Supporting Information Pierce et al. 10.1073/pnas.1115888108

SI Materials and Methods

Method for Quantification of Xylulose in Plasma. Sample preparation. Plasma was deproteinized by mixing 300 μL of plasma with 1,000 μL of ice-cold acetone (HPLC grade; Burdick & Jackson), vortexing for 20 s, and incubating on ice for 20 min. After centrifugation at 14,000 $\times g$ for 20 min at 4 °C, the supernatant was removed, lyophilized, and reconstituted in 100 μL 99.9%/0.1% water/formic acid. After centrifugation at $14,000 \times g$ for 10 min, 10 μL of the resulting supernatant was mixed with 90 μL of acetonitrile (HPLC grade; Burdick & Jackson).

Liquid chromatography-mass spectrometry. Hydrophilic interaction liquid chromatography (HILIC) mass spectrometry (MS) was performed using an Agilent 1100 HPLC system coupled to a dual pressure linear ion trap (LTQ-Velos) mass spectrometer (Agilent). Five microliters of sample were injected into a 100-μL loop and flushed onto a commercial 2.0-mm \times 10.0-cm column packed with 5 μm Amide 80 stationary phase (Tosoh Biosciences) at a constant flow-rate of 200 μL/min. Solvents A and B consisted of 100% water and 100% acetonitrile, respectively. Xylulose was eluted using a 10-min analysis time in which the solvent composition remained constant (5% A) for 1 min, ramped to 20% A over 4 min, held constant for 0.5 min (20% A), and reequilibrated at initial conditions from 5.5 to 10 min (5% A).

Atmospheric-pressure chemical ionization (APCI) was performed using the commercial ion max source from ThermoFisher operating in negative ion mode. Source parameters were as follows: (i) current set to 10 μ A, (ii) vaporizer temperature of 475 °C, and (iii) sheath and auxiliary gas flow-rate set to 30 and 10 arbitrary units, respectively. Chloroform was infused at 5 μL/min postcolumn and promoted negative ionization of xylulose via chlorine adduction, significantly increasing sensitivity. For detection by mass spectrometry, a selected ion monitoring scan was centered on the nominal mass of chlorine adducted xylulose with a total scan range of 10 m/z (185 $m/z \pm 5 m/z$). Xcalibur version 2.1.0.1139 was used for peak detection and integration.

Absolute abundance determination. Method of standard addition was used to quantitatively measure xylulose in plasma. L-Xylulose (95% purity; Sigma Aldrich) was added to control plasma, before sample cleanup, to obtain absolute amounts of 3,120, 1,040, 346, 115, and 38 pmoles on the column. A calibration curve was generated by plotting integrated peak areas as a function of pmoles on the column in logarithmic form and used to determine the absolute amounts of xylulose in the unknown samples. It is important to note that in the control and heterozygous samples, xylulose was either not detected or was at an amount well below the lowest concentration standard.

Fig. S1. Quantification of xylulose in blood plasma. Total ion chromatograms are shown for the analysis of the xylulose calibration standard and 13 subjects. The peak at ∼5.2 min corresponds to chlorine adducted xylulose [M+Cl]−. The identity of this peak was validated by mass and retention time comparisons with a commercial standard. The high degree of similarity between the experimental and theoretical isotope distribution further validates the identification (Inset). Chromatograms are normalized to the highest intensity peak (sample 81.II-2). All samples with high levels of xylulose (S/n \geq 60) are from individuals diagnosed with pentosuria and deficient in DCXR protein. In most samples from control individuals or DCXR mutation carriers, detection of xylulose at an acceptable noise level (S/n > 3) was not observed (samples 80.III-3, 41.III-1, 83.III-1, Control 2, Control 3). DCXR genotype is indicated below the sample number.

SVN&S SVN

Fig. S2. Calibration curve for xylulose concentration in plasma. A logarithmic plot of integrated peak areas versus amounts of xylulose added to control plasma is shown. This calibration plot was used to calculate the absolute abundance of xylulose in samples from individuals of various DCXR genotypes. A high degree of linearity was observed across two orders of magnitude. The limit-of-detection was defined as the concentration determined from the x-intercept of the given equation (1.7 \times 10⁻⁵ mg/dL).

*Extrapolated from the calibration curve. ND, none detected.

Table S2. Test of Hardy-Weinberg Equilibrium of DCXR mutations

 Δ

 \overline{A}

Table S3. European origins of families with DCXR mutations, as reported to Margaret Lasker (by the pentosuria families) or to the authors (by the controls)

European regions of origin reported by our participants may only partially reflect the origins of DCXR alleles for several reasons: not all lineages of a family harbor a DCXR mutation, family information may be incomplete, or the origin of the mutation may precede the family's residence in the area.

PNAS PNAS

Subject	DCXR genotype	start (hq19)	end ($hq19$)	Length (bp)	Start SNP	End SNP
	DCXR locus	79,993,758	79,995,573	1,815		
Control 101	Wild-type	79,993,212	80,505,809	512,597	rs4969481	rs4614761
Control 102	Wild-type	79,614,154	80,509,676	895,522	rs9905639	rs10852797
Control 103	Wild-type	79,993,212	80,505,809	512,597	rs4969481	rs4614761
Control 104	Wild-type	79,954,544	80,020,812	66.268	rs8074498	rs11542332
Control 105	Wild-type	79,993,212	80,421,870	428,658	rs4969481	rs4789693
Control 106	Wild-type	79,869,593	80,509,676	640,083	rs115208976	rs10852797
Control 107	Wild-type	79,923,718	80,008,392	84,674	rs4239275	rs9916764
Control 108	Wild-type	79,993,212	80,505,809	512,597	rs4969481	rs4614761
Control 109	Wild-type	79,923,718	80,008,392	84.674	rs4239275	rs9916764
Control 110	Wild-type	79,974,731	80,037,191	62,460	rs13087	rs4075080
Control 111	Wild-type	79,959,659	80,008,392	48,733	rs9912335	rs9916764
45.II-2	79,994,115 del C	78,368,051	81,006,629	2,638,578	rs8359	rs7406119
$89.11 - 1$	79,994,115 del C	79,574,124	80,796,236	1,222,112	rs11652797	rs4986113
94.II-3	79,994,115 del C	79,059,230	80,439,733	1,380,503	rs8080815	rs9909476
$81.1 - 2$	79,995,506 G $> A$	77,232,086	81,006,629	3,774,543	rs7223911	rs7406119

Table S4. Homozygous regions on chr 17q25.3 for pentosuric subjects and Ashkenazi Jewish controls

Table S5. DCXR primers

Forward primer (5' to 3')	Reverse primer (5' to 3')
ggacaaggctgtcaagatcc	atcgtggccagagcttca
gagtcgcgcacagaggta	gggaaaggtgggcaaagg
agcccctccctgaggttc	ctggtaactgccccctgata
agctggggcactcacagtag	tctctgaccagggtctgtcc
ctacccagggcacacacag	ccagcttgggttcctcttc
gggcagcagaatcaggttta	cttcctctatgcccctgacc

PNAS PNAS