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1. SI Data. 1.1. General practice (GP) consultation data. The United
Kingdom (UK) Health Protection Agency (HPA) routinely uti-
lizes GP consultation data for influenza-like illness (ILI) from
two national GP surveillance networks. The Royal College of
General Practitioners (RCGP) Weekly Returns Service is a sent-
inal GP network covering a weekly population of approximately
900,000 (1). The HPA/QSurveillance national surveillance system
covers a weekly UK population of approximately 23 million. ILI
data from both of these datasets are stratified by age and Stra-
tegic Health Authority (SHA). During the pandemic (April 2009
—February 2010), the HPA used daily ILI reports that were rou-
tinely collected from the HPA/QSurveillance system to help in the
public health reponse to the pandemic (2). GP consultation data
were available from information provided for HPA surveillance
during the pandemic.

1.2. Virological positivity. Both the RCGP and the HPA Regional
Microbiology Network (RMN) (3) provide ongoing sentinel pri-
mary care surveillance with virological monitoring. Both net-
works cover populations of about 400,000 in England
(RMN) and in England and Wales (RCGP) (4). This monitor-
ing involves the taking of respiratory swabs from a subset of
patients consulting GPs. A PCR assay is then employed to test
the swabs for influenza strains as well as other respiratory virus
infections. A more complete account of the virological monitor-
ing undertaken by these two surveillance schemes can be found
in ref. 5, but together they provide data on the positivity (the
proportion of samples testing PCR positive) for a particular
virus together with the epidemiological information attached
to each sample. During the pandemic the schemes provided
an estimate of virological positivity for influenza A/H1N1pdm
in patients presenting ILI at GP consultations. Swab samples
were included in the data only if the time between symptom
onset and testing was 5 d or less, to avoid any adverse impact
of test sensitivity.

1.3. Virologically confirmed cases. Management strategies over the
initial stages of the pandemic were primarily concerned with the
containment of the spread of the epidemic, prior to moving into a
treatment phase. The initial containment phase was a period of
enhanced surveillance during which contacts of known infected
individuals were traced and laboratory confirmations of the infec-
tion were obtained wherever possible. This work resulted in the
generation of the FF100 and the FluZone databases (5, 6). Rou-
tine laboratory confirmations were discontinued on June 25, but
we use here the data only up to June 19 to allow for the gradual
cessation in the collection of this type of data.

1.4. Serological studies.The HPA runs an annual collection of ser-
um samples for the purpose of carrying out cross-sectional anti-
body prevalence studies (7). Collected sera are residual samples
from those submitted to microbiological laboratories for anti-
body testing or diagnostic screening. During the 2009 pandemic
these were supplemented by further samples from biochemistry
laboratories. Testing of samples collected in 2008 provided an
age-specific estimate of baseline prevalence of antibodies to
the A/H1N1pdm virus, giving an indication of the level of pre-
existing immunity in the population. Among this baseline sam-
ple, a haemagglutin-inhibiting antibody titer of 32 is sufficient to
indicate protection against A/H1N1pdm influenza in approxi-
mately 50% of individuals (8–10), although protection is often

present in individuals with titer values ≥8. Despite this uncer-
tainty in the level of protection, assays ≥32 are assumed to be
protective against A/H1N1pdm, though this may well be an un-
derestimate of the preexisting immunity. During the A/
H1N1pdm epidemic, further samples were submitted monthly
to the HPA and tested similarly. These data have been pub-
lished elsewhere (11). A geometric-mean titer value of ≥32 is
assumed to arise as a result of recent infection, so that indivi-
duals with this titer value can be assumed to either belong to the
group “protected” at baseline or to have been recently infected.
A 2-wk delay between infection and seroconversion is assumed,
so each individual sample is assumed to be representative of the
level of infection among the population 14 d prior to the sam-
pling date.

1.5. Further information. 1.5.1. National Pandemic Flu Service (NPFS).
On July 23, the NPFS phone and Internet service was launched.
This system was designed to relieve the pressure put upon the
general practice network by allowing an online assessment of the
suitability of patients for an antiviral prescription. If approved,
patients were given a unique code that they could use to collect
antivirals drugs.

1.5.2 Flusurvey. This was a web-based resource (12) for regis-
tered users to report, on a weekly basis, their experience of
ILI over the course of the preceding week. The participants
report any symptoms experienced and, if applicable, their subse-
quent health-care-seeking behavior. Participants register on an
entirely voluntary basis.

In addition to the data described in the preceding subsections,
information on population sizes by age group were taken from
the 2008 midyear population estimates made by the Office of
National Statistics (13).

2. SI Materials and Methods. 2.1. Model details. 2.1.1. The transmission
model. The spread of the disease among the population is mod-
eled using an SEIR transmission model, comprising states S
(individuals susceptible to infection), E (individuals with latent
infection), I (infectious individuals), and R (individuals no long-
er at risk of acquiring or transmitting infection). The E and I
compartments are further subdivided into two substates E1,
E2 and I1, I2, respectively), leading to waiting times in the E
and I states, which are distributed according to gamma distri-
butions.

The transmission model (as can be seen in Fig. 2 of the main
article) is governed by a time- and age-varying force of infection,
λðt;aÞ, and transition rate parameters σ and γ. These transition
rates are related to the mean latent period, dL, and the mean in-
fectious period, dI , by

σ ¼ 2∕dL; γ ¼ 2∕dI:

The model dynamics arise as a discretization of a system of
differential equations. Assuming δt small relative to the expected
waiting times, σ−1, γ−1 the difference equations corresponding to
the nth time step are
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Sðtn;aÞ ¼ Sðtn−1;aÞð1 − pλðtn−1;aÞÞ
E1ðtn;aÞ ¼ E1ðtn−1;aÞð1 − σδtÞ þ Sðtn−1;aÞpλðtn−1;aÞ
E2ðtn;aÞ ¼ E2ðtn−1;aÞð1 − σδtÞ þ E1ðtn−1;aÞσδt
I1ðtn;aÞ ¼ I1ðtn−1;aÞð1 − γδtÞ þ E2ðtn−1;aÞσδt
I2ðtn;aÞ ¼ I2ðtn−1;aÞð1 − γδtÞ þ I1ðtn−1;aÞγδt
Rðtn;aÞ ¼ Rðtn−1;aÞ þ I2ðtn−1;aÞγδt;

[S1]

where tn ¼ nδt and pλðtn;aÞ is the proportion of susceptibles in-
fected in the interval ½tn−1;tnÞ. pλðtn;aÞ is closely linked to the force
of infection and is dependent on two key quantities, the basic re-
production number of the virus, R0, and a time-dependent mixing
matrix MðtÞ, giving the relative rates of contact between indivi-
duals in different population strata, which in this case are defined
by the age groupings (seven groups: <1, 1–4, 5–14, 15–24, 25–44,
45–64, 65þ). We relate these quantities through the Reed–Frost
formulation for the infection hazard (14), so that

pλðtn;aÞ ¼
�
1 −

Y7
b¼1

�
ð1 − pβðtnÞa;bR0γ∕2ÞI1ðtn;bÞþI2ðtn;bÞ

��
δt

≈ λðtn;aÞδt: [S2]

The time-dependent matrix

pβðtÞ ¼ fpβðtÞa;bg ¼ MðtÞ∕R�
0 [S3]

is a scaled version of the mixing matrix, with R�
0 being the domi-

nant eigenvalue of the scaled next generation matrix M�, whose
(a;b)th element is given by M�

a;b ¼ Mð0Þa;bNa, where Na is the
population size within age group a.

If t0 is selected to be sufficiently close to the emergence of the
epidemic within the study population, then we can use as an in-
itial condition that the occupancies of disease states E1, E2, I1,
and I2 are growing exponentially with rate ψ r . This leads to
the time-zero solution:

I1ð0;aÞ ¼ Itota

�
1þ ϵγδt

αþ γδt

�
−1

I2ð0;aÞ ¼ ðItota − I1ð0;aÞÞ

E2ð0;aÞ ¼ I1ð0;aÞ
αþ γδt
σδt

E1ð0;aÞ ¼ E2ð0;aÞ
αþ σδt
σδt

;

where α ¼ expðψ rδtÞ − 1 and Itot is the vector of the initial num-
ber of infectious individuals in each age group. Prior to the onset
of the influenza epidemic, there is some preexisting immunity
within each population. If we denote the proportion of the
population within age group a who have a prior immunity to
A/H1N1pdm by 1 − πa, then we set Rð0;aÞ ¼ ð1 − πaÞNa,
and Sð0;aÞ ¼ Na − E1ð0;1Þ − E2ð0;aÞ − I1ð0;aÞ − I2ð0;aÞ.

In a development of earlier work (15), the value of the repro-
duction number during the initial exponential growth period has
been found to be given by the relation (16)

Rinit
0 ¼ ψ rdI

ðψ rdL
2

þ 1Þ2
1 − 1

ðψ r dI2 þ1Þ2
: [S4]

Rather than attempting to estimate the initial infectious popu-
lation size in each of the age groups, we can instead observe that if
we define a quantity β to be the average daily rate of secondary
infections per primary infection, then the average initial infection
hazard is given by λ0 ¼ β∑aI

tot
a . Similarly, we can relate β to the

reproduction number at time 0 through Rinit
0 ¼ β∑aNadI . Equat-

ing these expressions for β gives

Iþ ¼ ∑
a

Itota ¼
dIλ0∑

a

Na

Rinit
0

: [S5]

The individual Itota are then determined by multiplying this sum
by the eigenvector corresponding to the dominant eigenvalue of
the matrix Mð0Þ, scaled so that the vector components sum to 1.
If this eigenvector is χM ,

Itota ¼ IþχMa : [S6]

2.1.2. Disease severity and disease reporting. The disease and re-
porting models (see Fig. 2 of the main article) take as input the
modeled time series of the number of new infections by age. From
the block of Eq. S1, this can be seen to be

Δinfecðtn;aÞ ¼ Sðtn−1;aÞpλðtn−1;aÞ: [S7]

A significant proportion of these new infections does not mani-
fest in the form of febrile symptoms. As a result infections go un-
detected and will not appear in surveillance data. If θ represents
the proportion of infections with associated symptoms, the num-
ber of incident symptomatic cases at time t within age group a is
given by

Δðtn;aÞ ¼ θΔinfecðtn;aÞ:

This quantity we refer to here onward as the incident number
of cases.

It is assumed that each case will be reported as present in one
of the datasets with some probability, independently of whether
or not they contribute to any of the other datasets. If we focus on
the GP consultations, we define a time- and age-varying propen-
sity to consult as a result of symptoms to be pGPðt;aÞ. Given this,
we then need to consider the delay between the time of infection
and the time of reporting. Such delay is made up of three com-
ponents: the incubation period, i.e., the time from infection to
symptoms; the waiting time from symptom onset to the health-
care event; and the time taken from the event to its appearance
in data, i.e., the reporting delay.

If we consider each of the intermediate steps, we have that the
expected number of reported events at time t in age group a can
be expressed as

μtna ¼ ∑
n

k¼0

f ðμincubation ;σ2incubationÞðk;aÞ∑
n−k

l¼0

f ðμevent ;σ2eventÞðl;aÞpeventðtn−k−l;aÞ

× ∑
n−k−l

m¼0

f ðμreport ;σ2reportÞðm;aÞΔðtn−k−l−m;aÞ; [S8]

where the f ðμ·;σ2· Þðt;aÞ give the probability that a gamma random
variable indexed by mean μ· and variance σ2· lies in the interval
ðt;tþ 1Þδt. Convolution over three indices is computationally
very expensive and it greatly diminishes our power to run a model
such as this in real-time. Here we approximate the compounded
waiting time (the sum of the incubation time, time to event, and
reporting times) by a single gamma distribution, the mean and
variance of which are the sums of the component means and of
the component variances, respectively (17). Using such an ap-
proximation, Eq. S8 reduces to a single summation

μtna ¼ peventðtn;aÞ

×∑
n

k¼0

Δðtn−k;aÞf ðμincubationþμeventþμreport ;σ2incubationþσ2eventþσ2reportÞðk;aÞ:

[S9]
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Even with this approximation, it is this convolution that is respon-
sible for the majority of the computational expense.

2.2. Interventions and modeling challenges. The spread of a novel
influenza virus leads to changes in the way the public interacts
both with each other and with the health services. In the initial
stages of this epidemic, it is possible that a heightened state of
alertness among the public induced a surge in the number of
people presenting ILI symptoms to their GPs. In turn, throughout
the treatment phase of the epidemic, government advice on the
management and reporting of ILI symptoms changed as the
NPFS was launched. Later on in the epidemic, the initiation
of a vaccination program once again changed the way the public
interacts with the health services.

We address these issues by considering relevant model para-
meters to be piecewise-constant over time, with change points
positioned as close as possible to the behavioral change-causing
event.

2.2.1. School holidays. Although the widespread closure of
schools as a measure to mitigate the spread of the emergent
epidemic was never enforced, the epidemic did straddle a number
of school holidays including the six-week summer holiday com-
mon to all English schools. As children younger than 15 y old
are key agents of transmission, it is not surprising that this led
to some dying down of the epidemic in these periods. School-holi-
day effects upon transmission can be incorporated via the mixing
matrices MðtÞ.

Initially, mixing matrices obtained from the POLYMOD
(Improving Public Health Policy in Europe through Modeling
and Economic Evaluation of Interventions for the Control of
Infectious Diseases) study into social mixing patterns (18) were
employed. This study, through presenting estimated rates of
physical contact between members of the different age groups
both on weekends and weekdays, provides “holiday” and “non-
holiday” contact matrices to be used for periods corresponding
to without and within school terms, respectively. However, these
matrices were found to underplay the role of the <15 y-old age
groups. This arose due to the near-simultaneous introduction of
the NPFS and start of the school summer holidays. The falloff
in GP consultation could therefore be attributable to either a mir-
rored fall in the propensity to consult or through contact patterns.
Using the POLYMODmatrices alone led to an estimated drop in
the pGPðt;aÞ to values orders of magnitude smaller than observed
in Flusurvey (12). Parameterizing these matrices to allow for both
estimation of the effect of school holidays on contact rates and
the relative likelihood of transmission in infectious contacts invol-
ving adults compared to those that just involve children (see also
refs. 19 and 20) leads to more plausible estimates.

Specifically, this parameterization is achieved by considering a
base matrix that we take to be the nonholiday matrix from the
POLYMOD study. Denoted by MPOLY, the ði;jÞth element of this
matrix gives the rate of contact between a member of the popula-
tion in age group i with someone in age group j. To move from this
matrix to MðtÞ of Eq. S3, consider the matrices Abase, Asummer,
Ahalf-term given respectively in Eqs. S10–S12:

Abase ¼

1 1 1 m1 m1 m1 m1

1 1 1 m1 m1 m1 m1

1 1 1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

0
BBBBBBBB@

1
CCCCCCCCA
: [S10]

Asummer ¼

1 1 1 m1 m1 m1 m1

1 m2 1 m1 m1 m1 m1

1 1 m3 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

0
BBBBBBBB@

1
CCCCCCCCA
; [S11]

Ahalf-term ¼

1 1 1 m1 m1 m1 m1

1 m4 1 m1 m1 m1 m1

1 1 m5 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

m1 m1 m1 m1 m1 m1 m1

0
BBBBBBBB@

1
CCCCCCCCA
: [S12]

Using the ⨀ symbol to indicate componentwise multiplication
of matrices such that A ¼ B⨀ C ⇒ Aij ¼ BijCij, MðtÞ is then
assumed to be

MðtÞ ¼
8<
:

Asummer ⨀MPOLY t ∈ ð79;128�
Ahalf−term ⨀MPOLY t ∈ ð23;30�∪ð177;184�∪ð233;245�
Abase ⨀MPOLY otherwise:

[S13]

The time intervals (23,30] days and (177,184] days correspond to
the half-term school holidays in May and October, respectively,
and these holidays share parameters with the interval (233,245],
which corresponds to the Christmas holiday. The interval
(79,128] days corresponds to the longer summer school holiday.
Parameterm1 features in all matrix entries corresponding to con-
tact rates involving an adult age group (i.e., ≥15 y), conferring
upon it the interpretation as the proportionate reduction in
the probability of an infectious contact involving an adult being
“effective” (i.e., leading to disease transmission) in comparison to
an infectious contact involving two children under the age of 15 y.

Correspondingly, parameters m2 and m4 give the proportion-
ate reduction in the contact rates among the 1–4 y age group in
the summer and half-term holidays, respectively, with parameters
m3 andm5 similarly defined for the 5–14 age group. The two holi-
day periods are treated differently, through the assignment of dis-
tinct parameters to allow for the possibility that people behave
differently in these periods. During the summer holiday it is ex-
pected that a larger proportion of the children will spend time
overseas or on some sort of prolonged vacation.

2.2.2. Changing public behavior (1): Acting on government advice.
As already discussed, it cannot be assumed that the propensity of
those with symptoms of A/H1N1pdm to consult with a GP is con-
stant within each age group over time. In particular, the issue of
modeling the propensity of patients to consult with a GP is com-
plicated further by the introduction of the NPFS on July 23. The
natural effect of the NPFS was to drastically reduce the propor-
tion of individuals who appear in the GP consultation datasets
(pregnant women, children <1 y, and anyone else occupying a
particular high-risk group were still advised to consult directly
with a GP). To account for this we parameterize pGPðt;aÞ such
that children and adults have distinct propensities to consult at
all times and these are subject to two change points (see Fig. S1),
the first of which is chosen to correspond to the introduction of
NPFS. The second breakpoint is designed to bisect the interval
between the introduction of the NPFS and the end of the dataset.
Its inclusion is to allow for the possibility that the advice for pa-
tients to make the NPFS their first port of call was perhaps being
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forgotten over time as people reverted to their traditional health-
seeking behavior (i.e., going to the GP).

Specifically, we parameterize pGPðt;aÞ as follows:

pGPðt; aÞ ¼
�
p0 a < 15 y; t ≤ 83 d
p1 a ≥ 15 y; t ≤ 83 d
p0 p2 a < 15 y;83 < t ≤ 137 d
p1 p3 a ≥ 15 y;83 < t ≤ 137 d
p0 p4 a < 15 y;137 < t ≤ 192 d
p1 p5 a ≥ 15 y;137 < t ≤ 192 d

; [S14]

where day 84 (July 23) corresponds to the introduction of the
NPFS phone line and day 137 (September 14) and day 192 (No-
vember 8) form an equal partition of the time from the NPFS
advent until the end of data currently under analysis. By parame-
terizing in this way and constraining the pi to take values in the
range [0,1], we guarantee that the propensity to consult is at a
peak in the period prior to the NPFS introduction.

2.2.3. Changing public behavior (2): The worried well. In addition to
the change in the health-care-seeking behavior of infected indi-
viduals with flu-like symptoms, the change in behavior of indivi-
duals suffering from symptoms derived from non-A/H1N1pdm
ILI also needs to be considered. These individuals also appear
in the GP consultation data, contributing a time-varying level
of noise.

The data on virological positivity allow us to partition the ob-
served ILI consultations among those that are genuine pandemic
A/H1N1pdm cases and those that are not. This is done externally
to our integrated model of Fig. 2 (in the main article) by modeling
collateral data on positivity and GP consultation rates from other
regions of England.

Joint regression models were fitted to the consultation rate and
positivity data from the regions outside of London. Only regions
outside of London were used, to avoid making double use of the
GP consultation and virological positivity data. This joint model
provides posterior means and covariance matrices for the para-
meters of a log-linear regression of the background consultation
rate that assumes linearly independent temporal and age effects
and an interaction that takes the form of a change point in the age
effects at the time of NPFS introduction:

logðBðt;aÞÞ ¼ αt þ βa þ 1ft>tNPFSgβ
0
a:

This regression equation is imported into the integrated model,
together with a multivariate normal prior distribution for
ðαt;βa;β0aÞ, which conserves the posterior means and covariances
found through the external model. This allows estimation of rates
of background consultation in London, which are influenced by
the equivalent rates from the other regions of England.

2.3. Inference. 2.3.1. Likelihood. The GP consultation data are as-
sumed to have a negative-binomial distribution. We parameterize
the negative-binomial distribution in terms of a mean number
of consultations, μta (as found from Eq. S9) and a piecewise-
constant dispersion parameter, ηt > 1, such that the likelihood
component is

LðytajφÞ ¼
Γðyta þ rtaÞ

ΓðrtaÞΓðyta þ 1Þ
�
1

ηt

�
rta
�
1 −

1

ηt

�
yta

ηt ≥ 1;

where rta ¼ μta∕ðηt − 1Þ. The dispersion parameter ηt has one
change point at the time of the NPFS launch, reflecting a funda-
mental modification to the surveillance system.With this parame-
terization, EY ðt;aÞ ¼ μta and VarðY ðt;aÞÞ ¼ μtaηt.

2.3.2. Priors. Table S1 provides a near comprehensive list of the
parameters that comprise the vector φ, together with their as-
sumed fixed value or prior distribution. Parameters of the back-
ground model are omitted for brevity. The chosen time step for
the model is δt ¼ 1∕2 d, which limits how small both dI and dL
can be without invalidating approximations made in the discreti-
zation of the model dynamics. Therefore the mean infectious per-
iod is estimated over values constrained to be at least 2 d, whereas
we follow ref. 19 in fixing the mean latent period to 2 d. The pro-
portions susceptible were determined from the estimated base-
line prevalence of A/H1N1pdm antibodies (11). The choice of
prior for θ is based on data reported in ref. 21. The parameters
of the incubation period distribution were taken from recent work
on confirmed cases with identifiable exposure times (22). For the
parameters governing the propensity to consult with a GP, pi,
priors were derived from (nonage specific) estimates for the
United Kingdom available from the Flusurvey study (12), with
some appropriate statements of uncertainty attached.

3. SI Further Results. 3.1. Goodness of fit. Fig. S2 compares the pre-
dicted age-group specific and weekly aggregated GP consulta-
tions with the observed data. The predicted consultations track
the data rather well, with perhaps some overestimation of con-
sultations during the initial epidemic growth and some underes-
timation around the peak of the second wave. Fig. S3 features the
corresponding plot for the virological positivity data. Here, the
model predicted positivity is plotted together with a 95% credible
interval. The observed positivities are overlaid and should differ
from the modeled positivities through binomial error. The model
appears to perform well, albeit with some underestimation of the
positivity in the 15–24 age group, perhaps due to the influence of
the 25–44 age group, the data for which had far larger sample
sizes. Of course, there is some arbitrariness introduced via the
choice of age groups and any lack of fit within the 15–24 age
group could be due to heterogeneity within this age group arising
from the fact that this group includes a significant proportion of
individuals who are still of school age. Similar within-group het-
erogeneity might explain the lack of fit to the serology data within
this age group evident in Fig. S4, although this could also be ex-
plained through underestimation of the baseline levels of immu-
nity within the age group. Elsewhere, the serological data seem
highly plausible given the model.

3.2. Sensitivity analyses. 3.2.1. An imperfect virological test. The pro-
portion, qtna, of GP consultations that are attributable to A/
H1N1pdm at the nth time step, tn, and within any given age
group, a, is given by

qtna ¼
μtna

μtna þ Bðtn;aÞ
:

Thus far, this proportion has been assumed to be unbiasedly in-
formed by the virological swabbing data, with these data, Wtna,
taken to be distributed

Wtna ∼ BinðMtna;qtnaÞ:

It is, however, more likely that the testing procedure is imperfect,
i.e., with sensitivity less than 1. This may be due to the test itself,
or perhaps, in some individuals, to the depletion of the viral
load to an undetectable level over the interval from infection
to swabbing (23).

Therefore, what we see is an apparent positivity, q�tna, which
relates to the test sensitivity, ksens, via the equation q�tna ¼
ksensqtna, assuming that specificity is equal to 1. The positivity data
are assumed

Wtna ∼ BinðMtna;q
�
tnaÞ:
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Intuitively, therefore, an imperfect test would lead us to expect
that there is a greater number of GP consultations for A/
H1N1pdm in the population than would be found through naive
multiplication of the observed consultations with the observed
positivity.

Table S2 displays estimates based on posterior medians (and
credible intervals) for some epidemic quantities under the as-
sumption of a perfect test, under two reasonable guesses for the
sensitivity (ksens ¼ 0.9;0.8) and an extreme case (ksens ¼ 0.5).
Counterintuitively, the overall incidence actually decreases with
decreasing test sensitivity, along with the average reproductive
number, R0. Specifically, this decrease occurs in the number of
infections in the second wave, as we can see that the posterior
probability that the first wave has a higher peak rate of infection
increases with decreasing test sensitivity. However, a decreasing
infection attack rate (IAR) is accompanied by an increasing
symptomatic attack rate (SAR). This arises through the propor-
tion symptomatic increasing with decreasing test sensitivity,
which more than compensates for the drop in infection rates
when fitting to the GP consultation data. The model can explain
the “true” positivity, qtna, being larger than the observed positiv-
ity, q�tna, through either (i) higher levels of overall infection or
(ii) a greater proportion of the infections appearing in data,
due to a higher degree of symptomatic infection or to increased
rates of reporting. Here, case (ii) appears to be occurring.

Of the four examples here, the posterior distribution for the
likelihood takes larger values in the case ksens ¼ 0.8, with the ex-
treme case performing much worse than the other three cases.
Despite this, inferences do not seem to be substantially altered
over the three “feasible” values of ksens, so we consider them
to be robust to the assumption of a perfect test.

3.2.2. Contact patterns. The symmetric matrix of mixing rates,
MðtÞ (cf. Eq. S3) is populated with values taken from the UK
POLYMOD data, based on all types of contacts on weekdays,
as done elsewhere (24). Even the more flexible parameterization
of these matrices adopted here (Eq. S13) constitutes a strong
set of restrictive assumptions. For example, what happens if
the estimated POLYMOD matrices are inadequate or inap-
propriate for describing the patterns of infectious contacts?
Furthermore, in the main text, Table 2 highlights the difficulty
in estimating school-holiday effects among the 1–4 y-old age
group (the posterior distribution looks very similar to the prior).
If we adopt a more parsimonious parameterization, by assuming
the impact of the school holidays upon the social dynamics within
the 1–4 age group is identical to the impact in the 5–14 age group
(m2 ¼ m3 and m4 ¼ m5), do we obtain substantially different
inferences?

To examine these questions, we repeated the modeling exercise
using instead the contact matrix derived from the UK subset of
the POLYMOD data on weekend only contacts. This proved to
have only an imperceptibly small effect on key estimates. Alter-
natively, if the constraints m2 ¼ m3 and m4 ¼ m5 are enforced
and denoted m�

3 and m�
5, respectively, our estimated posterior

medians and credible intervals are

m1 ¼ 0.468ð0.405;0.539Þ
m�

3 ¼ 0.336ð0.128;0.485Þ
m�

5 ¼ 0.483ð0.249;0.755Þ:

The posterior summaries presented here form�
3 andm�

5 resemble
those presented for parametersm3 andm5 in Table 2 (in the main
text), with some slight movement toward the estimates obtained
for parameters m2 and m4 in the main analysis. Once again, es-
timates of other parameters and epidemic quantities are robust to
the parameterization choice. Although this choice is slightly more

parsimonious than the parameterization in the main text, with no
significant loss of model fit, we prefer the main text analysis, as it
is a strong a priori belief that the two age groups should be treated
differently (1 y-olds and 14 y-olds will be affected in very different
ways by breaks in school terms) and, again, the key inferences are
left unaltered.

As inference appears robust to the precise choice of the values
of the matrices MðtÞ, we further investigate the feasibility of
actually estimating these values. The contact matrices are sym-
metric and therefore only have free entries in the upper-triangu-
lar portion of the matrix. Furthermore, pλðt;aÞ, as defined in
Eq. S2, is independent of the scale of the mixing matrices for
all values of t and a. It follows that the likelihood is similarly
independent. Therefore, for identifiability, one matrix entry is
assigned a fixed value, with other matrix entries corresponding
to rates of mixing relative to the fixed entry. So for the 7 × 7 mix-
ing matrix, we have 27 free parameters. As this is an illustrative
exercise only, a bootstrap sample of contact matrices was drawn
based on the UK POLYMOD data using the approach of ref. 25.
Each matrix is then normalized so that the M33 entry is equal
to 1. It is no longer possible to identify a parameter with the
same interpretation as parameter m1, but, to factor in different
rates of infectivity between adults and children, each bootstrap
matrix was assigned a realization of a Uð0;1Þ random variable,
and the entries corresponding to mixing rates involving adults
were multiplied by this value. Based on this bootstrap sample,
the means and variances for each of the 27 free matrix entries
were used as the basis for gamma priors. Again, holiday effects
were incorporated as previously, through parameters m2;…;m5.

Fig. S5 plots the posterior distributions for these parameters in
the form of an upper-triangular matrix. It can be seen that for
many of the mixing rates, the posterior distributions are similar
to the prior distributions, particularly for those parameters cor-
responding to at least one of the <1 and the >65 age groups. In
the remaining age groups, the prior to posterior shift would ap-
pear to be toward lower values. As these rates are all measured
relative to the M33 entry, this suggests that the POLYMOD
matrices alone, even accounting for infectivity could, potentially,
be underplaying the importance of disease transmission among
the 5- to 14-y-old age group. Only one matrix element is inflated
in moving from prior to posterior, M34, giving relative rates of
effective contact between the 5–14 and 15–24 age groups. How-
ever, these contacts still only occur at a posterior median of 0.272
times the rate of the within 5- to 14-y-old contacts. The second
column of Table S3, which gives the estimated values for R0 and
the first and second wave attack rates, shows a higher level of
total incidence in these results than in the analysis of the main
text, despite a much lower estimate of R0. As the densities of
Fig. S5 would appear to suggest, the higher total incidence is
due to much higher levels of incidence in the 15–24 age group,
which, compared to the child-age groups is highly populated with
a supply of susceptibles that is not so easily exhausted.

This component of the sensitivity analysis is presented here as
a proof-of-principle. The choice of prior distribution is key here,
due to the influence it exerts on the pattern of incidence and
further study is ongoing to develop this in greater detail.

3.2.3. The propensity to consult. The piecewise-constant parame-
terization of pGPðt;aÞ used to obtain the results presented in the
main text was one that developed over the course of the pandemic
out of the necessity to maintain an adequate fit to the GP con-
sultation data. However, the step changes involved might be con-
sidered a crude approximation to the underlying process. As a
test of the sensitivity, we try two alternate models for pGPðt;aÞ.
Using the same breakpoints, we consider pGPðt;aÞ to be piece-
wise-linear over time on the logistic scale, either from t ¼
tNPFS onward (model 1) or at all times (model 2). These two mod-
els require the addition of two and four new parameters, respec-
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tively. Fig. S6 plots the estimated temporal evolution in the pro-
pensity to consult for the two models for the adult age groups.
Post-NPFS the two plots look very similar and differ from the
piecewise-constant version in that there is a decline in the con-
sultation propensity in the interval following the day-178 break-
point, suggesting that the consultation propensity might be
mirroring the pattern of consultations rather than gradually re-
storing itself to some pre-A/H1N1pdm level. In the pre-NPFS in-
terval, the influence of the peak consultation rate is evident, given
that the constant propensity in model 1 is equal to the propensity
in model 2 at t ¼ tNPFS, rather than being an average value. In
model 2, the time-0 value of the propensity appears to be highly
prior influenced and so there is little learning to be made here
about the propensity to consult over this interval. Because of this
prior influence, in model 2, the proportion symptomatic θ is es-
timated to be lower than in model 2, to counteract this increased
propensity to consult.

3.3. Further applicability.As has been discussed in SI Data, the data
in England was subdivided into 10 distinct regions defined by the
boundaries of the SHAs. The highly localized collection of viro-
logical and serological data is such that sample sizes in each re-
gion were too small to enable accurate estimation of the epidemic
in many SHAs, whereas, if monitoring at the national level, the
data are unrepresentative.

Taking this into consideration, we repeated our modeling
methodology for one other SHA, the West Midlands, and two
further aggregated regions each consisting of four of the remain-
ing eight SHAs, “North” and “South.” Fig. S7 plots the estimated
epidemic curve for each region, whereas Table S4 contains poster-
ior estimates for key epidemic quantities.

Fig. S7 shows that, for the two epidemics that experienced
significant levels of first wave infection, London and the West
Midlands, their first wave peaks occur simultaneously and at a
similar height. This constitutes a depletion in the population sus-
ceptibility of the West Midlands (it has a much smaller popula-
tion) that is reflected in the lower levels of incidence in the
second wave. Such a distinctive two-wave pattern of infection
was not obvious in the North and South, however. The South

shows some first wave activity, but the real peak in incidence rates
is during the second wave. The North behaves differently again.
The lack of any significant first wave of infection makes the
school-holiday effects impossible to estimate—how can a reduc-
tion in incidence be estimated when there is negligible incidence?
—and thus all infection takes place in one big autumn wave,
although a considerable level of uncertainty is attached, possibly,
in part, arising from the very low virological sample sizes in
the North.

The estimates of θ in Table S4 remain reasonably consistent
across all four regions; each credible interval has a large intersec-
tion with the others. London and West Midlands display compar-
able estimates for R0, whereas the North and South have much
lower values. It is speculated that this may well arise as a result of
the different levels of population density: The London and West
Midlands regions encompass the two biggest cities in the country.
Again, London and West Midlands achieve similar estimates for
parameter m1, whereas this parameter is close to 1 for the North
and South. The age profile of infected individuals is clearly more
uniform in the North and South regions, which may have some-
thing to do with the bulk of infection occurring in the autumn and
winter months, when older age groups are at greater risk. School-
holiday effects are generally estimated with wide credible inter-
vals and as a result, the effect of the half-term holiday (m5) as
estimated in the West Midlands would appear to be the only
anomalous result here.

3.4. Serology. In the main text, Predicting the Epidemic, we show
how the model’s ability to make convergent epidemic estimates
coincides with the introduction of some serological survey data.
To further understand the role and the importance of these data,
and to test whether this is mere coincidence, we repeated the
modeling exercise of the main text, but with all serological data
removed. The 83-, 143-, 192-, and 245-d estimates are presented
in Fig. S8. Here, it is only the 245-d analysis that looks like a fea-
sible representation of the epidemic. This indicates that, although
post hoc epidemic reconstruction may well be feasible, the timely
availability of serological data is a requisite for real-time in-
ference.
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Fig. S1. Propensities to consult a GP over time given symptoms of infection with the A/H1N1pdm virus.
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Fig. S2. Comparison of the observed GP consultation data (in red), against the expected number of consultations as predicted by the model (credible intervals
shaded in black) and the attached negative-binomial error (shaded gray), which provide 95% credible intervals for the observed number of weekly consulta-
tions, by each age group in Greater London.
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Fig. S3. Model fit to the virological positivity data. Dots represent observed virological positivity data by week, the size of the dot is proportional to the size of
the virological samples relative to the other samples in the same plot, and the color an indicator of the absolute sample size. Again, each panel corresponds to
the age group featured in the plot header.
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Fig. S4. Model fit to the serological positvity data, with data aggregated to weekly units. The points represent the observed weekly positivities (where
samples exist); the curve represents the model-estimated positivity (together with a dashed 95% credible interval). The bars attached to each data point
give credible intervals for the observed positivity under the model, conditional upon the sample denominators.
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Fig. S5. Prior (in red) and posterior (in black) distributions for the parameters of the contact matrices. Posterior medians for the parameters are given in the
headings of the individual plots.
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Fig. S6. Temporal evolution of the propensity to consult with a GP under the two piecewise logistic-linear models.
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Fig. S7. Estimated epidemic curves and 95% pointwise credible intervals for the epidemic curves in the four regions: (A) London, (B) West Midlands, (C) North,
and (D) South. For ease of comparison, incidence is expressed as a per capita rate.
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Fig. S8. Estimated epidemic curves and 95% pointwise credible intervals after 83, 143, 192, and 245 d of data excluding all serology.
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Table S1. Assumed values and prior distributions for model parameters

Transmission model parameter Prior/fixed value

Exponential growth rate, ψ r approximately Γð6.3;57Þ
Initial log-hazard of GP consultation, ν approximately Nð−19.15;16.44Þ
Mean infectious period, dI 2þ Z, Z ∼ Γð518;357Þ
Mean latent period, dL 2
Contact matrix parameters, mi approximately U½0;1� ∀ i
Initial proportion susceptible, πa, in age group a 1ð< 1 yÞ, 0.980 (1–4), 0.969 (5–14), 0.845 (15–24), 0.920 (25–44),

0.865 (45–64), 0.762 (65+)
Disease and reporting model parameters Prior/fixed value

Mean (SD) of gamma distributed incubation times 1.6 (1.8)
Proportion of infections who become symptomatic, θ approximately βð32.5;18.5Þ
Proportion of cases who consult a GP, pGP

logðpi∕1 − piÞÞ ∼

8>><
>>:

Nð−0.187;0.166Þ i ¼ 1;2
Nð0.426;0.929Þ i ¼ 3;4
Nð−0.319;0.263Þ i ¼ 5;6
Nð−0.284;0.264Þ i ¼ 7;8

Proportion of cases lab-confirmed, pCC approximately βð1.03;2.69Þ
Mean (SD) of gamma distributed waiting time from symptoms to GP consultation 2.0 (1.2)
Mean (SD) of gamma distributed waiting time symptoms to lab confirmation 6.6 (3.7)
Mean (SD) of gamma distributed reporting delay of GP consultations 0.5 (0.5)
Reporting delay of lab confirmations 0
GP consultation data dispersion parameters ηi approximately Γð0.01;0.01Þ, i ¼ 1;2

Table S2. Posterior medians and 95% credible intervals for some key epidemic quantities under
different assumed values for the test sensitivity

Parameter ksens ¼ 1.0 ksens ¼ 0.9 ksens ¼ 0.8 ksens ¼ 0.5

R0 1.65 (1.56, 1.75) 1.64 (1.55, 1.73) 1.62 (1.54, 1.71) 1.56 (1.49, 1.64)
θ 0.328 (0.211 ,0.468) 0.354 (0.239, 0.503) 0.376 (0.253, 0.528) 0.441 (0.311, 0.594)
Pfirst wave 0.885 0.892 0.924 0.976
IARfirst wave, % 8.90 (7.20, 10.9) 9.00 (7.20, 11.0) 9.00 (7.30, 10.9) 9.10 (7.50, 11.1)
SARfirst wave, % 2.90 (1.80, 4.30) 3.10 (2.00, 4.70) 3.30 (2.20, 4.90) 3.90 (2.80, 5.50)
IARsecond wave, % 10.4 (8.10, 13.0) 10.0 (7.70, 12.6) 9.80 (7.50, 12.4) 9.20 (7.00, 11.6)
SARsecond wave, % 3.40 (2.10, 5.10) 3.50 (2.20, 5.40) 3.60 (2.40, 5.60) 4.10 (2.80, 5.80)

Pfirst wave gives the probability that the peak of the first wave of infection is higher than the peak of the second wave.
IAR gives the infection attack rate and SAR the symptomatic infection attack rate, with the subscripts indicating the
wave of infection to which each attack rate refers.

Table S3. Posterior medians and 95% credible intervals for some key epidemic quantities under
different contact patterns and propensities to consult with a GP

Parameter Main analysis M estimated pGPðt;aÞ model 1 pGPðt;aÞ model 2

R0 1.65 (1.56, 1.75) 1.58 (1.52, 1.66) 1.63 (1.55, 1.73) 1.66 (1.57, 1.75)
θ 0.328 (0.211, 0.468) 0.327 (0.215, 0.472) 0.322 (0.207, 0.459) 0.280 (0.183, 0.414)
Pfirst wave 0.885 0.740 0.895 0.690
IARfirst wave, % 8.90 (7.20, 10.9) 9.60 (7.60, 11.6) 8.00 (6.20, 9.90) 7.60 (5.90, 9.40)
SARfirst wave, % 2.90 (1.80, 4.30) 3.10 (2.00, 4.80) 2.50 (1.60, 3.80) 2.10 (1.30, 3.10)
IARsecond wave, % 10.4 (8.10, 13.0) 11.7 (9.80, 13.8) 10.6 (8.20, 13.3) 11.7 (9.00, 14.4)
SARsecond wave, % 3.40 (2.10, 5.10) 3.90 (2.50, 5.70) 3.40 (2.10, 5.30) 3.30 (1.90, 5.10)

The table contains the analysis presented in the main text (column 1), an estimated contact matrix (column 2),
piecewise-linear pGPðt;aÞ. Rows have the same interpretation as in Table S2.

Table S4. Posterior medians and 95% credible intervals for some key epidemic quantities as estimated
in the four disjoint regions

Parameter London West Midlands North South

R0 1.65 (1.56, 1.75) 1.67 (1.61, 1.73) 1.43 (1.32, 1.54) 1.42 (1.35, 1.48)
θ 0.328 (0.211, 0.468) 0.416 (0.295, 0.560) 0.337 (0.214, 0.491) 0.327 (0.209, 0.477)
Pfirst wave 0.885 0.999 0.00 0.00
m1 0.469 (0.405, 0.539) 0.422 (0.372, 0.477) 0.949 (0.791, 0.998) 0.969 (0.870, 0.999)
m2 0.535 (0.0395, 0.970) 0.590 (0.0408, 0.981) 0.603 (0.0391, 0.983) 0.460 (0.0207, 0.969)
m3 0.279 (0.0323,0.481) 0.449 (0.297,0.550) 0.735 (0.337,0.964) 0.454 (0.138,0.713)
m4 0.295 (0.0115, 0.919) 0.525 (0.0283, 0.977) 0.486 (0.0248, 0.972) 0.394 (0.0174, 0.963)
m5 0.522 (0.276, 0.784) 0.940 (0.789, 0.998) 0.834 (0.369, 0.993) 0.284 (0.0215, 0.694)
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