Supporting Information

Weatherall et al. 10.1073/pnas.1110724108

SI Experimental Procedures

Electrophysiology. Expressed SK currents recorded in the excised outside-out patch configurations were evoked in symmetrical high (~160 mM) K⁺ conditions, using an internal solution that contained 1 μ M free Ca²⁺. Due to low expression rates, whole-cell recordings were made of rSK1* channel subunits expressed in tsA201 cells. Pipettes were fabricated from KG-33 glass (Friedrich & Dimmock) and filled with an internal solution of composition: KAsp (97 mM) and KCl (20 mM) or KCl (117 mM), Hepes (10 mM), EGTA (10 mM), Na₂ATP (1.5 mM), CaCl₂ (9.65 mM; calculated free $[Ca^{2+}]_i$, 1 µM), and MgCl₂ (2.34 mM; calculated free $[Mg^{2+}]_i$, 1 mM), pH 7.4, with ~40 mM KOH. Cells were bathed in a control external solution that consisted of KAsp (97 mM) and KCl (20 mM) or KCl (127 mM), Hepes (10 mM), EGTA (10 mM), $CaCl_2$ (6.19 mM; calculated free $[Ca^{2+}]_i$, 60 nM), and $MgCl_2$ (1.44 mM; calculated free $[Mg^{2+}]_i$, 1 mM), pH 7.4, with ~40 mM KOH. For concentration response curves, solutions were rapidly exchanged using an RSC200 rapid switcher (Biologic). Expressed SK currents were evoked by a 1-s voltage ramp from -100 to +100 mV.

For concentration-inhibition relationships, data points representing current block were fit with a variable slope Hill equation in the form

$$I/I_{\text{cont}} = A_{\min} + \left(\frac{A_{\max} - A_{\min}}{1 + 10^{(\log IC_{50} - X) \times n_{h}}}\right),$$
 [S1]

where I_{cont} is the amplitude of current at -60 mV in the absence of drug, I is the amplitude of current observed at a given concentration of blocker [(X), expressed in logarithmic units], A_{\min} is I_{\min}/I_{cont} , A_{\max} is I_{\max}/I_{cont} , IC₅₀ is the concentration of blocker

1. Lamy C, et al. (2010) Allosteric block of $K_{\rm Ca}2$ channels by apamin. J Biol Chem 285: 27067–27077.

that blocks 50% of the sensitive current, and $n_{\rm h}$ is the Hill coefficient.

Where data were best fitted by the sum of two Hill equations, the equation

$$I/I_{\text{cont}} = A_{\min} + \left(\frac{A_{\text{frac}} - A_{\min}}{1 + 10^{(\text{Log IC}_{50,a} - X) \times n_{\text{h,a}}}}\right) \\ + \left(\frac{A_{\max} - A_{\text{frac}}}{1 + 10^{(\text{Log IC}_{50,b} - X) \times n_{\text{h,b}}}}\right)$$
[S2]

was used, where A_{frac} is the amplitude of the current at the maximum of the high-sensitivity component $(I_{\text{frac}})/I_{\text{cont}}$, $\text{IC}_{50,a}$ is the IC₅₀ of the high-sensitivity component, $n_{\text{h,a}}$ is the Hill coefficient of the high-sensitivity component, IC_{50,b} is the IC₅₀ of the low-sensitivity component, and $n_{\text{h,b}}$ is the Hill coefficient of the low-sensitivity component.

Radioligand Binding. Membranes were prepared for binding experiments as described previously (1). Saturation binding of ¹²⁵I-apamin (Perkin-Elmer Life Sciences) was carried out as described previously (1). Data were fit with a Hill equation of the form

Bound/Total bound =
$$\frac{[\text{apamin}]^{n_{h}}}{([\text{apamin}] + K_{D})^{n_{h}}}$$
 [S3]

with $K_{\rm D}$ being the dissociation constant of the peptide and $n_{\rm h}$ the Hill coefficient. For all experiments, a 1/Y (where Y = bound/ total bound) weighting procedure was used, which gave more weight to the smaller values of radioactivity (i.e., those that are close to the $K_{\rm D}$).