Hyperthermic seizures and aberrant cellular homeostasis in Drosophila

dystrophic muscles

April K Marrone¹, Mariya M Kucherenko¹, Robert Wiek², Martin C Göpfert², Halyna R Shcherbata¹*

¹Max Planck Gene Expression and Signaling Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany

²Department of Cellular Neurobiology, Georg August University, Max Planck Institute for Experimental Medicine, Hermann Rein 3, 37075 Göttingen, Germany

*corresponding author: <u>halyna.shcherbata@mpibpc.mpg.de</u> Max Planck Gene Expression and Signaling Group, MPlbpc Am Fassberg 11, Göttingen 37077 Germany Tel: +495512011656 Fax: +495512011755

Supplementary Information

Supplementary Table 1: ROS levels seen in *Dys*, *Dg* and *Cam* mutants

Genotype	ROS ([AU]/µg/ml protein)	P-Value
OregonR ²	1.00 ± 0.26	-
DysDf/+	1.25 ± 0.83	0.091
Dg^{O86} /+	1.04 ± 0.14	0.37
$Cam^{n339}/+$	0.88 ± 0.10	0.22
DysDf	4.66 ± 2.54	3.0X10 ⁻⁸ ***
$Dg^{O86/O55}$	0.61 ± 0.37	0.0074**
Dg ⁰⁸⁶ /+; DysDf/+	0.66 ± 0.22	0.0034**
<i>Cam</i> ⁿ³³⁹ /+; <i>DysDf</i> /+	0.49 ± 0.17	2.0X10 ⁻⁵ ***
cora ^{k08713} /+; DysDf/+	0.86 ± 0.07	0.18

¹ P-Values are relative to control animals of genotype *OregonR*, *P \leq 0.05, **P \leq 0.01, ***P \leq 0.001 ² All values are normalized relative to *OregonR* ³ errors reported represent the standard deviation

Genotype	Dys Average C _T	<i>RpL32</i> Average C _T	$\frac{\Delta C_T Dys}{RpL32^1} - $	$\frac{\Delta\Delta C_{T} \left(\Delta C_{T}-\Delta C_{T,control}^{2}\right)}{\Delta C_{T,control}^{2}}$	Average Dys relative to control ³	Dys mRNA fold reduction relative to control ⁴
tub-Gal4/+	22.40±0.09	18.35±0.20	4.05±0.22	0.00±0.32	1.00±0.22	1.00±0.22
tub-Gal4::dsDys/+	22.26±0.06	16.35±0.04	5.91±0.08	1.86±0.24	0.28±0.05	3.63±0.60

¹ the ΔC_T value is determined by subtracting the average *RpL32* C_T value from the average *Dys* C_T value. The standard deviation of the difference is calculated from the standard deviation of

the *Dys* and *RpL32* values using the formula "s= $\sqrt{(s_1^2+s_2^2)}$, where s=stdev ² the calculation of the $\Delta\Delta C_T$ involves subtraction by the ΔC_T calibrator value. This standard deviation is determined the same as in '1'

³ the range given for *Dys* relative to Control is determined by evaluating the expression: 2^{-ΔΔCT}

where the error is determined using regressional analysis ⁴ the fold reduction given for *Dys* relative to Control is determined by evaluating the expression: $2^{\Delta\Delta CT}$ where the error is determined using regressional analysis

Genotype	<i>Dys</i> Average C _T	<i>RpL32</i> Average C _T	$\frac{\Delta C_T Dys}{RpL32^1} - \frac{1}{2}$	$\Delta\Delta C_{T}$ $(\Delta C_{T} - \Delta C_{T,cont}^{2})$	T Index ³	T corrected Dys mRNA fold reduction relative to control ⁴
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4/+</i> pupae at 18°C	24.46±0.16	16.61±0.03	7.86±0.17	0.00±0.24	-	1.00±0.16
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4/+</i> pupae 3d. at 29°C	21.87±0.02	16.53±0.27	5.34±0.27	-2.52±0.32	5.72	1.00±0.31
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4::dsDys/+</i> pupae at 18°C	23.47±0.17	16.20±0.06	7.27±0.17	0.00±0.25	-	1.00±0.17
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4::dsDys/+</i> pupae 3d. at 29°C	22.60±0.12	16.28±0.13	6.32±0.17	-0.95±0.25	5.72	2.97±0.27
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4::dsDys/+</i> flies at 18°C	23.88±0.17	18.19±0.29	5.70±0.34	0.00±0.48	-	1.00±0.33
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4::dsDys/+</i> flies 3d. at 29°C	24.76±0.23	17.28±0.03	7.48±0.24	1.78±0.41	-	3.44±0.99

Supplementary Table 3: Decrease in *Dystrophin* mRNA level using *tub-Gal80^{ts}* system

¹ the Δ CT value is determined by subtracting the average *RpL32* CT value from the average *Dys* C_T value. The standard deviation of the difference is calculated from the standard deviation of the *Dys* and *RpL32* values using the formula "s= $\sqrt{(s_1^2+s_2^2)}$, where s=stdev

² the calculation of the $\Delta\Delta C_T$ involves subtraction by the ΔC_T calibrator value. This standard deviation is determined the same as in '1'

³ the temperature dependent scaling factor was determined because expression levels of *Dys* in control pupae varied greatly depending on the temperature. Where applicable this value is calculated as $2^{-\Delta\Delta CT}$. This scaling factor is then used to determine the relative expression levels in mutant animals of the same life stage at 29°C relative to the same animals at 18°C (Supplementary Figure 2)

⁴ the fold reduction given for *Dys* relative to Control is determined by evaluating the expression: $2^{\Delta\Delta CT}$ where the error is determined using regressional analysis. The temperature related scaling index has been multiplied by this value where applicable

Supplementary Table 4: Frequency of muscle degeneration in *Dys RNAi* mutants with and without developmentally restricted expression of *RNAi*

Genotype	Dys down regulate d	Condition ¹	Age, days	n	% of muscle degene- ration	P- Value ²	Normalized ³ % of muscle degeneratio	P- Value ²
tub-Gal4/+	Through-	25°C	16	121 9.1	9.1	0.021*	2.4	0.11
tub-Gal4:dsDys	lifetime			73	21.9		2.4	
tub-Gal80 ^{ts} /+; tub-Gal4/+	As adult	18°C development	19 84 108	21.4	0.0081	2.0	0.11	
tub-Gal80 ^{ts} /+; tub-Gal4:dsDys/+		adult 29°C adulthood		108	42.6	**	2.0	

¹ Note that higher temperature (29°C) accelerates aging and muscle degeneration.

² P-value determined from the χ^2 statistic

³ Normalized to the control value under the same conditions

Genotype	Relative Intensity	P-Value ¹
OregonR ²	1.00 ± 0.37^3	-
DysDf	0.49 ± 0.27	0.042*
Dg^{O55}	0.02 ± 0.02	1.2 X 10 ⁻⁴ ***
cora ^{k08713}	0.11 ± 0.11	1.4 X 10 ⁻³ **
Dg ⁰⁸⁶ /+; DysDf/+	0.06 ± 0.05	1.9 X 10 ⁻⁵ ***
cora ^{k08713} /+; DysDf/+	0.07 ± 0.06	1.1 X 10 ⁻⁴ ***
cora ^{k08713} /Dg ⁰⁸⁶	0.10±0.12	9,9 X 10 ⁻⁵ ***

Supplementary Table 5: Relative Dg immunofluorescence intensities

¹ P-Values are relative to control animals of genotype *OregonR*, *P \leq 0.05, **P \leq 0.01, ***P \leq 0.001 ² All values are normalized relative to *OregonR* ³ errors reported represent the average deviation

Genotype	<i>Dg</i> Average C _T	<i>RpL32</i> Average C _T	$\frac{\Delta C_T Dg}{RpL32^1}$		Average <i>Dg</i> relative to control ³	<i>Dg</i> mRNA fold reduction relative to control ⁴
tub-Gal4/+	23.33±0.07	18.35±0.20	4.98±0.21	0.00±0.30	1.00 ± 0.21	1.00±0.21
tub-Gal4::dsDg/+	25.94±0.13	18.37±0.11	7.57±0.18	2.59±0.28	0.17±0.03	6.02±1.16
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4::dsDg/+</i> flies at 18°C	20.97±0.05	16.09±0.05	4.87±0.07	0.00±0.10	1.00±0.07	1.00±0.07
<i>tub-Gal80^{ts}/+;</i> <i>tub-Gal4::dsDg/+</i> flies 3d. at 29°C	25.26±0.07	19.09±0.03	6.17±0.08	1.29±0.11	0.41±0.03	2.45±0.18

Supplementary Table 6: Decrease in *Dystroglycan* mRNA level

¹ the ΔC_T value is determined by subtracting the average *RpL32* C_T value from the average *Dg* C_T value. The standard deviation of the difference is calculated from the standard deviation of the *Dg* and *RpL32* values using the formula "s= $\sqrt{(s_1^2+s_2^2)}$, where s=stdev ² the calculation of the $\Delta\Delta C_T$ involves subtraction by the ΔC_T calibrator value. This standard

deviation is determined the same as in '1'

³ the range given for Dg relative to Control is determined by evaluating the expression: $2^{-\Delta\Delta CT}$ where the error is determined using regressional analysis

⁴ the fold reduction given for *Dg* relative to Control is determined by evaluating the expression: $2^{\Delta\Delta CT}$ where the error is determined using regressional analysis

Supplementary Table 7: Impact of Ca^{2+} channel blockers on seizure activity of dystrophic animals (*DysDf*)

Drug	n	%Seized ^T	Avg. T _s ±sd (°C)*	Avg. A _{max} ±sd (mV)*	Avg. Area±sd (pixel x 10 ⁻³)*	Median S _i ** (25 th /75 th percentiles)	P- Value
Sucrose	5	80	37.8±2.1	6.6±5.7	2.4 ±1.9	1.9 (1.8/2.1)	-
3.6 mM Nifedipine	5	100	37.8±3.3	3.1±2.2	1.2 ± 0.5	1.8 (1.8/1.9)	0.50
0.5 mM 2- APB	5	60	35.7±5.7	2.8±1.2	0.8 ± 0.4	1.5 (0.0/1.7)	0.21
20 μM Ryanodine	6	33	34.4±0.6	2.8±0.6	0.9 ±0.2	0.0 (0.0/1.4)	0.078

n = number of animals fed the indicated drug

F percent of animals measured that had a seizure

* Calculated using data from animals that seized only

** Index calculated by integrating the area of the graph of voltage vs. temperature during a seizure, taking the natural logarithm of this number, dividing by the temperature that the seizure started, and then multiplying times ten.

Supplementary Figure Legends

Supplementary Figure 1:

Control animals do not have temperature-sensitive seizures as can be seen by monitoring the output voltage from the IFMs as the temperature increases. b) All tested *Dys* mutant alleles exhibit hyperthermic seizures.

Supplementary Figure 2:

Average *Dys* expression relative to appropriate controls in *RNAi* knock-down mutants that are under the control of the *tub-Gal80^{ts}* driver. a) Control pupae showed a vast increase in *Dys* expression upon being shifted from 18°C to 29°C indicating a natural increase in protein expression with temperature increase. Thus, to determine adequately the effectiveness of *RNAi* down-regulation this change in expression had to be taken into consideration using a temperature index (Supplementary Table 5). b) Average *Dys* expression levels relative to control in pupae (after the temperature index was considered) and in adults after being shifted to 29°C for four days.

Supplementary Figure 3:

Seizure indices showing that animals with *RNAi* directed against muscle (*24B-Gal4*) and mononeuron (*D42-Gal4*) *Dg* mRNA do not have temperature-sensitive seizures. Endogenous (*tub-Gal4*) expression results in a reduced amount of seizures that are not significant over controls, but this is reversed when *Dg* is down-regulated after development. Refer to Table 1 for exact P-values compared to control animals.

a) β_{PS} integrin subunit loss of function allele heterozygouts (*mys*¹/+) had seizures when heated, most likely due to compromised stability of the sarcolemma and/or NMJ. Introducing a mutant copy of *Dg* into the genome of these animals does not alter the seizure character. b) Seizure indices of *mys*¹/+ heterozygous and *mys*¹/+; *Dg*/+ transheterozygous animals where a Kruskal-Wallis test show that there are no significances in the indices ($\chi^2 = 2.93$, P = 0.231). The following P-values were determined upon comparison to wild type animals: *mys*¹/+ (***P = 2.0X10⁻⁴), *mys*¹/+; *Dg*⁰⁸⁶/+ (*P = 0.013), *mys*¹/+; *Dg*⁰⁵⁵/+ (*P = 0.082) using a one-tailed Mann-Whitney U-test. 100% of *mys*¹/+ animals tested had seizures (n=8) with T_s = 39.2 ± 2.6, A_{max} = 3.6 ± 1.7 and Avg. Area = 1.5 ± 1.1 x 10³. 80% of *mys*¹/+; *Dg*⁰⁸⁶/+ animals tested had seizures (n=5) with T_s = 36.0 ± 0.7, A_{max} = 3.8 ± 2.4 and Avg. Area = 1.2 ± 0.5 x 10³. 83% of *mys*¹/+; *Dg*⁰⁵⁵/+ animals tested had seizures (n=6) with T_s = 40.3 ± 3.7, A_{max} = 4.3 ± 3.0 and Avg. Area = 1.2 ± 1.0 x 10³.

Supplementary Figure 5:

a) TGF- β pathway mutants, *tkv* (type-I receptor) and *Mad* (receptor-regulated Smad) have seizures similar to what is seen in *Dys* mutants, however; when animals are missing one copy of *Dys* and one copy of each of these genes there is no significant increase in seizures over what is seen in *Dys*. Down-regulation of *tkv* after NMJ development (*tub-Gal80^{ts}*) does not alleviate seizures implying that there is an additional need for *tkv* after development is complete. Animals that express *RNAi* against *tkv* prior to pupae formation die supporting an important role for TGF- β signaling during pupation. Transheterozygous animals when compared to *Dys* heterozygous

animals using a Mann-Whitney U-test had P-values of 0.25 and 0.46 for *tkv/Dys* and *Mad/Dys* respectively and P-values of 0.099 and 0.040 when compared to control animals respectively. Animals of genotypes *tkv*¹, *tub-Gal80*^{*ts*}/*act-Gal4;tkv*^{*RNAi*} and *Mad*¹²/+ have P-values of 1.9 x 10⁻³, 0.012 and 0.072 when compared to controls respectively. 100% of *tkv*¹ animals tested had seizures (n=9) with T_s = 39.4 ± 4.7, A_{max} = 4.8 ± 3.6 and Avg. Area = 1.3 ± 0.8 x 10³. 60% of *tkv*¹/+;*DysDt*/+ animals tested had seizures (n=5) with T_s = 44.2 ± 2.1, A_{max} = 7.4 ± 1.3 and Avg. Area = 1.9 ± 1.3 x 10³. 67% of *Mad*¹²/+;*DysDt*/+ animals tested had seizures (n=6) with T_s = 42.2 ± 4.0, A_{max} = 15 ± 8.7 and Avg. Area = 2.0 ± 1.0 x 10³. 80% of *Mad*¹²/+ animals tested had seizures (n=5) with T_s = 42.8 ± 3.2, A_{max} = 8.8 ± 6.3 and Avg. Area = 1.7 ± 1.4 x 10³. 100% of *tub-Gal80*^{*ts*}/*act-Gal4; tkv*^{*RNAi*}/+ animals tested had seizures (n=5) with T_s = 40.0 ± 3.4, A_{max} = 7.3 ± 2.8 and Avg. Area = 4.4 ± 2.8 x 10³. b) Electrical output from IFM vs. temperature of TGF-ß pathway mutants exhibiting seizures. *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001

Supplementary Figure 5