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1. Detailed methods 

A multiscale bottom-up computational methodology is used here to study the effect of hierarchical 
design on material properties and the mechanics of deformation. The development and validation of 
the mesoscale method is covered in another work [1], but is reproduced here for continuity. At the 
nanoscale we use molecular dynamics simulations to study the mechanics of the nanoporous silica 
structures. Molecular dynamics with the first principles based reactive ReaxFF atomistic force field is 
a powerful tool to capture fundamental nanoscale phenomena and the mechanisms behind them. At the 
micron length scale, we develop a mesoscale spring-lattice network model. The model is derived from 
as well as validated against the atomistic results. Spring-lattice network models at the micron length 
scale are able to capture elasticity, plasticity and fracture phenomena at these length scales. We 
describe the details of the methods in the following sections.  

1.1.   ReaxFF force field 

At the nanoscale we use the first-principles derived ReaxFF force field (for details see [2]) to 
characterize the mechanical behavior of nanoporous silica structures. The ReaxFF description is based 
on a bond-length bond-order description and fitted to density-functional calculations of energy 
landscapes of bond-distortion, breaking and forming events. A variety of Si-O clusters are used for 
fitting parameters, as also energetics of bulk crystalline phases of silicon and silica under tension and 
compression.  The ReaxFF potential has been used successfully in predicting fracture phenomena in 
silicon and silica [3-5], and interfacial structure at silicon/silica interfaces [6, 7].  

Fully-atomistic simulations have recently been carried out for the mechanics of nanoporous silica 
structures [8]. The studies show the effect of pore size, distribution and porosity on elastic modulus, 
plasticity, ductility and toughness of the structures. Figure S1(a) shows one of these characteristic 
nano-honeycomb silica structures. The availability of these studies allows us to extract constitutive 
laws of nanoporous silica behavior that can be used to build mesoscale models of silica structures with 
hierarchies. 

1.2.   Mesoscale method development and validation 

Figure S1(b) shows the model setup consisting of a network of material particles connected in a lattice 
arrangement through springs. Such two-dimensional spring-lattice networks have been used previously 
to model deformation and fracture in brittle and quasi-brittle materials [9-12], and are particularly 
suitable for studying fracture phenomena in heterogeneous materials [13-15]. The two-dimensional 
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nature of the model resembles plane strain loading conditions. The constitutive stress-strain law under 
tensile load is obtained for a particular nano-honeycomb silica and bulk silica using atomistic 
simulations, shown in Figure S1(c). In this figure, the bulk silica structure has a pre-crack with 
dimensions of the pore size in the nano-honeycomb structure, to compare structures with similar defect 
sizes.  

As seen in Figure S1(c), the bulk structure is stiff and brittle, while the nanoporous structure is soft and 
ductile. The force-extension law for the mesoscale inter-particle potential is hyperelastic and is fit to 
the constitutive law behavior of nano-silica and bulk silica under tensile load (Figure S1(d)). The 
hyperelastic spring potential models the atomistic results for the nano-honeycomb as elastic-perfectly 
plastic behavior, and the bulk silica as elastic-brittle behavior. For the nano-honeycomb, the flow stress 
is obtained from atomistic simulations, and is calculated as the mean stress during plastic deformation. 
Since the aim of this study is to obtain mechanics of different composite structures, the properties of 
the local springs in the lattice in a certain material model are changed according to whether they lie 
geometrically inside the matrix or reinforcing phase. 

The brittle bulk silica phase inter-particle potential is modeled as follows: 
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where AF  is the force on a spring between two material particles of the brittle phase, Ak  is the force 
constant for the spring, AL∆ is the extension in the spring, and cAL ,∆ is the critical cutoff distance for 
the spring. The cutoff distance cAL ,∆ , beyond which the mesoscale spring carries zero load, is fixed 
based on the failure strain, and the force constant Ak is fit to the elastic modulus of the material obtained 
from atomistic simulations. 

The ductile nano-porous phase inter-particle potential is modeled as: 
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where BF  is the force on a spring between two material particles of the ductile phase, BL∆ is the 
extension in the spring, and 1,BL∆ is the extension for the spring for the onset of the plastic regime, and 

cBL ,∆ is the critical cutoff extension when the spring breaks and stops carrying load, Bk is the force 
constant for the elastic response, and 100BC kk =  is a small force constant to model plastic 
deformation at constant flow stress. The parameter 1,BL∆  is fit to the yield strain, and cBL ,∆  is fit to the 
failure strain, and Bk  is fit to the elastic modulus for the nano-honeycomb structure obtained from the 
atomistic simulations (Figure S1(c)). 

The mesoscale model uses a triangular lattice regular mesh for the arrangement of the springs. This 
results in isotropic elasticity behavior which can be assumed if the underlying structure is 
polycrystalline with regular arrangement of grains. Anisotropic behavior could also be introduced in 
the mesoscale model in principle, but for the proof-of-concept study targeted in this paper (in the spirit 
of simple computational experiments), we assume isotropic behavior in the underlying atomistic 
structure.  The implications of this assumption are that crystal-orientation dependent anisotropic elastic 



and fracture behavior phenomena will not be captured through this model. The interfaces between the 
two phases in the composite, if the crystal structure is not continuous across the interface, would also 
possibly contribute to plasticity in the material through slip and friction, however the interfaces have 
been just assigned the low strength and stiffness values of the nanoporous phase in the model. This 
does not allow for the model to capture any toughness enhancement by interfacial plasticity 
mechanisms. 

Bulk two-dimensional mesoscale models are constructed of bulk silica and nanoporous silica and 
subject to tensile testing. Comparison of the elastic moduli and fracture toughness between the 
atomistic simulations and mesoscale simulations are used to fix spring constants and inter-particle 
distance in the mesoscale model.  

The elastic modulus and fracture toughness for the atomistic model are calculated for a bulk silica 
sample with a centre-crack. The fracture toughness using the ReaxFF force field for silica is calculated 
to be 0.79 mMPa . This is rather close to experimental values in the literature for fused quartz, 0.6-0.75 

mMPa [16, 17]. The elastic modulus for the spring-lattice model is fit to 102.3 GPa and the mode I 
fracture toughness to be 0.79 mMPa .   

To match the atomistic simulation value, an inter-particle distance of 78 nm and spring constants of 
3,932 N/m and 134.4 N/m for the brittle and ductile phases, respectively, are chosen for a through 
thickness of 100 nm. This ensures for a separation of scales between the scales described by the 
atomistic model and the characteristic length-scale associated with the mesoscale model (the typical 
scales of the atomistic-level models is up to ten nanometers). It is noted here that the model parameters 
can easily be adapted to describe other nanostructures, and can even be extended to describe multiple 
nanostructures in the study of hierarchical systems. The specific model considered here represents one 
specific case study explored here.  

1.3.   Fracture property characterization 

For materials that show failure by growth of a single dominant crack, we characterize them by 
calculating their fracture toughness. The toughness is calculated by calculating the energy release rate 
by invoking the J-integral [18, 19] in its domain form [20] around the crack tip, given by: 
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where W is the strain energy density, Pij is the first Piola-Kirchoff stress tensor, ui represents the 
displacement field, X are the material coordinates, S0 represents the undeformed area of the domain, δ  
is the Kronecker delta, and  
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where the parameters 1r  and 2r  are shown in Figure S2. The discrete form of this equation, for small 
displacements, is given by (see, e.g. [21, 22]): 
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where α
0S is the initial undeformed area occupied by the material particle α , αX is the initial position of 

material particle α , αW is the local strain energy density at any material particle α  which is calculated 
as follows, 
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where αφ is the potential strain energy of the material particle α , obtained from simulation by splitting 
the spring potential energy between material particles sharing the spring bond, and the stress at the 
atom ( )αα ijP  is calculated from the virial theorem [23]: 
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where αβr  is a vector joining material particles α and β , αβf is the force applied on material particle α  
by material particle β , and tSα

α=Ω is the volume occupied by material particle α , where αS is the area 
occupied by the material particle α  in the deformed configuration. This formulation of the J-integral is 
used to avoid involving high stress values at the crack tip region in the calculation, and the 
convergence of the J-integral is checked by measuring its value against different integration domain 
regions. The strain αε ij , and 1Xui ∂∂ are obtained by a local least square fit to the neighbor 
displacement field at each material particle location. 

1.4.   R-curve calculation 

Stable crack advance for every load configuration is noted by finding the crack tip location. A 
particular spring bond is regarded as broken when its deformation exceeds the cutoff for the 
interaction. Crack surfaces are visualized by finding all spring bonds which have snapped for a given 
load. The J-integral is used to find the energy release rate for a given amount of stable crack advance. 
Plot of the J-integral from the start of crack initiation through crack propagation provides the R-curve 
[24] for the material, i.e. how its fracture toughness changes as a function of stable crack advance. 

J-integral calculations for different structures are done with large initial crack sizes. In all cases the 
initial cracks are chosen large enough to prevent a diffuse micro-cracking response in the entire 
material, as this would prevent us from carrying out the calculation of the J-integral through the 
method demonstrated above, due to unavailability of an integration region free of cracks. 
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3. Supporting figures and figure captions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1 | Atomistic and mesoscale modeling approaches are combined here to describe the material 
from the nano- to the micro-scale. Parameters for the mesoscale model are derived from constitutive 
behavior at the nanoscale obtained using atomistic simulations. Panel (a) shows the geometry of the 
nano-honeycomb used as building blocks for the composite structures, panel (b) shows a section of the 
triangular mesh mesoscale particle-spring model setup, panel (c) show stress-strain curves obtained 
from atomistic simulations of a nano-honeycomb structure, and for bulk silica with a crack of the same 
size as the pores in the nano-honeycomb. The legend defines the nano-honeycomb structure, which is 
shown as (t, pl, pw) parameters for the structure (numerical values given in Å). The bulk silica structure 
shows purely brittle fracture, the nano-honeycomb structure show ductile fracture. Panel (d) shows the 
behavior of the mesoscale triangular mesh lattice fitted to this constitutive behavior (the agreement 
with the full atomistic result depicted in panel (c) is evident and provides a direct validation of the 
mesoscale model). 
  
 
 
 
 



 
 
Figure S2 | The image shows the J-integral calculation for a stationary crack by the use of a domain-
integral around the crack. The J-integral provides the value of the energy release rate per unit advance 
of the crack into the crack tip, or the resistance to crack propagation. The red/dark region shown is the 
domain of integration and the convergence of the J-integral is tested by taking different 1r and 2r  
regions for the same crack and specimen configuration. 
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