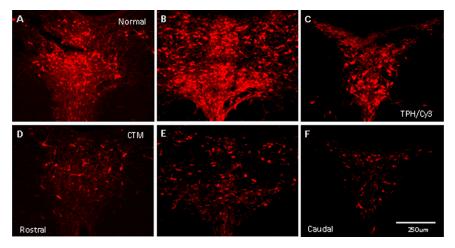
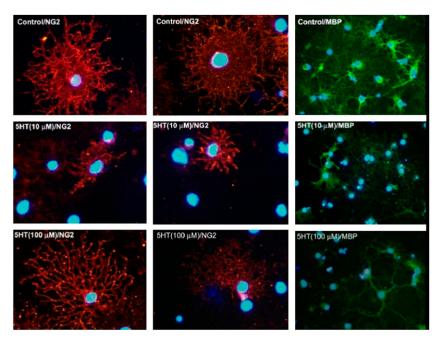

Supporting Information

Simpson et al. 10.1073/pnas.1109353108


DNAS Nd


Fig. S1. Persistent effects of perinatal citalopram (CTM) exposure on response to novelty and social preference. Data represent the mean \pm SEM of 6–12 subjects per group for juvenile [postnatal days 30–40 (P30–P40)] and adult (P60+) response to a novel conspecific rat vs. a novel object (*A*) and response to a novel scent vs. a familiar scent (*B* and *C*). ANOVA revealed significant effects of neonatal drug exposure (*A*, *B*, and *C*) and scent familiarity (*B* and *C*). ^a*P* < 0.05 vs. saline-exposed rats; ^b*P* < 0.05 vs. familiar scent.

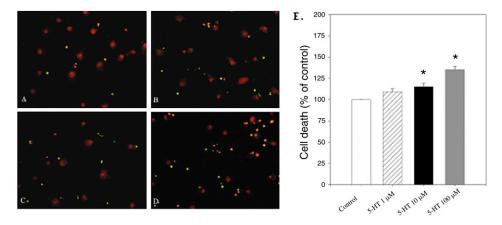

Fig. S2. Representative dopamine β -hydroxylase (DBH) immunoreactive (-ir) fiber density in the male rat primary somatosensory cortex after CTM (P8–P21) exposure and then assessed at adult. Note the rather similar DBH-ir fiber labeling density between saline (SAL) and CTM-exposed tissues. A1 and B1 are from layers 1 and 2/3; A2 and B2 are from layer 4 (middle layer); and A3 and B3 are from layer 5/6. (Scale bar: 50 µm.) The semiquantitative data (C1, C2, and C3; n = 4 from each group) revealed an almost identical DBH fiber density between saline and CTM-exposed animals.

Fig. S3. Representative photomicrographs through the dorsal raphe nucleus show the rostral to caudal distribution of Cy3-labeled, tryptophan hydroxylase (TPH)ir cells in untreated (A–C) and CTM-treated (20 mg/kg; P8–P21) (D–F) male rats. Note that in the drug-treated subject, TPH expression was reduced along the entire extent of the dorsal raphe nucleus neuraxis. However, this decrement was particularly evident within midline subregions. (Scale bar: 250 μ m.)

Fig. S4. Representative examples of morphological changes in oligodendrocyte (OL) cell cultures treated with different concentrations of serotonin (5-HT). Note the disruption (shortening, thickening, puncta, and polarization) of OL processes after treatment with 10 μ M (*Middle*) and 100 μ M (*Bottom*) 5-HT vs. controls (*Top*). NG2 (red; a marker for OL progenitor cells), MBP (green; a marker for mature OLs), and DAPI (blue; a marker for nuclei).

Fig. S5. Treatment with 5-HT induces cell death in cultures of immature OLs. Immature OLs were treated with various concentrations of 5-HT [normal/control (*A*), 1 μ M (*B*), 10 μ M (*C*), and 100 μ M (*D*)] and then processed for TUNEL staining. (*E*) The relative proportion of cell death was semiquantitatively calculated from a baseline measure (100%), according to the number of OLs that expressed positive TUNEL staining [TUNEL+/propidium iodide+ (total)]. TUNEL-labeled profiles (green) and nuclei (propidium iodide counterstaining; red) were recorded, and averages were obtained over six randomly selected fields (100×). Data were derived from three independent experiments. **P* > 0.05 vs. control.

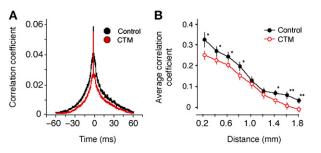


Fig. S6. Cortical desynchronization in rats (P22–P27) after 2 wk of 10 mg/kg CTM exposure. (A) Mean normalized cross-correlation functions and SEM for primary auditory cortex neurons in controls (black) and CTM-exposed (red) rats separated by 1 mm or less. (B) Average correlation coefficient and SEM (*Materials and Methods*) as a function of distance for neuron pairs in controls (black) vs. CTM-exposed (red) rats.