	♦ Measurement, °		ψ Measurement, °				
Residue	TALOS	H—N _i —	TALOS	$H - N_{i+1} - C^{\alpha}_{i}$	N—C ^α —C'—N	ф, °*	ψ, °*
		C^{α}_{i} – H		Н			
Y105	_	_	_	-180-90	-168160	_	$164\pm4^{\dagger}$
				150-180	160–168		
T106		-139 -		00 150	-140 140	-120 ± 10	115 ± 25
1100	_	-101		90-150	-140-140	-120 ± 19	115 ± 25
1107	-145-	142 07	121 155	00.150	127, 127	124 + 10	124 + 2
1107	-105	-14397	131-155	90–150	-13/-13/	-124 ± 19	134 ± 3
A108	-13995	-14298	120–146	92–148	-140-140	-119 ± 21	130 ± 10
4.100	-145-	141 00	111 147	00.150	120, 120	120 + 12	125 + 14
A109	-117	-14199	111-14/	90–150	-139-139	-129 ± 12	125 ± 14
L110		-139-	104–136	90–150	-144-144	-116 ± 15	120 ± 16
		-101					
L111		-140-	122–152	90–150	-153-153	-120 ± 20	136 ± 14
		-100					
S112	-13187	-139-	109–163	_	-146-146	-116 ± 15	128 ± 19
		-101					
P113	-11250	_	107–145	90–150	-157-157	-81 ± 31	126 ± 19
37114	120 05	-139-	102, 152			120 - 10	129 + 15
¥114	-13985	-101	123-153	_	_	-120 ± 19	138 ± 15
S115	_	_	_	_	_	_	_

Table 3. Backbone torsion angles ϕ and ψ in TTR(105–115) fibrils

Backbone torsion angles were predicted based on NMR chemical shifts by using the program TALOS (1) and were measured directly by using 3D dipolar-chemical shift correlation experiments, ${}^{1}H^{N}{}_{i}-{}^{15}N_{i}-{}^{13}C^{\alpha}{}_{i}-{}^{1}H^{\alpha}{}_{i}$ (2, 3), ${}^{1}H^{N}{}_{i+1}-{}^{15}N_{i+1}-{}^{13}C^{\alpha}{}_{i}-{}^{1}H^{\alpha}{}_{i}$ (3), and ${}^{15}N_{i}-{}^{13}C^{\alpha}{}_{i}-{}^{13}C'{}_{i}-{}^{15}N_{i+1}$ (4, 5). Uncertainties for ${}^{1}H^{N}{}_{i}-{}^{15}N_{i}-{}^{13}C^{\alpha}{}_{i}-{}^{1}H^{\alpha}{}_{i}$, ${}^{1}H^{N}{}_{i+1}-{}^{15}N_{i+1}-{}^{13}C^{\alpha}{}_{i}-{}^{1}H^{\alpha}{}_{i}$, and ${}^{15}N_{i}-{}^{13}C^{\alpha}{}_{i}-{}^{13}C'{}_{i}-{}^{15}N_{i+1}$ experiments contain systematic contributions from the potential 2–3° variations in three-atom bond angles (6) and contributions due to random noise (obtained using an F-test approach with a 90% confidence limit). For the ${}^{1}H^{N}_{i}$ - ${}^{15}N_{i}$ - ${}^{13}C^{\alpha}_{i}$ - ${}^{1}H^{\alpha}_{i}$ and ${}^{1}H^{N}_{i+1}$ - ${}^{15}N_{i+1}$ - ${}^{13}C^{\alpha}_{i}$ - ${}^{1}H^{\alpha}_{i}$ experiments the combination of systematic and random uncertainties leads to the coalescence of characteristic pairs of degenerate solutions (about $\phi = -120^{\circ}$ for ${}^{1}H^{N}_{i}$ - ${}^{15}N_{i}$ - ${}^{13}C^{\alpha}_{i}$ - ${}^{1}H^{\alpha}_{i}$ and $\psi = 120^{\circ}$ for ${}^{1}H^{N}_{i+1}$ - ${}^{15}N_{i+1}$ - ${}^{13}C^{\alpha}_{i}$ - ${}^{1}H^{\alpha}_{i}$ into single minima.

* ϕ and ψ values used in the calculation of the ensemble of low-energy peptide structures were obtained by combining the results of the TALOS and dipolar tensor correlation experiments to obtain a single self-consistent solution.

[†]For Y105 the only solution consistent with the Y105 ¹³C^{β}-T106 ¹⁵N distance of 3.3 ± 0.33 Å (Table 2) is $\psi = 164 \pm 4^{\circ}$. The $\psi = -164 \pm 4^{\circ}$ solution corresponds to a distance of ≈ 2.8 Å and was therefore neglected.

1. Cornilescu, G., Delaglio, F. & Bax, A. (1999) J. Biomol. NMR 13, 289-302.

2. Hong, M., Gross, J. D., Hu, W. & Griffin, R. G. (1998) J. Magn. Reson. 135, 169-177.

3. Rienstra, C. M., Hohwy, M., Mueller, L. J., Jaroniec, C. P., Reif, B. & Griffin, R. G. (2002) *J. Am. Chem. Soc.* **124**, 11908–11922.

4. Costa, P. R., Gross, J. D., Hong, M. & Griffin, R. G. (1997) Chem. Phys. Lett. 280, 95– 103.

 5. Feng, X., Eden, M., Brinkmann, A., Luthman, H., Eriksson, L., Gräslund, A., Antzutkin, O. N. & Levitt, M. H. (1997) *J. Am. Chem. Soc.* 119, 12006–12007.
6. Engh, R. A. & Huber, R. (1991) *Acta Crystallogr. A* 47, 392–400.