |

 $a^{n}$  = 204 and  $b^{n}$  = 583 values converted from whole blood to plasma glucose equivalent using prediction equation from the European Diabetes Epidemiology Group (22), of which  $b^{n}$  = 262 fasted < 8 hours

### Table S2A. Detailed characteristics of stage 1 case and control samples

|                                 |        |      | FUS              | ION |                               |     | Finrisk 2002 |      |          |      |  |
|---------------------------------|--------|------|------------------|-----|-------------------------------|-----|--------------|------|----------|------|--|
|                                 | Ca     | ses  | Controls         |     | Controls from Finrisk<br>2002 |     | Cases        |      | Controls |      |  |
|                                 | Median | IQR  | Median           | IQR | Median                        | IQR | Median       | IQR  | Median   | IQR  |  |
| Ν                               | 789    |      | 523 <sup>a</sup> |     | 276                           |     | 372          |      | 375      |      |  |
| Male                            | 429    |      | 194              |     | 163                           |     | 224          |      | 217      |      |  |
| Female                          | 360    |      | 329              |     | 113                           |     | 148          |      | 158      |      |  |
| Age of Diagnosis (years)        | 51.0   | 11.0 |                  |     |                               |     | 59.0         | 12.0 |          |      |  |
| Study Age (years)               | 64.2   | 10.1 | 69.6             | 7.7 | 62.0                          | 9.0 | 61.0         | 12.0 | 61.0     | 12.0 |  |
| BMI (kg/m <sup>2</sup> )        | 29.3   | 6.2  | 27.3             | 5.5 | 26.5                          | 4.5 | 30.7         | 6.0  | 26.6     | 4.4  |  |
| Fasting Plasma Glucose (mmol/l) | 9.6    | 4.7  | 5.1              | 0.6 | 5.6                           | 0.5 | 7.3          | 1.3  | 5.6      | 0.5  |  |

<sup>a</sup>Comprised of 219 FUSION controls from Vantaa who were NGT at ages 65 and 70 years, and 304 NGT spouses of FUSION T2D subjects

#### Table S2B. Detailed characteristics of stage 2 case and control samples

|                                          |        | D    | 2D     |      |        | Health | n 2000 |      |        | Action | LADA             |                  |        | Finri | sk 1987           |                   | Sa     | ivitaipale D | Diabetes Study |                  |
|------------------------------------------|--------|------|--------|------|--------|--------|--------|------|--------|--------|------------------|------------------|--------|-------|-------------------|-------------------|--------|--------------|----------------|------------------|
|                                          | Case   | s    | Contr  | ols  | Case   | S      | Contro | ols  | Case   | s      | Contro           | ols              | Case   | s     | Cont              | rols              | Case   | es           | Contr          | rols             |
|                                          | Median | IQR  | Median | IQR  | Median | IQR    | Median | IQR  | Median | IQR    | Median           | IQR              | Median | IQR   | Median            | IQR               | Median | IQR          | Median         | IQR              |
| N                                        | 327    |      | 314    |      | 127    |        | 124    |      | 373    |        | 402 <sup>a</sup> |                  | 266    |       | 300               |                   | 122    |              | 118            |                  |
| Male                                     | 184    |      | 176    |      | 67     |        | 66     |      | 235    |        | 259              |                  | 171    |       | 202               |                   | 67     |              | 65             |                  |
| Female                                   | 143    |      | 138    |      | 60     |        | 58     |      | 138    |        | 143              |                  | 95     |       | 98                |                   | 55     |              | 53             |                  |
| Age of<br>Diagnosis<br>(years)           | 60.0   | 13.0 |        |      | 55.0   | 13.0   |        |      | 55.0   | 10.0   |                  |                  | 55.0   | 13.0  |                   |                   | 55.1   | 11.7         |                |                  |
| Study Age<br>(years)                     | 64.0   | 11.4 | 64.3   | 12.0 | 61.0   | 15.0   | 59.0   | 12.0 | 60.2   | 10.8   | 58.0             | 9.0              | 58.0   | 11.0  | 57.0              | 12.0              | 57.9   | 13.4         | 57.0           | 13.0             |
| BMI (kg/m <sup>2</sup> )                 | 29.9   | 7.1  | 26.4   | 4.9  | 30.3   | 5.4    | 26.5   | 5.6  | 30.3   | 6.9    | 26.3             | 4.7              | 30.5   | 6.1   | 26.7              | 4.8               | 28.3   | 7.1          | 25.4           | 4.5              |
| Fasting<br>Plasma<br>Glucose<br>(mmol/l) | 7.2    | 2.0  | 5.4    | 0.5  | 7.3    | 2.0    | 5.4    | 0.5  | 7.3    | 2.4    | 5.5 <sup>b</sup> | 0.6 <sup>b</sup> | 6.9°   | 3.0°  | 5.1 <sup>cd</sup> | 0.6 <sup>cd</sup> | 7.2°   | 0.9°         | 5.6°           | 0.4 <sup>c</sup> |

<sup>a</sup>85 D2D, 100 Health 2000, 52 Finrisk 2002, 97 Finrisk 1987, and 68 Savitaipale Diabetes Study controls <sup>b</sup>n=165 values converted from whole blood to plasma glucose equivalent using prediction equation from the European Diabetes Epidemiology Group (22), of which n=52 fasted < 8 hours <sup>c</sup>all values converted from whole blood to plasma glucose equivalent using prediction equation from the European Diabetes Epidemiology Group (22)

 $^{d}n=210$  fasted < 8 hours

Table S3. FUSION stage 1 T2D association: genotyped (bold) and imputed (non-bold) SNPs with p-value < .0001. Sets of SNPs, where each SNP is within 100kb of the preceding SNP, are delimited by lines.

|            |                     |     |                                 | FUSION<br>risk allele/ | Control      | Case         |                |                            |                                                | Genotyped<br>p-value   |            |
|------------|---------------------|-----|---------------------------------|------------------------|--------------|--------------|----------------|----------------------------|------------------------------------------------|------------------------|------------|
|            |                     |     | Position                        | non-risk               | risk         | risk         |                |                            |                                                | for imputed            | Genotype   |
| SNP        | Genes               | Chr | (bp)                            | allele                 | frequency    | frequency    | OR             | 95% CI                     | p-value                                        | SNP                    | in Stage 2 |
| rs527912   | CDA                 | 1   | 20,679,589                      | G/A                    | .670         | .723         | 1.304          | 1.141-1.49                 | 9.4 x 10 <sup>-5</sup>                         |                        |            |
| rs3820321  | PINK1               | 1   | 20,708,133                      | G/A                    | .602         | .663         | 1.291          | 1.142-1.459                | 4.0 x 10 <sup>-5</sup>                         |                        |            |
| rs607254   | DDOST, KIF17, PINK1 | 1   | 20,726,186                      | G/A                    | .601         | .663         | 1.294          | 1.145-1.463                | 3.4 x 10 <sup>-5</sup>                         |                        |            |
| rs589709   | DDOST, KIF17, PINK1 | 1   | 20,729,293                      | G/A                    | .601         | .663         | 1.297          | 1.147-1.465                | 2.9 x 10 <sup>-5</sup>                         |                        |            |
| rs640742   | DDOST, KIF17, PINK1 | 1   | 20,729,860                      | A/C                    | .601         | .663         | 1.297          | 1.147-1.465                | 2.9 x 10 <sup>-5</sup>                         |                        | Yes        |
| rs623817   | DDOST, KIF17, PINK1 | 1   | 20,731,384                      | G/A                    | .601         | .663         | 1.297          | 1.147-1.467                | 3.1 x 10 <sup>-5</sup>                         |                        |            |
| rs674114   | DDOST, KIF17        | 1   | 20,734,978                      | G/A                    | .615         | .668         | 1.321          | 1.151-1.516                | 6.8 x 10 <sup>-5</sup>                         |                        |            |
| rs630484   | DDOST, KIF17        | 1   | 20,737,912                      | G/T                    | .616         | .670         | 1.332          | 1.159-1.530                | 4.8 x 10 <sup>-5</sup>                         |                        |            |
| rs12118760 | DDOST, KIF17        | 1   | 20,745,110                      | T/C                    | .736         | .767         | 1.708          | 1.331-2.191                | 2.2 x 10 <sup>-5</sup>                         |                        |            |
| rs1932397  |                     | 1   | `29,732,290                     | T/C                    | .168         | .215         | 1.351          | 1.164-1.569                | 7.1 x 10 <sup>-5</sup>                         |                        |            |
| rs6603926  |                     | 1   | 29,735,248                      | A/G                    | .168         | .215         | 1.352          | 1.164-1.57                 | 7.0 x 10 <sup>-5</sup>                         |                        |            |
| rs9662524  |                     | 1   | 29,739,496                      | G/C                    | .168         | .215         | 1.351          | 1.164-1.569                | 7.3 x 10 <sup>-5</sup>                         |                        |            |
| rs915409   |                     | 1   | 29,740,363                      | T/C                    | .168         | .215         | 1.351          | 1.164-1.569                | 7.3 x 10 <sup>-5</sup>                         |                        |            |
| rs9286938  |                     | 1   | 29,746,194                      | T/C                    | .168         | .214         | 1.345          | 1.159-1.562                | 9.1 x 10 <sup>-5</sup>                         |                        |            |
| rs9659523  |                     | 1   | 29,746,693                      | A/C                    | .169         | .215         | 1.344          | 1.157-1.56                 | 1.0 x 10 <sup>-4</sup>                         |                        |            |
| rs271306   |                     | 1   | 29,751,757                      | G/C                    | .168         | .214         | 1.344          | 1.157-1.561                | 1.0 x 10 <sup>-4</sup>                         |                        |            |
| rs17356414 |                     | 1   | 59,031,529                      | C/T                    | .548         | .607         | 1.311          | 1.158-1.485                | 1.7 x 10 <sup>-5</sup>                         | 8.0 x 10 <sup>-4</sup> | Yes        |
| rs6676059  |                     | 1   | 59,041,777                      | G/A                    | .548         | .606         | 1.312          | 1.159-1.485                | 1.7 x 10 <sup>-5</sup>                         |                        |            |
| rs12133457 |                     | 1   | 59,042,784                      | G/A                    | .548         | .606         | 1.312          | 1.159-1.485                | 1.7 x 10 <sup>-5</sup>                         |                        |            |
| rs17025978 | KCNA10              | 1   | 110,781,653                     | G/A                    | .914         | .947         | 1.705          | 1.347-2.158                | 6.6 x 10 <sup>-6</sup>                         |                        | Yes        |
| rs17025982 | KCNA10              | 1   | 110,782,336                     | T/C                    | .910         | .943         | 1.699          | 1.342-2.151                | 7.8 x 10 <sup>-6</sup>                         |                        |            |
| rs2790372  |                     | 1   | 110,799,166                     | C/A                    | .937         | .962         | 1.750          | 1.320-2.319                | 7.5 x 10 <sup>-5</sup>                         |                        |            |
| rs2799765  |                     | 1   | 110,800,193                     | T/C                    | .937         | .962         | 1.748          | 1.317-2.319                | 8.5 x 10 <sup>-5</sup>                         |                        |            |
| rs1626078  |                     | 1   | 110,801,281                     | C/T                    | .937         | .962         | 1.748          | 1.316-2.322                | 8.9 x 10 <sup>-5</sup>                         |                        |            |
| rs1622675  |                     | 1   | 110,801,684                     | A/T                    | .937         | .962         | 1.758          | 1.321-2.338                | 8.3 x 10 <sup>-5</sup>                         |                        |            |
| rs1627572  |                     | 1   | 110,801,712                     | G/A                    | .938         | .962         | 1.756          | 1.319-2.338                | 8.9 x 10 <sup>-5</sup>                         |                        |            |
| rs2501354  | SLAMF8, VSIG8       | 1   | 156,628,715                     | G/A                    | .355         | .415         | 1.274          | 1.129437                   | 8.1 x 10 <sup>-5</sup>                         |                        |            |
| rs2501350  | SLAMF8, VSIG8       | 1   | 156,630,077                     | G/C                    | .379         | .437         | 1.288          | 1.136459                   | $7.0 \times 10^{-5}$                           |                        |            |
| rs357973   |                     | 2   | 3,292,094                       | G/A                    | .942         | .961         | 1.975          | 1.394-2.798                | 9.3 x 10 <sup>-5</sup>                         |                        |            |
| rs357971   |                     | 2   | 3,292,963                       | G/C                    | .942         | .961         | 1.977          | 1.395-2.802                | 9.1 x 10 <sup>-5</sup>                         |                        |            |
| rs2338545  | PLB1                | 2   | 28,711,426                      | G/A                    | .202         | .252         | 1.332          | 1.157534                   | 6.3 x 10 <sup>-5</sup>                         |                        |            |
| rs2249434  | SCLY                | 2   | 238,757,753                     | C/G                    | .076         | .110         | 1.497          | 1.221835                   | 9.1 x 10 <sup>-5</sup>                         |                        |            |
| rs1391136  | 5021                | 3   | 21,136,392                      | C/T                    | .838         | .874         | 1.425          | 1.195-1.700                | 7.5 x 10 <sup>-5</sup>                         |                        |            |
| rs11926889 |                     | 3   | 30,253,294                      | G/A                    | .880         | .911         | 1.537          | 1.243-1.900                | $6.1 \times 10^{-5}$                           |                        |            |
| rs1434006  |                     | 3   | 30,268,508                      | C/T                    | .904         | .934         | 1.586          | 1.268-1.984                | $4.4 \ge 10^{-5}$                              |                        |            |
| rs13075234 |                     | 3   | 30,269,434                      | C/T<br>C/T             | .904         | .946         | 1.707          | 1.311-2.223                | $5.8 \times 10^{-5}$                           |                        |            |
| rs10440137 |                     | 3   | 30,270,978                      | G/T                    | .922         | .940         | 1.581          | 1.266-1.974                | $4.4 \ge 10^{-5}$                              |                        |            |
| rs9870410  |                     | 3   | 30,270,978<br>30,283,763        | C/T                    | .904<br>.904 | .934<br>.935 | 1.581<br>1.579 | 1.267-1.974<br>1.267-1.967 | <b>3.8 x 10</b> <sup>-5</sup>                  |                        |            |
| rs13092602 |                     | 3   | 30,283,703                      | G/A                    | .904         | .939         | 1.660          | 1.324-2.081                | $3.8 \times 10^{-6}$<br>8.2 x 10 <sup>-6</sup> |                        |            |
| rs1495586  |                     | 3   | 30,302,792                      | G/A<br>G/A             | .900         | .939         | 1.666          | 1.327-2.091                | 8.2 x 10<br>8.2 x 10 <sup>-6</sup>             |                        |            |
| rs17081352 |                     | 3   | 30,307,851                      | G/A<br>C/A             | .907         | .940         | 1.698          | 1.342-2.148                | 8.2 x 10<br>7.6 x 10 <sup>-6</sup>             | 5.5 x 10 <sup>-6</sup> | Yes        |
| rs9843153  |                     | 3   | 30,307,831                      | C/A<br>G/T             | .910         | .942<br>.944 | 1.698          | 1.342-2.148                | 7.6 x 10<br>8.4 x 10 <sup>-6</sup>             | J.J X 10               | 1 05       |
| rs11714343 |                     | 3   | <u>30,308,232</u><br>34,437,873 | T/C                    | .915         | .944         | 1.722          | <b>1.210-1.791</b>         | 9.6 x 10 <sup>-5</sup>                         |                        |            |

|            |          |     |             | FUSION       |           |           |       |              |                                                | Genotyped   |             |
|------------|----------|-----|-------------|--------------|-----------|-----------|-------|--------------|------------------------------------------------|-------------|-------------|
|            |          |     |             | risk allele/ | Control   | Case      |       |              |                                                | p-value     |             |
|            | _        |     | Position    | non-risk     | risk      | risk      |       |              |                                                | for imputed | Genotyped   |
| SNP        | Genes    | Chr | (bp)        | allele       | frequency | frequency | OR    | 95% CI       | p-value                                        | SNP         | in Stage 2? |
| rs739984   | PTPRG    | 3   | 61,975,357  | G/A          | .729      | .777      | 1.320 | 1.150-1.515  | 7.2 x 10 <sup>-5</sup>                         |             |             |
| rs12490128 | TMEM108  | 3   | 134,391,491 | A/C          | .118      | .162      | 1.465 | 1.234-1.739  | $1.1 \times 10^{-5}$                           |             |             |
| rs13072106 | TMEM108  | 3   | 134,425,451 | T/C          | .118      | .155      | 1.414 | 1.188-1.682  | 8.7 x 10 <sup>-5</sup>                         |             | Yes         |
| rs10512891 | TMEM108  | 3   | 134,431,557 | A/T          | .118      | .156      | 1.415 | 1.189-1.684  | 8.3 x 10 <sup>-5</sup>                         |             |             |
| rs7650741  | TMEM108  | 3   | 134,432,277 | T/C          | .118      | .156      | 1.416 | 1.189-1.684  | 8.2 x 10 <sup>-5</sup>                         |             |             |
| rs7612595  | TMEM108  | 3   | 134,439,991 | T/C          | .118      | .156      | 1.418 | 1.192-1.688  | 7.5 x 10 <sup>-5</sup>                         |             |             |
| rs16840161 | TMEM108  | 3   | 134,478,424 | A/G          | .117      | .158      | 1.444 | 1.213-1.718  | 3.1 x 10 <sup>-5</sup>                         |             |             |
| rs17297332 | TMEM108  | 3   | 134,480,782 | G/C          | .121      | .162      | 1.447 | 1.216-1.723  | 2.9 x 10 <sup>-5</sup>                         |             |             |
| rs7625110  | TMEM108  | 3   | 134,494,477 | T/G          | .117      | .158      | 1.446 | 1.215-1.722  | 2.9 x 10 <sup>-5</sup>                         |             |             |
| rs10512896 | TMEM108  | 3   | 134,499,457 | G/C          | .117      | .158      | 1.450 | 1.218-1.726  | 2.7 x 10 <sup>-5</sup>                         |             |             |
| rs1708373  | TMEM108  | 3   | 134,502,025 | G/A          | .117      | .158      | 1.451 | 1.219-1.728  | 2.5 x 10 <sup>-5</sup>                         |             |             |
| rs1197316  | TMEM108  | 3   | 134,522,283 | G/A          | .117      | .158      | 1.455 | 1.222-1.734  | 2.3 x 10 <sup>-5</sup>                         |             |             |
| rs1920021  | TMEM108  | 3   | 134,554,123 | T/C          | .118      | .158      | 1.450 | 1.216-1.729  | 3.1 x 10 <sup>-5</sup>                         |             |             |
| rs823968   |          | 3   | 136,542,755 | C/T          | .382      | .436      | 1.274 | 1.131-1.436  | 6.7 x 10 <sup>-5</sup>                         |             |             |
| rs4687296  | MAP3K13  | 3   | 186,595,002 | T/C          | .225      | .276      | 1.325 | 1.158-1.516  | 3.9 x 10 <sup>-5</sup>                         |             |             |
| rs4687299  | MAP3K13  | 3   | 186,595,361 | A/G          | .225      | .276      | 1.325 | 1.158-1.515  | 4.0 x 10 <sup>-5</sup>                         |             | Yes         |
| rs886374   | SORCS2   | 4   | 7,856,440   | T/C          | .211      | .270      | 1.385 | 1.209-1.587  | 2.4 x 10 <sup>-6</sup>                         |             | Yes         |
| rs6815292  | ATP8A1   | 4   | 42,251,192  | A/G          | .244      | .291      | 1.308 | 1.144-1.496  | 7.9 x 10 <sup>-5</sup>                         |             |             |
| rs7665824  | ATP8A1   | 4   | 42,252,481  | T/G          | .244      | .291      | 1.309 | 1.145-1.496  | 7.8 x 10 <sup>-5</sup>                         |             |             |
| rs11726581 | ATP8A1   | 4   | 42,257,935  | C/T          | .244      | .291      | 1.309 | 1.145-1.497  | 7.7 x 10 <sup>-5</sup>                         |             |             |
| rs11722556 | ATP8A1   | 4   | 42,258,828  | T/C          | .244      | .291      | 1.309 | 1.145-1.497  | 7.5 x 10 <sup>-5</sup>                         |             |             |
| rs17630357 | ATP8A1   | 4   | 42,266,042  | A/T          | .774      | .821      | 1.346 | 1.160-1.562  | 8.2 x 10 <sup>-5</sup>                         |             |             |
| rs4317238  | ATP8A1   | 4   | 42,267,105  | A/G          | .774      | .821      | 1.346 | 1.160-1.562  | 8.1 x 10 <sup>-5</sup>                         |             |             |
| rs16854359 | ATP8A1   | 4   | 42,269,100  | C/G          | .241      | .290      | 1.313 | 1.149-1.501  | 5.7 x 10 <sup>-5</sup>                         |             |             |
| rs9994372  | ATP8A1   | 4   | 42,269,138  | T/C          | .251      | .301      | 1.335 | 1.166-1.527  | 2.5 x 10 <sup>-5</sup>                         |             |             |
| rs10034439 | ATP8A1   | 4   | 42,287,090  | C/T          | .776      | .826      | 1.374 | 1.182-1.598  | 3.1 x 10 <sup>-5</sup>                         |             |             |
| rs13139219 | ATP8A1   | 4   | 42,294,231  | C/A          | .779      | .827      | 1.346 | 1.160-1.561  | 7.8 x 10 <sup>-5</sup>                         |             | Yes         |
| rs6812080  | ATP8A1   | 4   | 42,319,554  | G/A          | .779      | .828      | 1.349 | 1.163-1.565  | $7.0 \times 10^{-5}$                           |             |             |
| rs13116032 | ATP8A1   | 4   | 42,320,518  | G/T          | .779      | .828      | 1.349 | 1.163-1.565  | 7.0 x 10 <sup>-5</sup>                         |             |             |
| rs5022521  | ELOVL6   | 4   | 111,486,191 | T/C          | .858      | .884      | 1.785 | 1.349-2.361  | 4.1 x 10 <sup>-5</sup>                         |             |             |
| rs1030231  | 220,20   | 5   | 66,353,021  | G/A          | .198      | .245      | 1.330 | 1.152-1.536  | 9.3 x 10 <sup>-5</sup>                         |             |             |
| rs10476844 |          | 5   | 142,096,902 | T/C          | .014      | .023      | 4.666 | 2.212-9.841  | 3.5 x 10 <sup>-5</sup>                         |             |             |
| rs961730   | ARHGAP26 | 5   | 142,114,126 | C/T          | .014      | .023      | 4.696 | 2.254-9.784  | $2.4 \times 10^{-5}$                           |             |             |
| rs1347133  | ARHGAP26 | 5   | 142,114,120 | C/T          | .014      | .024      | 4.745 | 2.275-9.899  | $2.4 \times 10^{-5}$<br>2.1 x 10 <sup>-5</sup> |             |             |
| rs968076   | ARHGAP26 | 5   | 142,116,491 | G/A          | .014      | .024      | 4.787 | 2.293-9.993  | $2.0 \times 10^{-5}$                           |             |             |
| rs7714907  | ARHGAP26 | 5   | 142,125,570 | G/A<br>G/A   | .014      | .024      | 5.319 | 2.473-11.441 | $1.2 \times 10^{-5}$                           |             |             |
| rs7732207  | ARHGAP26 | 5   | 142,125,613 | A/G          | .014      | .023      | 5.317 | 2.472-11.439 | $1.2 \times 10^{-5}$<br>$1.2 \times 10^{-5}$   |             |             |
| rs764387   | ARHGAP26 | 5   | 142,125,869 | T/C          | .014      | .023      | 5.326 | 2.472-11.474 | $1.2 \times 10^{-5}$<br>$1.2 \times 10^{-5}$   |             |             |
| rs7737018  | ARHGAP26 | 5   | 142,126,283 | C/G          | .014      | .023      | 5.317 | 2.462-11.483 | $1.2 \times 10^{-5}$<br>1.3 x 10 <sup>-5</sup> |             |             |
| rs6898675  | ARHGAP26 | 5   | 142,120,285 | T/C          | .014      | .023      | 5.320 | 2.456-11.526 | $1.3 \times 10^{-5}$<br>1.4 x 10 <sup>-5</sup> |             |             |
| rs6894433  | ARHGAP26 | 5   | 142,131,845 | C/T          | .014      | .023      | 5.315 | 2.452-11.523 | $1.4 \times 10^{-5}$<br>1.4 x 10 <sup>-5</sup> |             |             |
| rs707177   | ARHGAP26 | 5   | 142,232,076 | A/G          | .372      | .023      | 1.308 | 1.146-1.493  | $6.4 \times 10^{-5}$                           |             |             |
| rs447923   | ARHGAP26 | 5   | 142,232,070 | T/C          | .325      | .373      | 1.308 | 1.148-1.519  | $9.2 \times 10^{-5}$                           |             |             |
| rs26707    | ARHGAP26 | 5   | 142,232,441 | G/C          | .323      | .303      | 1.321 | 1.148-1.519  | $9.2 \times 10^{-5}$<br>$3.0 \times 10^{-5}$   |             |             |
| 1320/07    | AMIGAF20 | 5   | 142,233,037 | U/C          | .230      | .505      | 1.525 | 1.100-1.313  | J.0 X 10                                       |             |             |

|            |                   |        | Position    | FUSION<br>risk allele/<br>non-risk | Control<br>risk | Case<br>risk |       |             |                        | Genotyped<br>p-value<br>for imputed | Genotyped   |
|------------|-------------------|--------|-------------|------------------------------------|-----------------|--------------|-------|-------------|------------------------|-------------------------------------|-------------|
| SNP        | Genes             | Chr    | (bp)        | allele                             | frequency       | frequency    | OR    | 95% CI      | p-value                | SNP                                 | in Stage 2? |
| rs26706    | ARHGAP26          | 5      | 142,237,044 | C/G                                | .253            | .306         | 1.324 | 1.159-1.513 | $3.2 \times 10^{-5}$   |                                     |             |
| rs27779    | ARHGAP26          | 5      | 142,239,267 | A/C                                | .250            | .304         | 1.326 | 1.162-1.513 | $2.5 \times 10^{-5}$   |                                     | Yes         |
| rs27546    | ARHGAP26          | 5      | 142,245,929 | T/A                                | .250            | .302         | 1.321 | 1.157-1.508 | 3.5 x 10 <sup>-5</sup> |                                     |             |
| rs11970389 | TUBB2B, LOC389362 | 6      | 3,195,655   | T/C                                | .041            | .063         | 1.845 | 1.351-2.518 | 9.2 x 10 <sup>-5</sup> |                                     |             |
| rs4713992  |                   | 6      | 36,720,183  | A/G                                | .730            | .764         | 1.525 | 1.240-1.875 | 5.7 x 10 <sup>-5</sup> |                                     |             |
| rs7750445  | ZFAND3            | 6      | 37,872,955  | G/C                                | .114            | .158         | 1.483 | 1.244-1.769 | 9.4 x 10 <sup>-6</sup> | 4.1 x 10 <sup>-5</sup>              | Yes         |
| rs17235125 |                   | 6      | 79,437,555  | A/G                                | .871            | .906         | 1.459 | 1.207-1.762 | 8.0 x 10 <sup>-5</sup> |                                     |             |
| rs17235167 |                   | 6      | 79,437,614  | C/G                                | .871            | .906         | 1.459 | 1.208-1.763 | 7.8 x 10 <sup>-5</sup> |                                     |             |
| rs17235209 |                   | 6      | 79,437,636  | C/T                                | .871            | .906         | 1.461 | 1.209-1.765 | 7.6 x 10 <sup>-5</sup> |                                     |             |
| rs17826801 |                   | 6      | 79,437,741  | A/G                                | .871            | .906         | 1.460 | 1.208-1.764 | 7.8 x 10 <sup>-5</sup> |                                     |             |
| rs2021966  | ENPP1             | 6      | 132,192,132 | A/G                                | .585            | .634         | 1.320 | 1.150-1.516 | 7.2 x 10 <sup>-5</sup> | 2.6 x 10 <sup>-4</sup>              | Yes         |
| rs2813539  | SYNE1             | 6      | 152,613,828 | G/A                                | .382            | .435         | 1.312 | 1.150-1.496 | 4.8 x 10 <sup>-5</sup> |                                     |             |
| rs1408460  | SYNE1             | 6      | 152,614,232 | C/G                                | .460            | .518         | 1.267 | 1.126-1.426 | 8.3 x 10 <sup>-5</sup> |                                     |             |
| rs719764   | SYNE1             | 6      | 152,614,487 | C/G                                | .483            | .538         | 1.293 | 1.141-1.466 | 5.4 x 10 <sup>-5</sup> |                                     |             |
| rs2673776  | SYNE1             | 6      | 152,614,926 | G/T                                | .458            | .516         | 1.265 | 1.125-1.422 | 8.0 x 10 <sup>-5</sup> |                                     |             |
| rs2635441  | SYNE1             | 6      | 152,615,257 | A/G                                | .460            | .517         | 1.264 | 1.123-1.422 | 9.4 x 10 <sup>-5</sup> |                                     |             |
| rs13212052 |                   | 6      | 166,264,601 | T/C                                | .979            | .992         | 2.979 | 1.668-5.323 | 8.2 x 10 <sup>-5</sup> |                                     |             |
| rs2791300  |                   | 7      | 18,102,317  | C/G                                | .704            | .752         | 1.319 | 1.149-1.514 | 7.7 x 10 <sup>-5</sup> |                                     |             |
| rs4721708  |                   | 7      | 18,143,542  | C/T                                | .702            | .760         | 1.373 | 1.199-1.572 | 3.8 x 10 <sup>-6</sup> |                                     |             |
| rs615545   |                   | 7      | 18,165,111  | C/T                                | .694            | .751         | 1.361 | 1.190-1.556 | 5.9 x 10 <sup>-6</sup> |                                     | Yes         |
| rs2470984  | SLC13A1           | 7      | 122,368,680 | A/C                                | .297            | .348         | 1.279 | 1.130-1.448 | 9.0 x 10 <sup>-5</sup> |                                     | Yes         |
| rs6466855  | SLC13A1           | 7      | 122,371,141 | A/G                                | .294            | .346         | 1.289 | 1.137-1.462 | 7.0 x 10 <sup>-5</sup> |                                     |             |
| rs6964272  | SLC13A1           | 7      | 122,373,978 | T/C                                | .265            | .317         | 1.333 | 1.168-1.52  | 1.7 x 10 <sup>-5</sup> |                                     |             |
| rs13444183 | SLC13A1           | 7      | 122,377,232 | G/T                                | .265            | .317         | 1.333 | 1.168-1.521 | 1.8 x 10 <sup>-5</sup> |                                     |             |
| rs6963735  | SLC13A1           | 7      | 122,394,634 | C/T                                | .256            | .306         | 1.350 | 1.176-1.549 | 1.8 x 10 <sup>-5</sup> |                                     |             |
| rs10280430 | SLC13A1           | 7      | 122,399,306 | C/T                                | .255            | .305         | 1.350 | 1.176-1.549 | 1.9 x 10 <sup>-5</sup> |                                     |             |
| rs1880178  | SLC13A1           | 7      | 122,403,062 | T/C                                | .255            | .305         | 1.350 | 1.176-1.55  | 1.9 x 10 <sup>-5</sup> |                                     |             |
| rs10954654 |                   | 7      | 138,816,342 | C/T                                | .725            | .776         | 1.337 | 1.166-1.533 | 2.8 x 10 <sup>-5</sup> |                                     | Yes         |
| rs10277603 |                   | 7      | 138,816,687 | C/T                                | .592            | .645         | 1.354 | 1.179-1.554 | $1.5 \times 10^{-5}$   |                                     |             |
| rs10261979 |                   | 7      | 138,816,832 | G/C                                | .601            | .653         | 1.367 | 1.187-1.574 | 1.3 x 10 <sup>-5</sup> |                                     |             |
| rs10262338 |                   | 7      | 138,816,913 | A/G                                | .592            | .645         | 1.355 | 1.180-1.555 | 1.5 x 10 <sup>-5</sup> |                                     |             |
| rs9692401  |                   | 7      | 138,817,247 | C/T                                | .584            | .637         | 1.364 | 1.187-1.567 | 1.1 x 10 <sup>-5</sup> |                                     |             |
| rs9691662  |                   | 7      | 138,817,453 | A/G                                | .592            | .645         | 1.353 | 1.179-1.554 | 1.6 x 10 <sup>-5</sup> |                                     |             |
| rs9690418  |                   | 7      | 138,817,495 | G/A                                | .592            | .645         | 1.353 | 1.179-1.553 | 1.6 x 10 <sup>-5</sup> |                                     |             |
| rs12707449 |                   | 7      | 138,817,983 | A/T                                | .592            | .645         | 1.353 | 1.179-1.553 | 1.6 x 10 <sup>-5</sup> |                                     |             |
| rs10271287 |                   | 7      | 138,819,517 | T/C                                | .592            | .645         | 1.353 | 1.179-1.554 | 1.6 x 10 <sup>-5</sup> |                                     |             |
| rs38732    | MRPS33            | 7      | 140,158,346 | T/A                                | .069            | .096         | 1.680 | 1.296-2.178 | 6.9 x 10 <sup>-5</sup> |                                     |             |
| rs9274     | MRPS33            | 7      | 140,159,215 | A/G                                | .048            | .076         | 1.639 | 1.279-2.101 | $7.5 \times 10^{-5}$   |                                     |             |
| rs544081   | ~                 | 7      | 140,209,733 | G/A                                | .048            | .076         | 1.643 | 1.282-2.106 | 6.7 x 10 <sup>-5</sup> |                                     |             |
| rs488795   |                   | 7      | 140,211,070 | T/G                                | .048            | .076         | 1.643 | 1.282-2.105 | $6.8 \times 10^{-5}$   |                                     |             |
| rs512509   |                   | ,<br>7 | 140,211,331 | T/C                                | .048            | .076         | 1.643 | 1.282-2.105 | $6.7 \times 10^{-5}$   |                                     |             |
| rs548245   |                   | 7      | 140,212,951 | T/C                                | .047            | .075         | 1.635 | 1.274-2.099 | 8.9 x 10 <sup>-5</sup> |                                     |             |
| rs471817   |                   | 7      | 140,214,431 | A/C                                | .048            | .076         | 1.643 | 1.282-2.105 | $6.8 \times 10^{-5}$   |                                     |             |
|            |                   | ,<br>7 | 140,221,134 | A/G                                | .048            | .076         | 1.642 | 1.282-2.105 | 6.8 x 10 <sup>-5</sup> |                                     |             |

|            |           |     | Position    | FUSION<br>risk allele/<br>non-risk | Control<br>risk | Case<br>risk |       |             |                        | Genotyped<br>p-value<br>for imputed | Genotyped   |
|------------|-----------|-----|-------------|------------------------------------|-----------------|--------------|-------|-------------|------------------------|-------------------------------------|-------------|
| SNP        | Genes     | Chr | (bp)        | allele                             | frequency       | frequency    | OR    | 95% CI      | p-value                | SNP                                 | in Stage 2? |
| rs528957   | LOC642421 | 7   | 140,222,643 | T/C                                | .048            | .076         | 1.634 | 1.276-2.094 | 7.8 x 10 <sup>-5</sup> |                                     |             |
| rs557962   | 200012121 | 7   | 140,232,924 | T/C                                | .047            | .076         | 1.650 | 1.287-2.115 | 5.9 x 10 <sup>-5</sup> |                                     | Yes         |
| rs7842241  | C8orf68   | 8   | 1,056,317   | G/A                                | .634            | .688         | 1.285 | 1.134-1.456 | 8.1 x 10 <sup>-5</sup> |                                     |             |
| rs979728   | DLC1      | 8   | 13,435,309  | T/C                                | .371            | .405         | 1.464 | 1.209-1.772 | 8.6 x 10 <sup>-5</sup> |                                     |             |
| rs1852027  | CNBD1     | 8   | 88,076,230  | G/A                                | .552            | .611         | 1.269 | 1.127-1.428 | 7.6 x 10 <sup>-5</sup> |                                     |             |
| rs17707746 | PTDSS1    | 8   | 97,384,821  | C/A                                | .041            | .065         | 1.750 | 1.317-2.326 | 8.7 x 10 <sup>-5</sup> |                                     |             |
| rs883655   | PTDSS1    | 8   | 97,386,357  | C/T                                | .041            | .065         | 1.751 | 1.317-2.328 | 8.9 x 10 <sup>-5</sup> |                                     |             |
| rs13439240 | PTDSS1    | 8   | 97,387,836  | T/C                                | .041            | .065         | 1.752 | 1.317-2.330 | 8.9 x 10 <sup>-5</sup> |                                     |             |
| rs7830293  | GPR20     | 8   | 142,442,691 | C/T                                | .066            | .099         | 1.597 | 1.276-1.999 | 3.6 x 10 <sup>-5</sup> |                                     |             |
| rs6578167  | GPR20     | 8   | 142,450,474 | C/A                                | .065            | .098         | 1.578 | 1.264-1.970 | 4.7 x 10 <sup>-5</sup> |                                     |             |
| rs7839244  | GPR20     | 8   | 142,457,437 | A/G                                | .066            | .098         | 1.553 | 1.248-1.932 | 6.8 x 10 <sup>-5</sup> |                                     | Yes         |
| rs4961268  | GPR20     | 8   | 142,464,393 | G/A                                | .064            | .097         | 1.586 | 1.271-1.980 | 3.7 x 10 <sup>-5</sup> |                                     |             |
| rs4961755  | BNC2      | 9   | 16,759,812  | C/G                                | .121            | .158         | 1.467 | 1.213-1.774 | 7.0 x 10 <sup>-5</sup> |                                     |             |
| rs12683158 | NFIL3     | 9   | 91,266,820  | C/T                                | .927            | .954         | 1.736 | 1.333-2.261 | 3.2 x 10 <sup>-5</sup> |                                     |             |
| rs13297268 | NFIL3     | 9   | 91,267,696  | G/A                                | .927            | .954         | 1.745 | 1.338-2.277 | 3.0 x 10 <sup>-5</sup> | 9.0 x 10 <sup>-5</sup>              | Yes         |
| rs13289738 | NFIL3     | 9   | 91,271,701  | G/T                                | .926            | .951         | 1.793 | 1.354-2.372 | 3.3 x 10 <sup>-5</sup> |                                     |             |
| rs7856348  | CYLC2     | 9   | 102,835,550 | C/A                                | .541            | .591         | 1.308 | 1.144-1.495 | 7.9 x 10 <sup>-5</sup> |                                     |             |
| rs1330146  |           | 9   | 107,631,794 | G/A                                | .545            | .603         | 1.289 | 1.142-1.455 | 3.7 x 10 <sup>-5</sup> |                                     |             |
| rs10816576 |           | 9   | 107,633,222 | G/A                                | .545            | .603         | 1.289 | 1.142-1.455 | 3.7 x 10 <sup>-5</sup> |                                     |             |
| rs10121193 |           | 9   | 107,660,601 | A/G                                | .382            | .426         | 1.348 | 1.161-1.565 | 8.4 x 10 <sup>-5</sup> |                                     |             |
| rs4543877  |           | 10  | 65,172,027  | C/G                                | .439            | .497         | 1.330 | 1.173-1.507 | 7.7 x 10 <sup>-6</sup> |                                     |             |
| rs3864799  |           | 10  | 65,172,388  | G/C                                | .439            | .497         | 1.330 | 1.173-1.508 | 7.5 x 10 <sup>-6</sup> |                                     |             |
| rs3912165  |           | 10  | 65,187,697  | A/G                                | .427            | .485         | 1.349 | 1.186-1.534 | 4.5 x 10 <sup>-6</sup> |                                     |             |
| rs10740140 |           | 10  | 65,189,760  | A/G                                | .428            | .485         | 1.290 | 1.145-1.452 | 2.5 x 10 <sup>-5</sup> |                                     |             |
| rs4746396  |           | 10  | 65,194,129  | C/G                                | .436            | .494         | 1.274 | 1.136-1.429 | 3.1 x 10 <sup>-5</sup> |                                     |             |
| rs16918864 |           | 10  | 65,228,767  | G/C                                | .430            | .487         | 1.275 | 1.136-1.431 | 3.4 x 10 <sup>-5</sup> |                                     |             |
| rs3104056  |           | 10  | 71,180,045  | G/A                                | .974            | .986         | 3.162 | 1.736-5.758 | 6.3 x 10 <sup>-5</sup> |                                     |             |
| rs17747324 | TCF7L2    | 10  | 114,742,493 | C/T                                | .141            | .181         | 1.445 | 1.214-1.719 | 3.0 x 10 <sup>-5</sup> |                                     |             |
| rs7903146  | TCF7L2    | 10  | 114,748,339 | T/C                                | .179            | .229         | 1.388 | 1.197-1.610 | 1.2 x 10 <sup>-5</sup> |                                     | Yes         |
| rs12243326 | TCF7L2    | 10  | 114,778,805 | C/T                                | .163            | .213         | 1.429 | 1.224-1.667 | 5.0 x 10 <sup>-6</sup> |                                     |             |
| rs12255372 | TCF7L2    | 10  | 114,798,892 | T/G                                | .156            | .203         | 1.400 | 1.201-1.632 | 1.5 x 10 <sup>-5</sup> |                                     | Yes         |
| rs12288214 |           | 11  | 41,772,225  | G/A                                | .915            | .946         | 1.681 | 1.316-2.147 | 2.5 x 10 <sup>-5</sup> |                                     |             |
| rs12284861 |           | 11  | 41,787,876  | A/G                                | .915            | .946         | 1.685 | 1.320-2.150 | 2.1 x 10 <sup>-5</sup> |                                     |             |
| rs11036577 |           | 11  | 41,792,460  | C/T                                | .914            | .946         | 1.684 | 1.320-2.148 | 2.1 x 10 <sup>-5</sup> |                                     |             |
| rs12797436 |           | 11  | 41,798,917  | A/C                                | .913            | .944         | 1.624 | 1.279-2.062 | 5.4 x 10 <sup>-5</sup> |                                     |             |
| rs12274732 |           | 11  | 41,805,501  | C/T                                | .914            | .946         | 1.682 | 1.319-2.145 | 2.1 x 10 <sup>-5</sup> |                                     |             |
| rs12275923 |           | 11  | 41,818,526  | A/C                                | .914            | .946         | 1.685 | 1.321-2.150 | 2.0 x 10 <sup>-5</sup> |                                     |             |
| rs12294552 |           | 11  | 41,821,081  | G/C                                | .913            | .944         | 1.629 | 1.282-2.069 | 5.2 x 10 <sup>-5</sup> |                                     |             |
| rs11036600 |           | 11  | 41,823,651  | A/G                                | .914            | .946         | 1.685 | 1.321-2.150 | $2.0 \times 10^{-5}$   |                                     |             |
| rs11600495 |           | 11  | 41,828,609  | C/A                                | .914            | .944         | 1.622 | 1.273-2.065 | 7.3 x 10 <sup>-5</sup> |                                     |             |
| rs10160442 |           | 11  | 41,833,678  | T/C                                | .914            | .946         | 1.683 | 1.318-2.148 | 2.2 x 10 <sup>-5</sup> |                                     |             |
| rs3763827  |           | 11  | 41,834,454  | G/C                                | .913            | .943         | 1.625 | 1.278-2.066 | $5.9 \times 10^{-5}$   |                                     |             |
| rs6485288  |           | 11  | 41,837,914  | A/G                                | .906            | .939         | 1.616 | 1.285-2.032 | $3.2 \times 10^{-5}$   |                                     |             |
| rs12280294 |           | 11  | 41,838,323  | G/T                                | .914            | .945         | 1.683 | 1.318-2.150 | 2.3 x 10 <sup>-5</sup> |                                     |             |

|            |       |     |            | FUSION<br>risk allele/ | Control   | Case      |       |             |                                              | Genotyped<br>p-value   |             |
|------------|-------|-----|------------|------------------------|-----------|-----------|-------|-------------|----------------------------------------------|------------------------|-------------|
|            |       |     | Position   | non-risk               | risk      | risk      |       |             |                                              | for imputed            | Genotyped   |
| SNP        | Genes | Chr | (bp)       | allele                 | frequency | frequency | OR    | 95% CI      | p-value                                      | SNP                    | in Stage 2? |
| rs12281155 |       | 11  | 41,843,640 | C/G                    | .914      | .945      | 1.684 | 1.318-2.151 | 2.3 x 10 <sup>-5</sup>                       |                        |             |
| rs12786634 |       | 11  | 41,845,196 | C/T                    | .914      | .945      | 1.683 | 1.318-2.150 | 2.3 x 10 <sup>-5</sup>                       |                        |             |
| rs12277557 |       | 11  | 41,849,152 | A/T                    | .912      | .943      | 1.686 | 1.320-2.155 | 2.2 x 10 <sup>-5</sup>                       |                        |             |
| rs12793795 |       | 11  | 41,854,702 | G/A                    | .906      | .936      | 1.588 | 1.258-2.005 | 8.4 x 10 <sup>-5</sup>                       |                        |             |
| rs12271525 |       | 11  | 41,858,437 | G/A                    | .891      | .925      | 1.512 | 1.228-1.860 | 8.1 x 10 <sup>-5</sup>                       |                        |             |
| rs7928200  |       | 11  | 41,859,109 | A/G                    | .891      | .925      | 1.512 | 1.229-1.861 | 8.0 x 10 <sup>-5</sup>                       |                        |             |
| rs12273344 |       | 11  | 41,859,353 | G/T                    | .890      | .925      | 1.516 | 1.233-1.863 | 6.5 x 10 <sup>-5</sup>                       |                        |             |
| rs12788548 |       | 11  | 41,862,957 | C/T                    | .891      | .925      | 1.513 | 1.229-1.862 | 7.9 x 10 <sup>-5</sup>                       |                        |             |
| rs12288738 |       | 11  | 41,868,875 | T/C                    | .890      | .924      | 1.511 | 1.229-1.858 | 7.5 x 10 <sup>-5</sup>                       |                        |             |
| rs1588439  |       | 11  | 41,871,182 | G/A                    | .890      | .924      | 1.511 | 1.229-1.858 | 7.5 x 10 <sup>-5</sup>                       |                        |             |
| rs16936067 |       | 11  | 41,871,820 | G/T                    | .906      | .936      | 1.580 | 1.252-1.993 | 9.5 x 10 <sup>-5</sup>                       |                        |             |
| rs9300039  |       | 11  | 41,871,942 | C/A                    | .890      | .925      | 1.520 | 1.236-1.869 | 6.0 x 10 <sup>-5</sup>                       |                        | Yes         |
| rs11036622 |       | 11  | 41,872,742 | C/T                    | .890      | .924      | 1.516 | 1.232-1.864 | 6.9 x 10 <sup>-5</sup>                       |                        |             |
| rs11036624 |       | 11  | 41,878,246 | T/C                    | .891      | .925      | 1.525 | 1.236-1.881 | 6.8 x 10 <sup>-5</sup>                       |                        |             |
| rs12797038 |       | 11  | 41,880,453 | C/T                    | .907      | .937      | 1.598 | 1.260-2.026 | 9.0 x 10 <sup>-5</sup>                       |                        |             |
| rs12804210 |       | 11  | 41,880,999 | T/C                    | .891      | .925      | 1.549 | 1.251-1.919 | 5.1 x 10 <sup>-5</sup>                       |                        |             |
| rs11036627 |       | 11  | 41,881,290 | C/A                    | .904      | .937      | 1.662 | 1.314-2.103 | 1.8 x 10 <sup>-5</sup>                       | 1.9 x 10 <sup>-5</sup> | Yes         |
| rs11036628 |       | 11  | 41,881,352 | G/A                    | .904      | .937      | 1.662 | 1.313-2.103 | 1.8 x 10 <sup>-5</sup>                       |                        |             |
| rs7114241  |       | 11  | 41,882,103 | T/C                    | .891      | .925      | 1.552 | 1.251-1.924 | 5.2 x 10 <sup>-5</sup>                       |                        |             |
| rs7128743  |       | 11  | 41,882,275 | C/A                    | .891      | .925      | 1.552 | 1.252-1.925 | 5.2 x 10 <sup>-5</sup>                       |                        |             |
| rs12288361 |       | 11  | 41,883,303 | C/T                    | .891      | .925      | 1.553 | 1.252-1.927 | 5.1 x 10 <sup>-5</sup>                       |                        |             |
| rs12802634 |       | 11  | 41,886,138 | T/C                    | .891      | .925      | 1.554 | 1.252-1.928 | 5.2 x 10 <sup>-5</sup>                       |                        |             |
| rs12802862 |       | 11  | 41,886,267 | T/C                    | .891      | .925      | 1.554 | 1.252-1.928 | 5.2 x 10 <sup>-5</sup>                       |                        |             |
| rs11608189 |       | 11  | 41,887,387 | G/T                    | .907      | .937      | 1.609 | 1.267-2.045 | 7.9 x 10 <sup>-5</sup>                       |                        |             |
| rs11602004 |       | 11  | 41,900,843 | G/T                    | .907      | .938      | 1.616 | 1.271-2.053 | 7.0 x 10 <sup>-5</sup>                       |                        |             |
| rs11602127 |       | 11  | 41,901,557 | G/A                    | .907      | .938      | 1.628 | 1.280-2.070 | 5.6 x 10 <sup>-5</sup>                       |                        |             |
| rs10501281 |       | 11  | 41,922,935 | C/T                    | .915      | .947      | 1.617 | 1.276-2.048 | 5.3 x 10 <sup>-5</sup>                       |                        |             |
| rs11823992 |       | 11  | 41,926,856 | A/T                    | .918      | .949      | 1.651 | 1.294-2.105 | 4.0 x 10 <sup>-5</sup>                       |                        |             |
| rs7101809  |       | 11  | 41,933,715 | T/C                    | .918      | .949      | 1.653 | 1.295-2.109 | 4.1 x 10 <sup>-5</sup>                       |                        |             |
| rs12287052 |       | 11  | 41,935,144 | A/G                    | .918      | .949      | 1.651 | 1.289-2.114 | 5.6 x 10 <sup>-5</sup>                       |                        |             |
| rs11036642 |       | 11  | 41,940,997 | T/A                    | .921      | .951      | 1.699 | 1.318-2.191 | 3.3 x 10 <sup>-5</sup>                       |                        |             |
| rs17553408 |       | 11  | 41,951,928 | T/G                    | .918      | .949      | 1.650 | 1.288-2.115 | 5.8 x 10 <sup>-5</sup>                       |                        |             |
| rs12293408 |       | 11  | 41,956,332 | C/T                    | .921      | .951      | 1.695 | 1.315-2.186 | 3.5 x 10 <sup>-5</sup>                       |                        |             |
| rs16936200 |       | 11  | 41,963,315 | A/C                    | .906      | .939      | 1.635 | 1.294-2.067 | 3.0 x 10 <sup>-5</sup>                       |                        |             |
| rs11036649 |       | 11  | 41,965,524 | A/G                    | .906      | .939      | 1.634 | 1.293-2.066 | $3.1 \times 10^{-5}$                         |                        |             |
| rs12576408 |       | 11  | 41,971,203 | G/T                    | .906      | .939      | 1.633 | 1.292-2.064 | 3.2 x 10 <sup>-5</sup>                       |                        |             |
| rs11036652 |       | 11  | 41,971,269 | T/C                    | .907      | .939      | 1.629 | 1.288-2.058 | 3.5 x 10 <sup>-5</sup>                       |                        |             |
| rs7107246  |       | 11  | 41,972,428 | C/A                    | .883      | .915      | 1.630 | 1.287-2.064 | $4.0 \times 10^{-5}$                         |                        |             |
| rs11604966 |       | 11  | 41,972,736 | T/C                    | .907      | .940      | 1.623 | 1.285-2.051 | $3.8 \times 10^{-5}$                         |                        |             |
| rs10837766 |       | 11  | 41,984,377 | T/C                    | .840      | .882      | 1.472 | 1.232-1.759 | $1.8 \ge 10^{-5}$                            | 8.6 x 10 <sup>-5</sup> | Yes         |
| rs17554005 |       | 11  | 41,989,148 | A/C                    | .916      | .947      | 1.686 | 1.312-2.166 | $3.4 \times 10^{-5}$                         | 0.0 .1 10              | 1.05        |
| rs17554054 |       | 11  | 41,990,218 | T/C                    | .916      | .947      | 1.682 | 1.310-2.161 | $3.6 \times 10^{-5}$                         |                        |             |
| rs17554081 |       | 11  | 41,990,280 | A/G                    | .916      | .946      | 1.677 | 1.306-2.154 | $3.9 \times 10^{-5}$                         |                        |             |
| rs2862456  |       | 11  | 41,990,280 | C/T                    | .916      | .946      | 1.668 | 1.300-2.134 | $4.5 \times 10^{-5}$                         |                        |             |
| 152002750  |       | 11  | 41,990,709 | A/G                    | .916      | .946      | 1.666 | 1.299-2.137 | $4.5 \times 10^{-5}$<br>$4.6 \times 10^{-5}$ |                        |             |

| SNP                      | Genes          | Chr      | Position                   | FUSION<br>risk allele/<br>non-risk | Control<br>risk   | Case<br>risk      | OR             | 95% CI      | n value                                          | Genotyped<br>p-value<br>for imputed<br>SNP | Genotyped   |
|--------------------------|----------------|----------|----------------------------|------------------------------------|-------------------|-------------------|----------------|-------------|--------------------------------------------------|--------------------------------------------|-------------|
| rs17462994               | Genes          | 11       | (bp)<br>41,991,889         | allele<br>T/C                      | frequency<br>.916 | frequency<br>.946 | 1.666          | 1.299-2.137 | p-value<br>4.6 x 10 <sup>-5</sup>                | SINP                                       | in Stage 2? |
|                          |                |          |                            | G/A                                | .916              |                   | 2.303          | 1.515-3.500 | $4.6 \times 10^{-5}$<br>5.2 x 10 <sup>-5</sup>   |                                            |             |
| rs12792932<br>rs12806859 |                | 11<br>11 | 127,226,772                | G/A<br>T/G                         |                   | .984<br>.984      | 2.303          | 1.515-5.500 | $5.2 \times 10^{-5}$<br>$5.2 \times 10^{-5}$     |                                            |             |
|                          |                | 11       | 127,234,379<br>127,328,409 | G/A                                | .967<br>.963      |                   | 2.299<br>2.197 | 1.314-3.492 | $3.2 \times 10^{-5}$<br>8.3 x 10 <sup>-5</sup>   |                                            |             |
| rs12799032<br>rs12792749 |                | 11       |                            |                                    |                   | .980<br>.980      |                | 1.465-3.275 | $8.5 \times 10^{-5}$                             |                                            |             |
|                          |                | 11       | 127,336,192                | G/A<br>T/G                         | .963              |                   | 2.191<br>2.191 | 1.465-3.275 | 8.6 x 10 <sup>-5</sup><br>8.7 x 10 <sup>-5</sup> |                                            |             |
| rs12797631               |                |          | 127,341,608                |                                    | .963              | .980              |                |             | $8.7 \times 10^{-5}$<br>$8.8 \times 10^{-5}$     |                                            |             |
| rs12796900               |                | 11       | 127,341,924                | C/A                                | .963              | .980              | 2.191          | 1.465-3.276 | $8.8 \times 10^{-5}$                             |                                            |             |
| rs12793901               |                | 11       | 127,345,185                | G/A                                | .963              | .980              | 2.198          | 1.468-3.290 | 8.6 x 10 <sup>-5</sup>                           | 4.0 10-5                                   | 37          |
| rs11616188               | LTBR, SCNN1A   | 12       | 6,373,003                  | A/G                                | .474              | .522              | 1.400          | 1.201-1.633 | $1.6 \times 10^{-5}$                             | 4.8 x 10 <sup>-5</sup>                     | Yes         |
| rs7313533                |                | 12       | 6,386,116                  | A/G                                | .702              | .742              | 1.394          | 1.179-1.649 | 9.8 x 10 <sup>-5</sup>                           |                                            |             |
| rs12581386               | COROIC         | 12       | 107,585,465                | C/A                                | .962              | .977              | 2.546          | 1.571-4.126 | 7.6 x 10 <sup>-5</sup>                           |                                            |             |
| rs3825253                | CORO1C         | 12       | 107,611,747                | A/G                                | .973              | .989              | 2.575          | 1.604-4.134 | 3.6 x 10 <sup>-5</sup>                           |                                            | Yes         |
| rs7957463                | FLJ20674, WSB2 | 12       | 116,981,026                | T/C                                | .577              | .633              | 1.274          | 1.134-1.432 | 4.2 x 10 <sup>-5</sup>                           |                                            |             |
| rs7958110                | FLJ20674, WSB2 | 12       | 116,981,479                | T/C                                | .577              | .633              | 1.273          | 1.133-1.430 | 4.4 x 10 <sup>-5</sup>                           |                                            |             |
| rs4767658                | FLJ20674, WSB2 | 12       | 116,982,161                | T/C                                | .577              | .633              | 1.274          | 1.134-1.430 | 4.1 x 10 <sup>-5</sup>                           |                                            | Yes         |
| rs7488309                | FLJ20674, WSB2 | 12       | 116,982,890                | G/A                                | .577              | .633              | 1.273          | 1.133-1.430 | 4.3 x 10 <sup>-5</sup>                           |                                            |             |
| rs2711747                | CCDC60         | 12       | 118,360,953                | T/G                                | .014              | .025              | 3.401          | 1.842-6.280 | 4.9 x 10 <sup>-5</sup>                           |                                            |             |
| rs1918416                |                | 12       | 118,463,133                | C/T                                | .808              | .853              | 1.383          | 1.181-1.618 | 4.9 x 10 <sup>-5</sup>                           |                                            |             |
| rs804628                 |                | 12       | 118,468,458                | G/C                                | .816              | .856              | 1.432          | 1.204-1.702 | 4.4 x 10 <sup>-5</sup>                           |                                            |             |
| rs2669161                |                | 12       | 120,663,139                | C/G                                | .846              | .884              | 1.457          | 1.210-1.755 | 6.3 x 10 <sup>-5</sup>                           |                                            |             |
| rs2707069                |                | 12       | 120,666,804                | C/T                                | .846              | .884              | 1.462          | 1.212-1.764 | 6.4 x 10 <sup>-5</sup>                           |                                            |             |
| rs1287527                |                | 13       | 80,731,274                 | T/C                                | .085              | .120              | 1.493          | 1.226-1.819 | 6.1 x 10 <sup>-5</sup>                           |                                            |             |
| rs1287526                |                | 13       | 80,734,028                 | G/A                                | .088              | .123              | 1.480          | 1.219-1.796 | 6.4 x 10 <sup>-5</sup>                           |                                            |             |
| rs982864                 |                | 13       | 80,735,627                 | C/T                                | .075              | .109              | 1.512          | 1.229-1.859 | 7.7 x 10 <sup>-5</sup>                           |                                            |             |
| rs2801597                |                | 13       | 80,736,045                 | G/A                                | .075              | .109              | 1.512          | 1.229-1.859 | 7.8 x 10 <sup>-5</sup>                           |                                            |             |
| rs1287533                |                | 13       | 80,740,650                 | A/T                                | .083              | .117              | 1.490          | 1.220-1.820 | 8.2 x 10 <sup>-5</sup>                           |                                            |             |
| rs9545851                |                | 13       | 81,234,888                 | T/C                                | .525              | .583              | 1.279          | 1.135-1.441 | 5.1 x 10 <sup>-5</sup>                           |                                            |             |
| rs9545852                |                | 13       | 81,237,495                 | C/T                                | .525              | .583              | 1.278          | 1.134-1.440 | 5.2 x 10 <sup>-5</sup>                           |                                            |             |
| rs9531246                |                | 13       | 81,239,573                 | C/A                                | .525              | .583              | 1.278          | 1.134-1.439 | 5.3 x 10 <sup>-5</sup>                           |                                            |             |
| rs9545853                |                | 13       | 81,242,579                 | T/C                                | .526              | .583              | 1.277          | 1.134-1.438 | 5.4 x 10 <sup>-5</sup>                           |                                            |             |
| rs11149214               |                | 13       | 81,283,609                 | C/A                                | .526              | .583              | 1.276          | 1.133-1.438 | 5.5 x 10 <sup>-5</sup>                           |                                            |             |
| rs9545870                |                | 13       | 81,286,274                 | A/G                                | .526              | .583              | 1.276          | 1.133-1.438 | 5.5 x 10 <sup>-5</sup>                           |                                            |             |
| rs3891591                |                | 13       | 81,291,969                 | C/T                                | .517              | .573              | 1.276          | 1.131-1.440 | 6.9 x 10 <sup>-5</sup>                           |                                            |             |
| rs9545903                |                | 13       | 81,344,914                 | T/C                                | .459              | .514              | 1.270          | 1.128-1.430 | $7.2 \times 10^{-5}$                             |                                            |             |
| rs10135197               |                | 14       | 38,123,411                 | T/C                                | .598              | .654              | 1.288          | 1.138-1.458 | 6.1 x 10 <sup>-5</sup>                           |                                            |             |
| rs8014198                |                | 14       | 38,132,529                 | G/A                                | .616              | .670              | 1.291          | 1.137-1.464 | $7.0 \times 10^{-5}$                             |                                            |             |
| rs9788490                |                | 14       | 38,132,689                 | C/G                                | .603              | .659              | 1.287          | 1.138-1.455 | $5.5 \times 10^{-5}$                             |                                            |             |
| rs11849174               |                | 14       | <b>38,147,149</b>          | G/A                                | .603              | .660              | 1.287          | 1.138-1.455 | 5.4 x 10 <sup>-5</sup>                           |                                            |             |
| rs10145493               |                | 14       | 38,151,139                 | G/A<br>G/A                         | .603              | .659              | 1.287          | 1.138-1.455 | $5.6 \times 10^{-5}$                             |                                            |             |
| rs12435438               |                | 14       | 38,154,195                 | T/C                                | .553              | .612              | 1.318          | 1.161-1.495 | $1.7 \times 10^{-5}$                             |                                            |             |
| rs1349241                |                | 14       | 38,155,189                 | T/C<br>T/C                         | .553              | .612              | 1.318          | 1.161-1.495 | $1.7 \times 10^{-5}$<br>1.8 x 10 <sup>-5</sup>   |                                            |             |
| rs10141957               |                | 14       | 38,157,020                 | G/A                                | .535              | .610              | 1.318          | 1.167-1.500 | $1.0 \times 10^{-5}$<br>1.1 x 10 <sup>-5</sup>   |                                            |             |
| rs2122331                |                | 14       | 38,157,020                 | G/A<br>G/C                         | .549              | .575              | 1.323          | 1.133-1.435 | $5.2 \times 10^{-5}$                             |                                            |             |
| rs8010489                |                | 14       | 38,163,618                 | G/A                                | .523              | .575              | 1.273          | 1.135-1.435 | $3.2 \times 10^{-5}$<br>4.5 x 10 <sup>-5</sup>   |                                            |             |
| 180010489                |                | 14       | 38,103,018                 | U/A                                | .323              | .384              | 1.281          | 1.13/-1.444 | 4.3 X 10                                         |                                            |             |

|            |                        | ~1  | Position    | FUSION<br>risk allele/<br>non-risk | Control<br>risk | Case<br>risk |       |             |                        | Genotyped<br>p-value<br>for imputed | Genotyped   |
|------------|------------------------|-----|-------------|------------------------------------|-----------------|--------------|-------|-------------|------------------------|-------------------------------------|-------------|
| SNP        | Genes                  | Chr | (bp)        | allele                             | frequency       | frequency    | OR    | 95% CI      | p-value                | SNP                                 | in Stage 2? |
| rs1449720  |                        | 14  | 38,165,318  | A/G                                | .512            | .573         | 1.269 | 1.128-1.428 | 6.8 x 10 <sup>-5</sup> |                                     |             |
| rs12164874 |                        | 14  | 38,172,603  | C/T                                | .515            | .577         | 1.278 | 1.136-1.439 | $4.5 \times 10^{-5}$   |                                     |             |
| rs10138342 |                        | 14  | 38,186,108  | A/C                                | .526            | .587         | 1.284 | 1.139-1.448 | $4.0 \ge 10^{-5}$      |                                     |             |
| rs7153699  |                        | 14  | 38,188,807  | C/T                                | .518            | .579         | 1.279 | 1.136-1.440 | $4.4 \times 10^{-5}$   |                                     |             |
| rs6571865  |                        | 14  | 38,191,421  | T/C                                | .518            | .580         | 1.281 | 1.137-1.442 | $4.1 \times 10^{-5}$   |                                     |             |
| rs7141696  |                        | 14  | 38,192,126  | T/C                                | .518            | .580         | 1.281 | 1.138-1.443 | $4.0 \times 10^{-5}$   |                                     |             |
| rs8006474  |                        | 14  | 38,196,248  | G/C                                | .527            | .589         | 1.290 | 1.144-1.454 | $3.1 \times 10^{-5}$   |                                     |             |
| rs2122333  |                        | 14  | 38,233,119  | C/T                                | .542            | .610         | 1.321 | 1.171-1.491 | $5.3 \times 10^{-6}$   | 4 4 4 6 5                           |             |
| rs1449725  |                        | 14  | 38,246,572  | C/T                                | .543            | .610         | 1.322 | 1.172-1.492 | $4.9 \times 10^{-6}$   | 1.1 x 10 <sup>-5</sup>              | Yes         |
| rs2899883  |                        | 14  | 38,255,604  | G/T                                | .539            | .604         | 1.320 | 1.169-1.491 | 7.0 x 10 <sup>-6</sup> |                                     |             |
| rs2319392  | GPHN                   | 14  | 66,136,844  | T/A                                | .014            | .023         | 4.396 | 2.050-9.426 | 5.0 x 10 <sup>-5</sup> |                                     |             |
| rs3825569  | LOC388015              | 14  | 100,420,051 | C/T                                | .583            | .640         | 1.292 | 1.143-1.46  | 3.7 x 10 <sup>-5</sup> |                                     |             |
| rs12910827 |                        | 15  | 56,417,311  | T/G                                | .024            | .047         | 2.592 | 1.738-3.866 | 1.3 x 10 <sup>-6</sup> | 6.3 x 10 <sup>-6</sup>              | Yes         |
| rs11634708 | LOC56964, PEX11A, PLIN | 15  | 88,037,214  | C/T                                | .433            | .485         | 1.315 | 1.153-1.500 | 4.1 x 10 <sup>-5</sup> |                                     |             |
| rs10521095 |                        | 16  | 13,528,936  | A/G                                | .206            | .256         | 1.351 | 1.174-1.554 | 2.3 x 10 <sup>-5</sup> |                                     | Yes         |
| rs6498423  |                        | 16  | 13,531,381  | A/G                                | .206            | .256         | 1.351 | 1.174-1.555 | $2.4 \times 10^{-5}$   |                                     |             |
| rs12162088 |                        | 16  | 13,547,393  | G/A                                | .130            | .169         | 1.407 | 1.185-1.671 | 8.8 x 10 <sup>-5</sup> |                                     |             |
| rs16962270 |                        | 16  | 13,547,426  | T/A                                | .130            | .169         | 1.409 | 1.186-1.673 | 8.7 x 10 <sup>-5</sup> |                                     |             |
| rs2033254  | CETP                   | 16  | 55,567,486  | T/C                                | .646            | .693         | 1.367 | 1.177-1.587 | $4.0 \ge 10^{-5}$      |                                     |             |
| rs12708980 | CETP                   | 16  | 55,569,880  | T/G                                | .633            | .677         | 1.385 | 1.184-1.621 | $4.4 \ge 10^{-5}$      | C.                                  |             |
| rs1800774  | CETP                   | 16  | 55,573,046  | C/T                                | .640            | .686         | 1.399 | 1.195-1.639 | 2.8 x 10 <sup>-5</sup> | 7.3 x 10 <sup>-6</sup>              | Yes         |
| rs11646114 | FOXC2, MTHFSD          | 16  | 85,141,275  | T/A                                | .868            | .894         | 1.658 | 1.285-2.140 | 8.9 x 10 <sup>-5</sup> | 0.002                               | Yes         |
| rs9911259  | PRKCA                  | 17  | 62,085,377  | C/A                                | .435            | .493         | 1.274 | 1.134-1.432 | 4.4 x 10 <sup>-5</sup> |                                     |             |
| rs16959880 | PRKCA                  | 17  | 62,085,528  | A/G                                | .435            | .493         | 1.274 | 1.134-1.432 | 4.3 x 10 <sup>-5</sup> |                                     |             |
| rs8077110  | PRKCA                  | 17  | 62,087,049  | A/G                                | .435            | .493         | 1.274 | 1.134-1.432 | 4.3 x 10 <sup>-5</sup> |                                     |             |
| rs1024740  | PRKCA                  | 17  | 62,088,152  | C/G                                | .435            | .493         | 1.275 | 1.134-1.432 | 4.3 x 10 <sup>-5</sup> |                                     |             |
| rs7207345  | PRKCA                  | 17  | 62,093,747  | T/C                                | .707            | .755         | 1.307 | 1.144-1.492 | 7.5 x 10 <sup>-5</sup> |                                     |             |
| rs17384005 |                        | 18  | 1,565,020   | A/G                                | .810            | .839         | 1.864 | 1.409-2.467 | 1.1 x 10 <sup>-5</sup> | .10                                 | Yes         |
| rs1785710  |                        | 18  | 21,612,825  | G/C                                | .648            | .702         | 1.295 | 1.142-1.468 | 5.1 x 10 <sup>-5</sup> |                                     |             |
| rs7229654  |                        | 18  | 35,549,984  | A/G                                | .959            | .978         | 2.024 | 1.412-2.902 | 8.0 x 10 <sup>-5</sup> |                                     |             |
| rs1596583  |                        | 18  | 35,550,893  | G/A                                | .959            | .979         | 2.033 | 1.418-2.916 | 7.3 x 10 <sup>-5</sup> |                                     |             |
| rs9675995  |                        | 18  | 35,574,907  | G/A                                | .959            | .978         | 2.020 | 1.410-2.895 | 8.3 x 10 <sup>-5</sup> |                                     |             |
| rs10853467 |                        | 18  | 35,582,328  | A/G                                | .959            | .978         | 2.021 | 1.410-2.896 | 8.2 x 10 <sup>-5</sup> |                                     |             |
| rs616444   | SETBP1                 | 18  | 40,739,522  | A/C                                | .882            | .917         | 1.465 | 1.208-1.778 | 9.0 x 10 <sup>-5</sup> |                                     |             |
| rs175200   |                        | 22  | 18,543,063  | A/G                                | .494            | .555         | 1.282 | 1.138-1.445 | 4.1 x 10 <sup>-5</sup> | 5.5 x 10 <sup>-5</sup>              | Yes         |
| rs438798   |                        | 22  | 18,544,053  | G/A                                | .494            | .555         | 1.282 | 1.138-1.444 | 4.2 x 10 <sup>-5</sup> |                                     |             |
| rs520698   | LOC150207              | 22  | 19,349,434  | G/A                                | .702            | .757         | 1.377 | 1.199-1.582 | 5.4 x 10 <sup>-6</sup> |                                     |             |
| rs565979   |                        | 22  | 19,353,500  | C/T                                | .679            | .730         | 1.295 | 1.139-1.472 | 7.0 x 10 <sup>-5</sup> |                                     | Yes         |
| rs479275   |                        | 22  | 19,353,777  | T/A                                | .656            | .708         | 1.283 | 1.131-1.455 | 9.5 x 10 <sup>-5</sup> |                                     |             |
| rs491228   | DKFZp434N035           | 22  | 19,357,925  | G/A                                | .679            | .730         | 1.294 | 1.138-1.471 | 7.5 x 10 <sup>-5</sup> |                                     |             |
| rs591446   | DKFZp434N035           | 22  | 19,359,204  | A/G                                | .656            | .708         | 1.283 | 1.131-1.454 | 9.7 x 10 <sup>-5</sup> |                                     |             |
| rs2267339  | CACNG2                 | 22  | 35,290,742  | G/T                                | .610            | .666         | 1.333 | 1.169-1.521 | 1.6 x 10 <sup>-5</sup> | 4.5 x 10 <sup>-6</sup>              | Yes         |

| Table S4. Confirmed T2D susceptibility loci | expanded FUSION results |
|---------------------------------------------|-------------------------|
| Rick                                        |                         |

|            |          |       | Risk<br>allele R/ |      |         |      |      |          |      | Risk a  | allele |       |             |                        |       |             |                        |       |             |                        |
|------------|----------|-------|-------------------|------|---------|------|------|----------|------|---------|--------|-------|-------------|------------------------|-------|-------------|------------------------|-------|-------------|------------------------|
|            |          |       | Non-risk          | -    | ontrols |      |      | Cases (r | /    | frequ   | ency   |       | Additive    |                        |       | Dominant    |                        |       | Recessive   |                        |
| SNP        | Gene     | Stage | allele N          | RR   | RN      | NN   | RR   | RN       | NN   | control | case   | OR    | 95% CI      | p-value                | OR    | 95% CI      | p-value                | OR    | 95% CI      | p-value                |
| rs1801282  | PPARG    | 1     | C/G               | 778  | 336     | 45   | 834  | 298      | 19   | .816    | .854   | 1 303 | 1.111-1.529 | .0011                  | 2 399 | 1.387-4.151 | .0011                  | 1 270 | 1.059-1.523 | .0097                  |
| 131001202  | TTINO    | 2     | C/G               | 840  | 337     | 38   | 838  | 293      | 37   | .830    | .843   |       | 0.924-1.256 | 0.34                   |       | 0.612-1.555 | .92                    |       | 0.929-1.327 | .25                    |
|            |          | 1+2   | C/G               | 1618 | 673     | 83   | 1672 | 591      | 56   | .823    | .848   |       | 1.071-1.333 | .0014                  |       | 1.056-2.114 | .022                   |       | 1.058-1.362 | .0046                  |
| rs4402960  | IGF2BP2  | 1     | T/G               | 102  | 471     | 585  | 148  | 495      | 498  | .291    | .347   | 1.276 | 1.126-1.446 | 1.2 x 10 <sup>-4</sup> | 1.316 | 1.115-1.555 | .0012                  | 1.520 | 1.160-1.992 | .0022                  |
|            |          | 2     | T/G               | 142  | 498     | 595  | 122  | 553      | 515  | .317    | .335   | 1.073 | 0.951-1.211 | .25                    | 1.197 | 1.018-1.408 | .029                   | 0.872 | 0.672-1.131 | .30                    |
|            |          | 1+2   | T/G               | 244  | 969     | 1180 | 270  | 1048     | 1013 | .304    | .341   | 1.175 | 1.078-1.281 | 2.4 x 10 <sup>-4</sup> | 1.263 | 1.125-1.418 | 7.3 x 10 <sup>-5</sup> | 1.155 | 0.960-1.390 | .13                    |
| rs7754840  | CDKAL1   | 1     | C/G               | 154  | 522     | 439  | 190  | 531      | 400  | .372    | .406   |       | 1.022-1.304 | .021                   |       | 0.979-1.387 | .084                   |       | 1.019-1.628 | .034                   |
|            |          | 2     | C/G               | 141  | 574     | 509  | 153  | 565      | 466  | .350    | .368   |       | 0.959-1.223 | .20                    |       | 0.926-1.290 | .29                    |       | 0.890-1.463 | .30                    |
|            |          | 1+2   | C/G               | 295  | 1096    | 948  | 343  | 1096     | 866  | .360    | .387   | 1.120 | 1.028-1.220 | .0095                  | 1.129 | 1.002-1.271 | .046                   | 1.220 | 1.030-1.444 | .021                   |
| rs13266634 | SLC30A8  | 1     | C/T               | 421  | 577     | 176  | 506  | 500      | 155  | .604    | .651   | 1.222 | 1.084-1.379 | .0010                  | 1.157 | 0.913-1.466 | .23                    | 1.380 | 1.166-1.634 | 1.8 x 10 <sup>-4</sup> |
|            |          | 2     | C/T               | 470  | 561     | 192  | 505  | 516      | 160  | .614    | .646   |       | 1.016-1.286 | .026                   |       | 0.952-1.511 | .12                    |       | 1.008-1.406 | .040                   |
|            |          | 1+2   | C/T               | 891  | 1138    | 368  | 1011 | 1016     | 315  | .609    | .649   | 1.184 | 1.089-1.287 | 6.8 x 10 <sup>-5</sup> | 1.175 | 0.997-1.385 | .053                   | 1.289 | 1.146-1.449 | 2.3x 10 <sup>-5</sup>  |
| rs10811661 | CDKN2A/B | 1     | T/C               | 809  | 308     | 13   | 850  | 256      | 18   | .852    | .870   | 1.168 | 0.980-1.392 | .082                   | 0.763 | 0.369-1.576 | .46                    | 1.223 | 1.011-1.480 | .038                   |
|            |          | 2     | T/C               | 893  | 309     | 33   | 911  | 256      | 23   | .848    | .873   | 1.223 | 1.039-1.441 | .015                   | 1.345 | 0.779-2.322 | .28                    | 1.254 | 1.042-1.510 | .017                   |
|            |          | 1+2   | T/C               | 1702 | 617     | 46   | 1761 | 512      | 41   | .850    | .872   | 1.204 | 1.069-1.356 | .0022                  | 1.112 | 0.724-1.708 | .63                    | 1.245 | 1.091-1.421 | .001                   |
| rs1111875  | HHEX     | 1     | C/T               | 333  | 568     | 273  | 372  | 549      | 240  | .526    | .557   | 1.128 | 1.006-1.266 | .039                   |       | 0.954-1.420 | .13                    | 1.187 | 0.992-1.420 | .061                   |
|            |          | 2     | C/T               | 332  | 596     | 285  | 333  | 581      | 250  | .519    | .536   |       | 0.943-1.187 | .34                    |       | 0.926-1.369 | .23                    |       | 0.866-1.246 | .68                    |
|            |          | 1+2   | C/T               | 665  | 1164    | 558  | 705  | 1130     | 490  | .522    | .546   | 1.097 | 1.012-1.189 | .025                   | 1.148 | 0.999-1.318 | .051                   | 1.120 | 0.986-1.271 | .081                   |
| rs7903146  | TCF7L2   | 1     | T/C               | 32   | 356     | 786  | 55   | 422      | 684  | .179    | .229   |       | 1.197-1.610 |                        | 1.422 | 1.198-1.688 |                        |       | 1.161-2.850 | .0079                  |
|            |          | 2     | T/C               | 33   | 383     | 810  | 68   | 393      | 711  | .183    | .226   |       | 1.122-1.495 |                        | 1.266 | 1.069-1.498 | .0061                  |       | 1.382-3.262 | $4.1 \times 10^{-4}$   |
|            |          | 1+2   | T/C               | 65   | 739     | 1596 | 123  | 815      | 1395 | .181    | .227   | 1.343 | 1.213-1.488 | 1.4 x 10 <sup>-8</sup> | 1.344 | 1.192-1.514 | 1.2 x 10 <sup>-6</sup> | 1.993 | 1.464-2.712 | 7.1 x 10 <sup>-6</sup> |
| rs5219     | KCNJ11   | 1     | T/C               | 221  | 562     | 346  | 271  | 538      | 296  | .445    | .489   | 1.204 | 1.069-1.357 | .0022                  | 1.214 | 1.007-1.463 | .042                   | 1.366 | 1.114-1.675 | .0027                  |
|            |          | 2     | T/C               | 284  | 622     | 328  | 271  | 624      | 295  | .482    | .490   | 1.035 | 0.922-1.162 | .56                    | 1.112 | 0.925-1.338 | .26                    | 0.979 | 0.807-1.186 | .83                    |
|            |          | 1+2   | T/C               | 505  | 1184    | 674  | 542  | 1162     | 591  | .464    | .489   | 1.109 | 1.021-1.204 | .014                   | 1.152 | 1.011-1.312 | .034                   | 1.142 | 0.994-1.312 | .060                   |
| rs9300039  |          | 1     | C/A               | 929  | 232     | 13   | 992  | 161      | 7    | .890    | .925   | 1.520 | 1.236-1.869 | 6.0 x 10 <sup>-5</sup> | 1.797 | 0.702-4.600 | .21                    | 1.563 | 1.254-1.948 | 6.2 x 10 <sup>-5</sup> |
|            |          | 2     | C/A               | 988  | 227     | 17   | 1007 | 170      | 5    | .894    | .924   |       |             |                        | 3.445 | 1.247-9.520 | .0094                  |       | 1.150-1.771 | .0012                  |
|            |          | 1+2   | C/A               | 1917 | 459     | 30   | 1999 | 331      | 12   | .892    | .924   | 1.478 | 1.280-1.705 | 6.8 x 10 <sup>-8</sup> | 2.470 | 1.252-4.874 | .0062                  | 1.490 | 1.279-1.737 | 2.7 x 10 <sup>-7</sup> |
| rs8050136  | FTO      | 1     | A/C               | 192  | 562     | 420  | 213  | 538      | 410  | .403    | .415   |       | 0.920-1.162 | .58                    |       | 0.841-1.186 | .99                    |       | 0.904-1.397 | .29                    |
|            |          | 2     | A/C               | 150  | 585     | 492  | 185  | 566      | 427  | .361    | .397   |       | 1.046-1.329 | .0070                  |       | 0.998-1.394 | .053                   |       | 1.077-1.725 | .0098                  |
|            |          | 1+2   | A/C               | 342  | 1147    | 912  | 398  | 1104     | 837  | .381    | .406   | 1.107 | 1.019-1.203 | .017                   | 1.091 | 0.969-1.229 | .15                    | 1.240 | 1.058-1.453 | .0078                  |

Table S5. FUSION stage 1, stage 2, and stage 1 + 2 T2D association results for 80 SNPs. SNPs were selected for stage 1 or stage 2 genotyping based on results in the FUSION GWA, combined evidence from FUSION, DGI, and WTCCC GWAs, or previous reports.

|                        |        |                            |                                  | Risk       | Control      | <u>ge 1</u><br>Case | <u>Stag</u><br>Control | Case         | Stage<br>Control | Case         |       |                            |                               |       |                            |            |       |                            |                        |                         |
|------------------------|--------|----------------------------|----------------------------------|------------|--------------|---------------------|------------------------|--------------|------------------|--------------|-------|----------------------------|-------------------------------|-------|----------------------------|------------|-------|----------------------------|------------------------|-------------------------|
|                        |        |                            |                                  | allele/    | risk         | risk                | risk                   | risk         | risk             | risk         |       |                            |                               |       |                            |            |       |                            |                        |                         |
|                        |        | Position                   |                                  | non-risk   | allele       | allele              | allele                 | allele       | allele           | allele       |       | Stage 1                    |                               |       | Stage 2                    |            |       | Stage 1 +                  | 2                      | Reason for              |
|                        | Chr    | (bp)                       | Genes                            | allele     | freq         | freq                | freq                   | freq         | freq             | freq         | OR    | 95% CI                     | p-value                       | OR    | 95% CI                     | p-value    | OR    | 95% CI                     | p-value                | follow-up               |
| s640742                | 1      | 20,729,860                 | CDA, DDOST,<br>KIF17, PINK1      | A/C        | .601         | .663                | .616                   | .613         | .609             | .638         | 1.297 |                            |                               | 0.992 |                            | .89        |       | 1.037-1.225                | .0047                  | FUSION GW               |
| s17356414              | 1      | 59,031,529                 | -                                | C/T        | .694         | .736                | .719                   | .708         | .707             | .722         |       | 1.096-1.422                |                               |       | 0.841-1.081                | .46        |       | 0.991-1.186                | .077                   | FUSION Imp              |
| s17025978              | 1      | 110,781,653                | KCNA10                           | G/A        | .914         | .947                | .934                   | .930         | .924             | .939         |       | 1.347-2.158                |                               |       | 0.752-1.178                | .60        |       | 1.082-1.491                | .0033                  | FUSION GV               |
| s10494217              | 1      | 119,181,230                | TBX15                            | G/T        | .708         | .735                | .740                   | .725         | .724             | .730         |       | 1.004-1.298                | .044                          |       | 0.816-1.058                | .27        |       | 0.937-1.124                | .58                    | Combined G              |
| s7599781               | 2      | 43,590,377                 | PLEKHH2, THADA                   | T/C        | .942         | .958                | .954                   | .950         | .948             | .954         |       | 1.119-1.953                | .0056                         |       | 0.683-1.172                | .42        |       | 0.947-1.390                | .16                    | Combined G              |
| s6704803               | 2      | 158,175,059                | ACVR1C, PSCDBP                   | C/T        | .928         | .946                | .938                   | .942         | .933<br>.823     | .944<br>.848 |       | 1.033-1.675                | .025<br>.0011                 |       | 0.851-1.380                | .52        |       | 1.011-1.419                | .036<br>.0014          | Combined G              |
| s1801282<br>s17081352  | 3<br>3 | 12,368,125<br>30,307,851   | PPARG, LOC643925                 | C/G        | .816         | .854<br>.940        | .830<br>.928           | .843<br>.927 | .823             | .848         |       | 1.111-1.529<br>1.339-2.109 |                               |       | 0.924-1.256<br>0.780-1.224 | .34<br>.84 |       | 1.071-1.333<br>1.090-1.494 | .0014                  | Combined G              |
| s17081332<br>s13072106 | 3      | 134,425,451                | -<br>BFSP2, TMEM108              | C/A<br>T/C | .905<br>.118 | .155                | .143                   | .142         | .130             | .149         |       | 1.188-1.682                |                               |       | 0.780-1.224                | .84        |       | 1.038-1.311                | .0023                  | FUSION Imp<br>FUSION GV |
| s4687299               | 3      | 186,595,361                | MAP3K13                          | A/G        | .225         | .276                | .268                   | .260         | .247             | .268         |       | 1.158-1.515                |                               |       | 0.841-1.092                | .53        |       | 1.017-1.225                | .020                   | FUSION G                |
| s17289925              | 3      | 186,917,362                | C3orf65, IGF2BP2,<br>LOC646600   | C/T        | .018         | .022                | .020                   | .020         | .019             | .021         |       | 0.775-1.801                | .44                           |       | 0.719-1.613                | .72        |       | 0.836-1.492                | .46                    | Follow-up               |
| s4402960               | 3      | 186,994,389                | IGF2BP2                          | T/G        | .291         | .347                | .317                   | .335         | .304             | .341         | 1 276 | 1.126-1.446                | $1.2 \times 10^{-4}$          | 1 073 | 0.951-1.211                | .25        | 1 175 | 1.078-1.281                | 2.4 x 10 <sup>-4</sup> | Combined G              |
| s734312                | 4      | 6,421,426                  | WFS1                             | A/G        | .478         | .506                | .482                   | .485         | .480             | .496         |       | 0.980-1.236                | .11                           |       | 0.899-1.134                | .87        |       | 0.973-1.145                | .19                    | Combined G              |
| s886374                | 4      | 7,856,440                  | SORCS2                           | T/C        | .211         | .270                | .233                   | .221         | .222             | .245         |       | 1.209-1.587                |                               |       | 0.824-1.081                | .40        |       | 1.036-1.253                | .007                   | FUSION G                |
| s13139219              | 4      | 42,294,231                 | ATP8A1                           | C/A        | .779         | .827                | .796                   | .805         | .788             | .816         |       | 1.160-1.561                | -                             |       | 0.911-1.214                | .50        |       | 1.070-1.314                | .0011                  | FUSION G                |
| s6834248               | 4      | 95,447,456                 | LOC644429, PGDS,<br>SMARCAD1     | T/C        | .772         | .786                | .779                   | .765         | .775             | .776         |       | 0.963-1.275                | .15                           |       | 0.800-1.056                | .23        |       | 0.907-1.104                | .99                    | Combined G              |
| 2720460                | 4      | 104,412,290                | BDH2, CENPE,<br>DHRS6, LOC133308 | A/G        | .571         | .607                | .574                   | .579         | .573             | .593         | 1.154 | 1.025-1.299                | .018                          | 1.012 | 0.899-1.140                | .84        | 1.084 | 0.998-1.179                | .057                   | Combined G              |
| \$27779                | 5      | 142,239,267                | ARHGAP26                         | A/C        | .250         | .304                | .259                   | .269         | .255             | .286         | 1.326 | 1.162-1.513                | 2.5 x 10 <sup>-5</sup>        | 1.044 | 0.917-1.190                | .52        | 1.171 | 1.068-1.283                | 7.5 x 10 <sup>-4</sup> | FUSION G                |
| 3733876                | 5      | 176,315,601                | RAP80                            | G/A        | .765         | .805                | .791                   | .798         | .778             | .801         | 1.277 | 1.109-1.471                | 6.6 x 10 <sup>-4</sup>        | 1.051 | 0.909-1.215                | .50        | 1.156 | 1.046-1.278                | .0046                  | FUSION G                |
| \$4712523              | 6      | 20,765,543                 | CDKAL1                           | G/A        | .372         | .407                | .349                   | .366         | .360             | .387         | 1.164 | 1.032-1.312                | .013                          | 1.084 | 0.959-1.224                | .20        |       | 1.032-1.222                | .0073                  | Follow-u                |
| \$10946398             | 6      | 20,769,013                 | CDKAL1                           | C/A        | .368         | .404                | .347                   | .364         | .357             | .384         | 1.163 | 1.029-1.315                | .016                          | 1.081 | 0.956-1.222                | .22        | 1.122 | 1.029-1.223                | .0087                  | Combined Im             |
| s7754840               | 6      | 20,769,229                 | CDKAL1                           | C/G        | .372         | .406                | .350                   | .368         | .360             | .387         | 1.155 | 1.022-1.304                | .021                          |       | 0.959-1.223                | .20        | 1.120 | 1.028-1.220                | .0095                  | Follow-u                |
| s2206734               | 6      | 20,802,863                 | CDKAL1                           | T/C        | .174         | .200                | .168                   | .174         | .171             | .187         |       | 1.016-1.375                | .030                          |       | 0.911-1.234                | .45        |       | 1.003-1.241                | .043                   | Combined G              |
| s4496780               | 6      | 21,187,627                 | CDKAL1                           | G/T        | .104         | .093                | .092                   | .106         | .098             | .100         |       | 0.730-1.086                | .25                           |       | 0.994-1.471                | .057       |       | 0.911-1.200                | .53                    | Follow-u                |
| s9271366               | 6      | 32,694,832                 | HLADQA1,<br>HLADRA, HLADRB1      | A/G        | .858         | .862                | .857                   | .867         | .858             | .864         |       | 0.878-1.241                | .63                           |       | 0.936-1.303                | .24        |       | 0.948-1.202                | .28                    | Combined G              |
| s11751469              | 6      | 33,912,525                 | -                                | C/T        | .563         | .609                | .574                   | .585         | .568             | .597         |       | 1.073-1.362                | .0018                         |       | 0.933-1.182                | .41        |       | 1.032-1.219                | .007                   | Combined G              |
| s7750445               | 6      | 37,872,955                 | ZFAND3                           | G/C        | .136         | .180                | .163                   | .135         | .150             | .157         | 1.407 |                            |                               |       | 0.694-0.956                | .012       | 1.053 |                            | .37                    | FUSION Imp              |
| s9472138               | 6      | 43,919,740                 | -                                | T/C        | .310         | .314                | .305                   | .321         | .308             | .318         |       | 0.911-1.166                | .63                           |       | 0.946-1.212                | .28        |       | 0.963-1.145                | .27                    | New Asso                |
| s7450789               | 6      | 111,923,668                | LOC643749, REV3L,<br>TRAF3IP2    | T/G        | .903         | .919                | .908                   | .912         | .906             | .916         |       | 1.001-1.506                |                               |       | 0.877-1.304                | .51        |       | 0.990-1.314                | .068                   | Combined G              |
| s2021966               | 6      | 132,192,132                | ENPP1                            | A/G        | .576         | .630                | .606                   | .621         | .592             | .626         |       | 1.107-1.403                |                               |       | 0.939-1.190                | .36        |       | 1.056-1.247                | .0012                  | FUSION Imp              |
| \$615545               | 7      | 18,165,111                 | -                                | C/T        | .694         | .751                | .708                   | .733         | .701             | .742         |       | 1.190-1.556                |                               |       | 0.998-1.289                | .053       |       | 1.127-1.355                |                        | FUSION G                |
| \$10281305             | 7      | 54,664,618                 | -                                | G/T        | .735         | .772                | .738                   | .757         | .737             | .765         |       | 1.069-1.401                | .0033                         |       | 0.961-1.261                | .16        |       | 1.048-1.268                | 0.0033                 | Combined G              |
| s17158686              | 7<br>7 | 83,439,407                 | SEMA3A<br>SLC13A1                | T/G<br>A/C | .951<br>.297 | .957<br>.348        | .959<br>.316           | .958<br>.298 | .955<br>.307     | .958<br>.323 |       | 0.874-1.528 1.130-1.448    | .31<br>9.0 x 10 <sup>-5</sup> |       | 0.751-1.351<br>0.822-1.054 | .96        |       | 0.881-1.316<br>0.993-1.181 | .47<br>.073            | Combined G<br>FUSION G  |
| s2470984<br>s10954654  | 7      | 122,368,680<br>138,816,342 | SLCISAI                          | C/T        | .725         | .348                | .735                   | .298         | .730             | .323         |       | 1.150-1.448                | -                             |       | 0.822-1.034                | .26<br>.21 | 1.085 |                            | 1.6 x 10 <sup>-4</sup> | FUSION G                |
| \$557962               | 7      | 140,232,924                | -<br>LOC642421,<br>MRPS33        | T/C        | .047         | .076                | .059                   | .058         | .053             | .067         |       | 1.287-2.115                |                               |       | 0.932-1.243                | .89        |       | 1.075-1.514                | .0052                  | FUSION G                |
| s13266634              | 8      | 118,253,964                | SLC30A8                          | C/T        | .604         | .651                | .614                   | .646         | .609             | .649         | 1.222 | 1.084-1.379                | .001                          | 1.143 | 1.016-1.286                | .026       | 1.184 | 1.089-1.287                | 6.8 x 10 <sup>-5</sup> | FUSION G                |
| s7839244               | 8      | 142,457,437                | GPR20                            | A/G        | .066         | .098                | .082                   | .080         | .074             | .089         |       | 1.248-1.932                |                               |       | 0.784-1.192                | .75        |       | 1.044-1.407                | .012                   | FUSION G                |
| s1063192               | 9      | 21,993,367                 | CDKN2A, CDKN2B                   | A/G        | .556         | .582                | .587                   | .584         | .572             | .583         |       | 0.975-1.228                | .13                           |       | 0.879-1.114                | .85        |       | 0.963-1.134                | .29                    | Follow-u                |
| 564398                 | 9      | 22,019,547                 | CDKN2A, CDKN2B                   | T/C        | .566         | .596                | .596                   | .590         | .582             | .593         |       | 0.994-1.258                | .064                          |       | 0.863-1.091                | .61        | 1.045 |                            | .30                    | Follow-u                |
| s2383208               | 9      | 22,122,076                 | -                                | A/G        | .842         | .862                | .836                   | .864         | .839             | .863         |       | 1.002-1.400                | .047                          |       | 1.057-1.456                | .0082      | 1.219 |                            |                        | Combined G              |
| s10811661              | 9      | 22,124,094                 | -                                | T/C        | .852         | .870                | .848                   | .873         | .850             | .872         |       | 0.980-1.392                | .082                          |       | 1.039-1.441                | .015       |       | 1.069-1.356                | .0022                  | Follow-u                |
| s13297268              | 9      | 91,267,696                 | NFIL3                            | G/A        | .924         | .952                | .945                   | .949         | .935             | .950         | 1.650 | 1.280-2.128                |                               |       | 0.848-1.413                | .49        |       | 1.132-1.618                |                        | FUSION Imp              |
| s2185935               |        | 114,581,796                | -                                | C/T        | .667         | .675                | .661                   | .662         | .664             | .669         |       | 0.904-1.160                |                               |       | 0.895-1.136                | .89        |       | 0.935-1.110                | .68                    | Combined G              |
| s1416904               | 9      | 131,363,871                | KIAA0515, POMT1,<br>UCK1         | T/C        | .931         | .952                | .925                   | .935         | .928             | .943         |       | 1.150-1.902                |                               |       | 0.892-1.397                | .34        |       | 1.074-1.498                | .0049                  | Combined G              |
| s1270874               | 10     | 29,879,870                 | SVIL                             | C/A        | .753         | .799                | .780                   | .777         | .767             | .788         |       | 1.123-1.498                |                               |       | 0.849-1.120                | .72        |       | 1.012-1.234                | .028                   | FUSION Imp              |
| s9422546               | 10     | 43,391,505                 | ZNF239, ZNF485                   | G/T        | .628         | .631                | .640                   | .651         | .634             | .641         |       | 0.894-1.138                |                               |       | 0.945-1.203                | .30        |       | 0.951-1.127                | .42                    | Combined G              |
| s13088                 | 10     | 49,985,899                 | C10orf72                         | G/A        | .369         | .398                | .363                   | .384         | .366             | .391         |       | 1.003-1.277                | .044                          |       | 0.953-1.207                | .24        |       | 1.013-1.198                | .024                   | Combined G              |
| s1359624               | 10     | 91,385,408                 | FLJ37201,<br>MPHOSPH1, PANK1     | C/T        | .247         | .290                | .268                   | .265         | .258             | .277         | 1.222 | 1.072-1.394                | .0027                         | 0.973 | 0.853-1.110                | .68        | 1.108 | 1.010-1.215                | .030                   | FUSION G                |

#### Table S5. FUSION stage 1, stage2, and stage 1 + 2 T2D association results for 80 SNPs (continued)

|            |          |                           |                         |                     | Stag         | ge 1         | Stag         | e 2          | Stage        | 1 + 2        |        |             |                        |       |                         |                        |         |                         |                        |                            |
|------------|----------|---------------------------|-------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|-------------|------------------------|-------|-------------------------|------------------------|---------|-------------------------|------------------------|----------------------------|
|            |          |                           |                         | Risk                | Control      |              | Control      | Case         | Control      | Case         |        |             |                        |       |                         |                        |         |                         |                        |                            |
|            |          |                           |                         | allele/             | risk         | risk         | risk         | risk         | risk         | risk         |        |             |                        |       |                         |                        |         |                         |                        |                            |
|            |          | Position                  |                         | non-risk            | allele       | allele       | allele       | allele       | allele       | allele       |        | Stage 1     |                        |       | Stage 2                 |                        |         | Stage 1 + 2             |                        | Reason for                 |
|            | Chr      | (bp)                      | Genes                   | allele              | freq         | freq         | freq         | freq         | freq         | freq         |        | 95% CI      | p-value                | OR    | 95% CI                  | p-value                | OR      | 95% CI                  | p-value                | follow-up                  |
|            | 10       | 94,452,862                | HHEX                    | C/T                 | .526         | .557         | .519         | .536         | .522         | .546         | 1.128  | 1.006-1.266 | .039                   | 1.058 | 0.943-1.187             | .35                    | 1.097   | 1.012-1.189             | .025                   | New Assoc                  |
| rs7923837  | 10       | 94,471,897                | -                       | G/A                 | .603         | .631         | .591         | .613         | .597         | .622         | 1.122  | 0.997-1.263 | .057                   | 1.090 | 0.970-1.226             | .15                    | 1.107   | 1.019-1.203             | .016                   | Combined GWA/              |
| 450(5(5    | 10       | 114 746 021               | <i>TCT71</i> 2          | <b>T</b> ( <b>1</b> | 214          | 250          | 217          | 240          | 216          | 240          | 1.057  | 1 000 1 450 | 0017                   | 1 107 | 1 0 27 1 2 (0           | 012                    | 1 221   | 1 107 1 246             | 6 4 10-5               | New Assoc                  |
| rs4506565  | 10       | 114,746,031               | TCF7L2                  | T/A                 | .214         | .250         | .217         | .248         | .216         | .249         | 1.257  | 1.089-1.450 | .0017                  | 1.18/ | 1.037-1.360             | .013                   | 1.221   | 1.107-1.346             | 6.4 x 10 <sup>-5</sup> | FUSION Imputed/            |
| rs7903146  | 10       | 114,748,339               | TCF7L2                  | T/C                 | .179         | .229         | .183         | .226         | .181         | .227         | 1 200  | 1.197-1.610 | 1.3 x 10 <sup>-5</sup> | 1 205 | 1.122-1.495             | $2.0 \times 10^{-4}$   | 1 2 4 2 | 1.213-1.488             | $1.4 \times 10^{-8}$   | Prev Assoc<br>FUSION GWA/  |
| 18/903140  | 10       | 114,740,555               | ICF/L2                  | 1/C                 | .1/9         | .229         | .105         | .220         | .101         | .221         | 1.300  | 1.19/-1.010 | 1.5 x 10               | 1.295 | 1.122-1.495             | 3.9 X 10               | 1.545   | 1.213-1.400             | 1.4 X 10               | Prev Assoc                 |
| rs12255372 | 10       | 114,798,892               | TCF7L2                  | T/G                 | .156         | .203         | .165         | .199         | .161         | .201         | 1 400  | 1.201-1.632 | $1.5 \times 10^{-5}$   | 1 244 | 1.070-1.447             | .0044                  | 1 3 1 8 | 1.184-1.467             | $3.6 \times 10^{-7}$   | FUSION GWA/                |
| 1312233372 | 10       | 114,790,092               | 101/12                  | 1/0                 | .150         | .205         | .105         | .177         | .101         | .201         | 1.400  | 1.201-1.052 | 1.5 X 10               | 1.244 | 1.070-1.447             | .0044                  | 1.510   | 1.104-1.407             | 5.0 X 10               | Prev Assoc                 |
| rs5219     | 11       | 17,366,148                | ABCC8, KCNJ11           | T/C                 | .445         | .489         | .482         | .490         | .464         | .489         | 1 204  | 1.069-1.357 | .0022                  | 1 035 | 0.922-1.162             | .56                    | 1.109   | 1.021-1.204             | .014                   | Combined Imputed/          |
| 10021)     | ••       | 17,500,110                | 112000, 1101011         | 1,0                 |              |              |              |              |              |              | 1.201  | 1.009 1.007 |                        | 1.050 | 0.922 11102             | .00                    | 1.102   | 1.021 1.201             | .011                   | Prev Assoc                 |
| rs9300039  | 11       | 41,871,942                | -                       | C/A                 | .890         | .925         | .894         | .924         | .892         | .924         | 1.520  | 1.236-1.869 | 6.0 x 10 <sup>-5</sup> | 1.442 | 1.179-1.764             | 3.2 x 10 <sup>-4</sup> | 1.478   | 1.280-1.705             | 6.8 x 10 <sup>-8</sup> | FUSION GWA                 |
| rs11036627 | 11       | 41,881,290                | -                       | C/A                 | .912         | .946         | .924         | .946         | .918         | .946         | 1.665  | 1.313-2.110 | 1.9 x 10 <sup>-5</sup> | 1.466 | 1.159-1.856             | .0013                  | 1.563   | 1.324-1.846             | 9.2 x 10 <sup>-8</sup> | FUSION Imputed             |
| rs10837766 | 11       | 41,984,377                | -                       | T/C                 | .827         | .869         | .846         | .870         | .836         | .870         | 1.397  | 1.181-1.652 | 8.6 x 10 <sup>-5</sup> | 1.252 | 1.058-1.482             | .0088                  | 1.313   | 1.166-1.477             | 5.8 x 10 <sup>-6</sup> | FUSION Imputed             |
| rs7480010  | 11       | 42,203,294                | LOC387761               | G/A                 | .174         | .174         | .162         | .171         | .168         | .172         | 1.004  | 0.863-1.169 | .96                    | 1.078 | 0.925-1.257             | .333                   | 1.034   | 0.929-1.151             | .54                    | New Assoc                  |
| rs4379834  | 11       | 44,115,014                | ALX4, EXT2, PHACS       | G/A                 | .316         | .316         | .295         | .306         | .305         | .311         | 0.980  | 0.865-1.111 | .76                    |       | 0.936-1.207             | .35                    | 1.027   | 0.940-1.123             | .55                    | New Assoc                  |
|            | 12       | 6,373,003                 | LTBR, SCNN1A            | A/G                 | .426         | .484         | .445         | .455         | .436         | .470         |        | 1.131-1.426 |                        |       | 0.927-1.167             | .50                    | 1.148   |                         | 8.3 x 10 <sup>-4</sup> | FUSION Imputed             |
| rs3751262  | 12       | 12,509,957                | DUSP16,                 | G/A                 | .914         | .932         | .917         | .904         | .916         | .918         | 1.298  | 1.038-1.623 | .022                   | 0.853 | 0.698-1.043             | .12                    | 1.039   | 0.896-1.205             | .61                    | Combined GWA               |
|            |          |                           | LOH12CR1                |                     |              |              |              |              |              |              |        |             |                        |       |                         |                        |         |                         |                        |                            |
|            | 12       | 53,385,263                | -                       | A/T                 | .699         | .721         | .682         | .702         | .690         | .711         |        | 0.966-1.251 | .15                    |       | 0.989-1.266             | .075                   | 1.109   |                         | .022                   | Combined Imputed           |
|            | 12       | 69,697,828                | -                       | T/G                 | .425         | .442         | .426         | .438         | .425         | .440         |        | 0.949-1.205 | .27                    |       | 0.951-1.193             | .27                    | 1.063   |                         | .14                    | Combined Imputed           |
| rs3825253  | 12       | 107,611,747               | CORO1C, DAO,            | A/G                 | .973         | .989         | .987         | .986         | .908         | .988         | 2.575  | 1.604-4.134 | 3.6 x 10 <sup>-5</sup> | 0.991 | 0.602-1.631             | .97                    | 1.678   | 1.204-2.337             | .0019                  | FUSION GWA                 |
| 2200455    | 10       | 100.006.006               | SSH1                    | 0.1                 | 015          | 020          | 0.2.1        | 020          | 010          | 020          | 1.1.00 | 0.999-1.361 | 051                    | 0.007 | 0.057.1.1(1             | 07                     | 1.075   | 0.065 1.107             | 10                     |                            |
|            | 12<br>12 | 108,086,236               | ACACB<br>FLJ20674, WSB2 | G/A<br>T/C          | .815<br>.577 | .839<br>.633 | .821<br>.609 | .820<br>.613 | .818<br>.593 | .829<br>.623 |        | 1.134-1.430 | .051                   |       | 0.857-1.161             | .97<br>.68             | 1.075   | 0.965-1.197 1.045-1.230 | .19<br>.0025           | Combined GWA<br>FUSION GWA |
|            | 12       | 116,982,161<br>36,281,317 | SLC25A21                | C/T                 | .377         | .502         | .609         | .507         | .393         | .505         |        | 0.951-1.202 | 4.1 X 10<br>.26        |       | 0.912-1.151 0.933-1.178 | .08                    | 1.134   |                         | .0023                  | Combined GWA               |
|            | 14       | 38.246.572                | -                       | C/T                 | .540         | .502         | .584         | .595         | .562         | .600         |        | 1.163-1.486 |                        |       | 0.943-1.197             | .42                    |         | 1.084-1.284             | $1.3 \times 10^{-4}$   | FUSION Imputed             |
|            | 14       | 68,492,917                | -<br>ACTN1              | G/A                 | .231         | .242         | .221         | .221         | .226         | .231         |        | 0.920-1.216 | .43                    |       | 0.863-1.136             | .32                    | 1.020   | 0.926-1.124             | .69                    | Combined Imputed           |
|            | 15       | 56,417,311                | -                       | T/G                 | .021         | .045         | .029         | .032         | .025         | .039         |        | 1.541-3.127 |                        |       | 0.800-1.539             | .53                    | 1.559   |                         | 1.8 x 10 <sup>-4</sup> | FUSION Imputed             |
|            | 16       | 13,528,936                |                         | A/G                 | .206         | .256         | .228         | .229         | .217         | .243         |        | 1.174-1.554 |                        |       | 0.882-1.153             | .90                    |         |                         | .0028                  | FUSION GWA                 |
|            | 16       | 52,373,776                | FTO                     | A/C                 | .403         | .415         | .361         | .397         | .381         | .406         |        | 0.920-1.162 | .58                    |       | 1.046-1.329             | .0070                  |         | 1.019-1.203             | .017                   | Combined GWA               |
|            | 16       | 55,573,046                | CETP                    | C/T                 | .667         | .726         | .705         | .699         | .687         | .712         |        | 1.182-1.537 | 7.3 x 10 <sup>-6</sup> |       | 0.851-1.098             | .60                    |         |                         | .005                   | FUSION Imputed             |
|            | 16       | 85,141,275                | FLJ12998, FOXC2,        | T/A                 | .895         | .921         | .915         | .905         | .905         | .913         | 1.382  | 1.124-1.698 | .002                   |       | 0.728-1.092             | .27                    | 1.110   | 0.962-1.281             | .15                    | FUSION Imputed             |
|            |          |                           | MTHFSD                  |                     |              |              |              |              |              |              |        |             |                        |       |                         |                        |         |                         |                        | 1                          |
| rs7222308  | 17       | 25,301,167                | CCDC55, EFCAB5,         | T/C                 | .532         | .553         | .535         | .552         | .533         | .553         | 1.094  | 0.973-1.229 | .13                    | 1.075 | 0.958-1.206             | .22                    | 1.086   | 1.001-1.179             | .047                   | Combined GWA               |
|            |          |                           | FLJ46247, SLC6A4,       |                     |              |              |              |              |              |              |        |             |                        |       |                         |                        |         |                         |                        |                            |
|            |          |                           | SSH2                    |                     |              |              |              |              |              |              |        |             |                        |       |                         |                        |         |                         |                        |                            |
| rs17384005 | 18       | 1,565,020                 | -                       | A/G                 | .842         | .859         | .858         | .859         | .851         | .859         | 1.147  | 0.974-1.351 | .10                    | 1.004 | 0.850-1.186             | .96                    | 1.074   | 0.956-1.206             | .23                    | FUSION Imputed             |
|            | 22       | 18,543,063                | -                       | A/G                 | .490         | .552         | .538         | .553         | .515         | .553         |        | 1.137-1.452 |                        |       | 0.954-1.198             | .25                    | 1.165   |                         | 2.9 x 10 <sup>-4</sup> | FUSION Imputed             |
| rs565979   | 22       | 19,353,500                | DKFZp434N035,           | C/T                 | .679         | .730         | .727         | .709         | .703         | .720         | 1.295  | 1.139-1.472 | 7.0 x 10 <sup>-5</sup> | 0.929 | 0.816-1.056             | .26                    | 1.090   | 0.996-1.193             | .060                   | FUSION GWA                 |
|            |          |                           | LOC150207,              |                     |              |              |              |              |              |              |        |             |                        |       |                         |                        |         |                         |                        |                            |
|            |          |                           | LOC645289,              |                     |              |              |              |              |              |              |        |             |                        |       |                         |                        |         |                         |                        |                            |
| 22(722)    | ~~       | 25 200 745                | PIK4CA, SERPIND1        | 0.00                | (11          |              | (20)         | (10          | (21          |              | 1.045  | 1 100 1 501 | 15 105                 | 0.020 | 0.000 1.000             |                        |         | 1 000 1 010             | 016                    | FUCIONI                    |
| rs2267339  | 22       | 35,290,742                | CACNG2                  | G/T                 | .611         | .674         | .630         | .618         | .621         | .646         | 1.341  | 1.182-1.521 | 4.5 x 10 <sup>-6</sup> | 0.939 | 0.832-1.060             | .31                    | 1.112   | 1.020-1.213             | .016                   | FUSION Imputed             |
|            |          |                           |                         |                     |              |              |              |              |              |              |        |             |                        |       |                         |                        |         |                         |                        |                            |

|            |                | Risk allele frequency<br>in controls |           | FUSION S               |                 | FUSION S<br>Genoty     |      | Imputation<br>measure               | 1 5               | Observed | Maximum r <sup>2</sup><br>with SNPs |  |
|------------|----------------|--------------------------------------|-----------|------------------------|-----------------|------------------------|------|-------------------------------------|-------------------|----------|-------------------------------------|--|
| SNP        | Genes          | Imputed                              | Genotyped | p-value <sup>a</sup>   | OR <sup>a</sup> | p-value                | OR   | Imputation consistency <sup>c</sup> | Estimated $r^2$ d | allelic  | used for<br>imputation              |  |
| rs12910827 |                | .024                                 | .021      | 2.5 x 10 <sup>-6</sup> | 2.57            | 6.3 x 10 <sup>-6</sup> | 2.20 | .977                                | .720              | .994     | .39                                 |  |
| rs1449725  |                | .544                                 | .540      | 5.3 x 10 <sup>-6</sup> | 1.33            | 1.1 x 10 <sup>-5</sup> | 1.31 | .989                                | .977              | .990     | .90                                 |  |
| rs17081352 |                | .909                                 | .905      | 7.3 x 10 <sup>-6</sup> | 1.70            | 5.5 x 10 <sup>-6</sup> | 1.68 | .994                                | .954              | 1.000    | .87                                 |  |
| rs11616188 | SCNN1A/LTBR    | .474                                 | .426      | 1.5 x 10 <sup>-5</sup> | 1.40            | 4.8 x 10 <sup>-5</sup> | 1.27 | .760                                | .585              | .919     | .27                                 |  |
| rs10837766 |                | .840                                 | .827      | 1.5 x 10 <sup>-5</sup> | 1.49            | 8.6 x 10 <sup>-5</sup> | 1.40 | .975                                | .930              | .975     | .46                                 |  |
| rs11036627 |                | .903                                 | .912      | 1.7 x 10 <sup>-5</sup> | 1.67            | 1.9 x 10 <sup>-5</sup> | 1.66 | .976                                | .901              | .987     | .75                                 |  |
| rs17384005 |                | .811                                 | .842      | 1.9 x 10 <sup>-5</sup> | 1.84            | .10                    | 1.15 | .743                                | .309              | .874     | .11                                 |  |
| rs7750445  |                | .116                                 | .136      | 2.0 x 10 <sup>-5</sup> | 1.47            | 4.1 x 10 <sup>-5</sup> | 1.41 | .986                                | .965              | .977     | .50                                 |  |
| rs2267339  | CACNG2         | .613                                 | .611      | 2.8 x 10 <sup>-5</sup> | 1.33            | 4.5 x 10 <sup>-6</sup> | 1.34 | .939                                | .873              | .990     | .72                                 |  |
| rs17356414 |                | .551                                 | .694      | 3.0 x 10 <sup>-5</sup> | 1.30            | 8.0 x 10 <sup>-4</sup> | 1.25 | .944                                | .920              | .878     | .34                                 |  |
| rs1800774  | CETP           | .642                                 | .667      | 3.9 x 10 <sup>-5</sup> | 1.39            | 7.3 x 10 <sup>-6</sup> | 1.35 | .810                                | .617              | .972     | .29                                 |  |
| rs175200   |                | .493                                 | .490      | 6.6 x 10 <sup>-5</sup> | 1.28            | 5.5 x 10 <sup>-5</sup> | 1.28 | .993                                | .976              | .997     | .85                                 |  |
| rs6103716  |                | .342                                 | .342      | 7.3 x 10 <sup>-5</sup> | 1.28            | 4.8 x 10 <sup>-5</sup> | 1.29 | .993                                | .978              | .999     | .33                                 |  |
| rs13297268 | NFIL3          | .928                                 | .924      | 7.5 x 10 <sup>-5</sup> | 1.72            | 9.0 x 10 <sup>-5</sup> | 1.65 | .988                                | .916              | .998     | .28                                 |  |
| rs11646114 | FOXC2/FLJ12998 | .868                                 | .895      | 9.1 x 10 <sup>-5</sup> | 1.66            | .0020                  | 1.38 | .860                                | .512              | .956     | .13                                 |  |
| rs2021966  | ENPP1          | .584                                 | .576      | 9.1 x 10 <sup>-5</sup> | 1.32            | 2.6 x 10 <sup>-4</sup> | 1.25 | .846                                | .769              | .937     | .46                                 |  |
| rs1270874  | SVIL           | .745                                 | .753      | 1.4 x 10 <sup>-4</sup> | 1.33            | 3.9 x 10 <sup>-4</sup> | 1.30 | .983                                | .954              | .988     | .24                                 |  |
| rs4812831  |                | .150                                 | .116      | 1.6 x 10 <sup>-4</sup> | 1.53            | .0055                  | 1.28 | .831                                | .516              | .944     | .45                                 |  |
| rs4402960  | IGF2BP2        | .290                                 | .291      | 1.7 x 10 <sup>-4</sup> | 1.27            | 1.2 x 10 <sup>-4</sup> | 1.28 | .997                                | 1.026             | .998     | 1.00                                |  |
| rs2466291  | SLC30A8        | .399                                 | .361      | 6.3 x 10 <sup>-4</sup> | 1.26            | .0016                  | 1.22 | .874                                | .830              | .935     | .47                                 |  |
| rs1801282  | PPARG          | .816                                 | .816      | 9.5 x 10 <sup>-4</sup> | 1.31            | .0011                  | 1.30 | .999                                | 1.002             | 1.000    | 1.00                                |  |
| rs3802177  | SLC30A8        | .604                                 | .605      | 9.9 x 10 <sup>-4</sup> | 1.23            | .0012                  | 1.22 | .999                                | 1.015             | .999     | 1.00                                |  |
| rs4506565  | TCF7L2         | .213                                 | .214      | .0015 <sup>b</sup>     | 1.26            | .0017                  | 1.26 | .999                                | .965              | 1.000    | .92                                 |  |

Table S6: Comparison of T2D association results for SNPs that were imputed with a p-value < .001 and then genotyped in the FUSION stage 1 sample

 $\frac{\text{rs4506565}}{\text{almputation-based analysis restricted to individuals with successful genotypes for the same SNP; these results may differ from the imputed results in$ Table S2 which are based on all stage 1 individuals <sup>b</sup>Imputed p-value =  $7.0 \times 10^{-4}$  in stage 1 sample

<sup>c</sup>Imputation consistency is the proportion of imputation iterations that agreed with the most likely genotype <sup>d</sup>The estimated r<sup>2</sup> is the ratio of observed variance of dosage scores across samples to the expected variance given the imputed SNP allele frequency

| Annotation                                            | Weight                |
|-------------------------------------------------------|-----------------------|
| Maximum of:                                           |                       |
| Frameshift                                            | 50                    |
| Stop codon                                            | 50                    |
| Critical splice site                                  | 50                    |
| Poly A signal                                         | 30                    |
| Any change to initial ATG signal                      | 30                    |
| Non-synonymous coding:                                |                       |
| Identical amino acid seen in more than 75% of mammals | 20                    |
| Similar amino acid seen in more than 75% of mammals   | 20                    |
| Non-conservative amino acid change                    | $6 \text{ to } 9^{a}$ |
| Other non-synonymous                                  | 5                     |
| SNP in exon, includes 5' and 3' UTRs                  | 2                     |
| Bonus:                                                |                       |
| FUSION linkage LOD>1                                  | 1 to 3 <sup>b</sup>   |
| SNP near candidate gene                               | 1.5                   |
| SNP near gene over-expressed in tissue of interest    | 1.5                   |
| Conserved                                             | 1.2                   |
| Near any gene                                         | 1.2                   |

Table S7. SNP annotation weights used in SNP picking for stage 2 genotyping

<sup>a</sup> For non-conservative amino acid changes, the weight is 5 - x, where -4 < x < -1 is the BLOSUM62 score for the amino acid substitution (23)</li>
<sup>b</sup> For linkage, the weight is the T2D LOD score in the FUSION 1+2 families (2) if that LOD

score is >1

### **Supplemental Online Material References**

- 1. T. Valle *et al.*, *Diabetes Care* **21**, 949 (1998).
- 2. K. Silander *et al.*, *Diabetes* **53**, 821 (2004).
- 3. T. Saaristo et al., Diab Vasc Dis Res 2, 67 (2005).
- 4. Geneva, World Health Organization (1999).
- 5. M. Peltonen et al., Suomen Lääkäril (Finnish Med J) 61, 163 (2005).
- 6. A. Aromaa, S. Koskinen, *Publications of the National Public Health Institute, Helsinki, Finland* (2004).
- 7. J. Tuomilehto *et al.*, *Int J Epidemiol* **20**, 1010 (1991).
- 8. J. Saramies, Acta Univ. Oul., D 812 (2004).
- 9. M. I. Hawa, T. O. Ola, A. Gigante, J. Teng, R. D. G. Leslie, *Diabetologia* 49, 182 (2006).
- 10. K. L. Gunderson et al., Methods Enzymol 410, 359 (2006).
- 11. M. Barnhart et al., American Society of Human Genetics A242 (2006).
- 12. M. P. Epstein, W. L. Duren, M. Boehnke, Am J Hum Genet 67, 1219 (2000).
- 13. J. E. Wigginton, G. R. Abecasis, *Bioinformatics* **21**, 3445 (2005).
- 14. A. Agresti, Categorical Data Analysis (John Wiley & Sons, ed. 2nd, 2002), pp. 710.
- 15. International HapMap Consortium, Nature 437, 1299 (2005).
- 16. S. Purcell, S. S. Cherny, P. C. Sham, *Bioinformatics* **19**, 149 (2003).
- 17. N. Li, M. Stephens, *Genetics* **165**, 2213 (2003).
- 18. Y. Li, P. Scheet, J. Ding, G. R. Abecasis, (Submitted for publication; manuscript available from GRA).
- 19. C. J. Willer et al., Genet Epidemiol 30, 180 (2006).
- 20. L. V. Hedges, *Psychol Bull* **92**, 490 (1982).
- 21. K. Roeder, S. A. Bacanu, L. Wasserman, B. Devlin, Am J Hum Genet 78, 243 (2006).
- 22. Arch Intern Med 161, 397 (2001).
- 23. S. Henikoff, J. G. Henikoff, Proc Natl Acad Sci U S A 89, 10915 (1992).