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This dynamic compartmental model captures HIV disease progression and HIV trans-

mission via heterosexual contact, homosexual contact, and needle-sharing, under varying

levels of HIV screening and treatment with antiretroviral therapy. The current model is an

extension of the author’s previously published HIV transmission model.[1, 2]

S.1 HIV Epidemic Model

S.1.1 Risk Groups

The adult population was subdivided into six risk groups (male IDU, male MSM, male

IDU/MSM, male other, female IDU, female other). This particular set of risk groups was

selected to capture variations in demographics (population sizes, initial HIV prevalence,

mortality rate), behavior (number of sexual partners, condom use, injection drug use, needle-

sharing), as well as known epidemiological factors (probability of disease transmission, effect

of male circumcision).

S.1.2 Transmission Modes

The dynamic model captures HIV transmission via three modes: heterosexual contact, ho-

mosexual contact, and needle-sharing. Table S1 shows the possible modes of transmission

between any two risk groups. In the model, men who have sex with men were allowed to

have heterosexual contact with women.

S.1.3 Disease Transmission

The suffi cient contact rate between uninfected and infected individuals is represented as a

matrix, λ = [λi,j] , where λi,j represents the suffi cient contact rate between members of

(uninfected) compartment i and members of (infected) compartment j. I calculated the

total contact rate, λi,j, as the sum of the three transmission modes: needle-sharing (γi,j),

opposite-sex (heterosexual) contact (βoi,j), and same-sex (homosexual) contact (β
s
i,j).
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The suffi cient contact rates due to needle-sharing, opposite-sex, and same-sex contact

were modeled as binomial processes, where a “success”is defined as infection transmission.

Uninfected individuals randomly select a partner n times; the probability of “success”is the

probability of transmission per partnership.

P {T} = 1− P {no T}

= 1− (P {no T per trial})# trials

= 1− (1− P{T per trial})# trials

= 1− (1− P {select person in j}P {T per trial | select person in j})# trials

where T refers to disease transmission and a trial is either a sexual partnership or shared

needle.

Needle-sharing transmission The needle-sharing suffi cient contact rate between unin-

fected individuals in compartment i and infected individuals in compartment j is:

γi,j(t) = 1−
(
1−

[
Xj(t)djsj∑
kXk(t)dksk

]
τ i,j

)disi
(S.1)

where i, j, k correspond to compartments of IDUs. The term in brackets,
[

Xj(t)djsj∑
kXk(t)dksk

]
, cor-

responds to the probability of selecting a needle-sharing partner in compartment j, based on

a proportional mixing assumption (i.e., individuals with many partners are more likely to se-

lect a partner who also has many partners). The probability of needle-sharing transmission,

τ i,j, between individuals in compartment i and j depends on the transmission probability

per shared needle, πk, and the reduction in infectivity due to ART, δdh (if individuals in

compartment j are receiving ART).

Heterosexual transmission The opposite-sex (heterosexual) suffi cient contact rate be-

tween uninfected individuals in compartment i and infected individuals in compartment j
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is:

βoi,j(t) = 1−
(
1−

[
Xj(t)n

o
j(1− uojκ)∑

kXk(t)nok(1− uokκ)

]
σi,j

)noi (1−uoi κ)
(S.2)

where i is male and j, k are female, or i is female and j, k are male. The term in brackets,[
Xj(t)n

o
j (1−uojκ)∑

kXk(t)n
o
k(1−uokκ)

]
, corresponds to the probability of selecting a sexual partner in compart-

ment j. The probability of heterosexual transmission, σi,j, between individuals in compart-

ment i and j depends on the transmission probability per partnership, πkmf or π
k
fm (which

reflects each partners’gender), and the reduction in infectivity due to ART, δsh. For men,

σi,j was also adjusted by 1 − δc based on circumcision status. Additionally, the number

of sexual partners for status-aware infected individuals in compartment j was adjusted by

1− εk.

Homosexual transmission The same-sex (homosexual) suffi cient contact rate between

uninfected individuals in compartment i and infected individuals in compartment j is:

βsi,j(t) = 1−
(
1−

[
Xj(t)n

s
j(1− usjκ)∑

kXk(t)nsk(1− uskκ)

]
σi,j

)nsi (1−usiκ)
(S.3)

where i, j, k correspond to compartments of MSM. The term in brackets,
[

Xj(t)n
s
j(1−usjκ)∑

kXk(t)n
s
k(1−uskκ)

]
,

again corresponds to the probability of selecting a sexual partner in compartment j. As

with heterosexual transmission, the probability of homosexual transmission, σi,j, depends

on the transmission probability per partnership, πkmm, and the reduction in infectivity due

to ART, δsh. In the model, male circumcision was assumed to have no effect on homosexual

transmission, although this assumption can be updated as additional clinical data become

available. Once again, status-aware infected individuals reduce their number of sexual

partners by εk.

Total transmission I calculated the overall suffi cient contact rate between uninfected

individuals in compartment i and infected individuals in compartment j by first converting

the annual transmission probability to a continuous rate, according to the formula rate =
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−ln(1 − p)/t. The total contact rate was calculated as the sum of the three modes of

transmission: needle-sharing (γi,j), opposite-sex (heterosexual) contact (β
o
i,j), and same-sex

(homosexual) contact (βsi,j). For small probability values, the approximation p ≈ −ln(1− p)

was assumed. The total contact rate at time t between individuals in compartments i and

j, λi,j(t), is:

λi,j(t) = −ln[1− γi,j(t)] +−ln[1− βoi,j(t)] +−ln[1− βsi,j(t)]

λi,j(t) ≈ γi,j(t) + βoi,j(t) + βsi,j(t) (S.4)

S.2 HIV Interventions

I compared alternative HIV screening strategies by varying the following attributes:

• Targeted risk group (everyone, MSM and IDUs, or MSM only)

• Screening frequency (annually, every six months, every three months)

• Tests offered (immunoassay only, or immunoassay followed by pooled NAAT if immunoassay-

negative)

S.2.1 HIV Screening

It was assumed that voluntary HIV screening was accompanied by an effective counseling

program may help reduce an individual’s number of heterosexual partners (noj) and homosex-

ual partners (nsj), which subsequently reduces the suffi cient contact rate (Equations S.2-S.3).

The degree of behavior change (εk) was allowed to vary by HIV status, where k refers to

acute HIV or chronic infection (asymptomatic, symptomatic, or AIDS).

Unidentified (i.e., status-unaware) individuals with acute HIV infection in compartment

i transition to compartment i + 1 at rate ψi, which depends on the rate of HIV screening

via immunoassay (ψASSAY ) or NAAT (ψNAAT ), as well as the test’s sensitivity at detecting
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infection:

ψi = fNAAT · sensNAAT
(

ωASSAY
1/θACUTE

− ωNAAT
1/θACUTE

)
ψACUTE +

(
1− ωASSAY

1/θACUTE

)
ψASSAY

(S.5)

The terms ωASSAY (either ω3GEN or ω4GEN) and ωNAAT are the window periods of detec-

tion for third- or fourth-generation immunoassay and NAAT, respectively, where ωASSAY >

ωNAAT (Figure S1) The average duration of the acute infection period is 1/θacute. The term(
ωASSAY
1/θACUTE

− ωNAAT
1/θACUTE

)
refers to the fraction of individuals with acute infection who would

receive a positive NAAT test but a negative immunoassay. The pooling algorithm sensitiv-

ity (sensNAAT ) for the NAAT test depends on the prevalence of acute infection and master

pool size. The fraction of individuals who receive their NAAT test results (fNAAT ) reduces

the overall flow of individuals to the identified compartment. Because all individuals were

assumed to receive an immunoassay prior to a NAAT test, the term
(
1− ωASSAY

1/θACUTE

)
refers

to the fraction of individuals with acute infection who would receive a positive immunoassay

test, and hence would not subsequently receive a NAAT test. The model also assumed that

ψASSAY ≥ ψNAAT , which implies that individuals will always receive an immunoassay test

prior to a NAAT test; however, I also consider an "fourth-generation immunoassay only"

strategy, where screening via immunoassay was scaled up, but ψNAAT = 0.

Similarly, unidentified individuals with chronic HIV infection transition to an identified

compartment at rate ψASSAY . Finally, individuals with chronic infection may become iden-

tified through symptom-based case finding, at rate νi, which varies based on disease state

(asymptomatic HIV, symptomatic HIV, or AIDS).

S.2.2 HIV Treatment

In the present study, individuals with symptomatic HIV or AIDS are eligible to begin ART

regimens. A fraction (φi) begin ART immediately after identification (via screening or

symptom-based case finding), or upon becoming eligible (i.e., advancing from asymptomatic
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to symptomatic HIV). Additionally, individuals initiate ART at a continuous rate (αi) after

becoming eligible for treatment.

To model the effects of antiretroviral therapy on health and economic outcomes, I adjusted

the appropriate model parameters to account for changes in disease progression rates (θi),

mortality rates (µi), and quality-of-life factors (qi). I assumed that suppressive antiretroviral

therapy reduces an individual’s viral load, which reduces the probability of HIV transmission

via sexual contact (σi,j) and needle-sharing (τ i,j). The model accounted for the direct cost

of antiretroviral therapy (cH), as well as the indirect costs through reduced HIV-related

healthcare costs (ci).

S.3 Dynamic Compartmental Model

To estimate the projected HIV epidemic over time under various HIV screening and treatment

scenarios, I created the following system of nonlinear differential equations for each of the six

risk groups. Additionally, all male risk groups (male IDU, male MSM, male IDU/MSM, male

other) are further subdivided to indicate circumcision status. The complete model comprises

120 equations (4 male groups × 24 compartments + 2 female groups × 12 compartments).

For compactness, the equations for only one risk group are shown. The remaining five

risk groups utilize similar equations, with modified indices. Note, HIV transmission can

occur both within and across risk groups according to the appropriate rates of transmission

(Equations S.1-S.3).
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dX1

dt
= ρ1

∑
∀i

Xi − ψ1X1 −
(∑
j≥3

λ1,j(t)

)
X1 − µ1X1 (S.6)

dX2

dt
= ψ1X1 −

(∑
j≥3

λ2,j(t)

)
X2 − µ2X2 (S.7)

dX3

dt
=

(∑
j≥3

λ1,j(t)

)
X1 +

(∑
j≥3

λ2,j(t)

)
X2 − ψ3X3 − θ3X3 − µ3X3 (S.8)

dX4

dt
= ψ3X3 − θ4X4 − µ4X4 (S.9)

dX5

dt
= θ3X3 − ψ5X5 − θ5X5 − µ5X5 (S.10)

dX6

dt
= θ4X4 + ψ5X5 − θ6X6 − µ6X6 (S.11)

dX7

dt
= θ5X5 − (ψ7 + ν7)X5 − θ7X7 − µ7X7 (S.12)

dX8

dt
= θ6(1− φ6)X6 + (ψ7 + ν7)(1− φ7)X7 − α8X8 − µ8X8 (S.13)

dX9

dt
= θ6φ6X6 + (ψ7 + ν7)φ7X7 + α8X8 − µ9X9 (S.14)

dX10

dt
= θ7X7 − (ψ10 + ν10)X8 − µ10X10 (S.15)

dX11

dt
= θ8X8 + (ψ10 + ν10)(1− φ10)X10 − α11X11 − µ11X11 (S.16)

dX12

dt
= θ9X9 + (ψ10 + ν10)φ10X10 + α11X11 − µ12X12 (S.17)

For ease of notation, let Xi denote Xi(t). A summary of all model parameters is given

in Table S2. Figure S2 shows a schematic representation of the model. In the top dia-

gram, boxes represent cohorts of individuals, stratified by HIV status, identification (i.e.,

screening) status, and treatment status if infected. Arrows represent transitions between

compartments. Individuals may also leave each compartment according to the mortality or

maturation rate.
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S.4 Model Instantiation

The system of nonlinear differential equations (S.6-S.17) was instantiated with initial condi-

tions using 2008 data on population sizes and HIV prevalence levels among each risk group.

I divided the HIV-infected population into the four health states (acute HIV, asymptomatic

HIV, symptomatic HIV, AIDS) in proportion to the average time spent in each state. The

fraction of individuals in each state was then adjusted to account for the increase in life

expectancy among individuals with symptomatic HIV and AIDS who are receiving anti-

retroviral therapy. I also estimated the fraction of men who are circumcised and assumed

this remained constant over the duration of the model’s time horizon. The model was

implemented in the mathematical programming language Matlab R2010b.

S.5 Model Outcomes

I numerically solved the system of nonlinear differential equations to calculate the number of

individuals in each compartment over time. The following outcome measures were calculated:

HIV prevalence, new HIV infections, discounted costs and health benefits (quality-adjusted

life years experienced), and incremental cost-effectiveness ratios.

HIV prevalence was calculated for each of the six risk groups (male IDU, male MSM,

male IDU/MSM, male other, female IDU, female other) as follows:

HIV prevalence at time t =

∑
i≥3

Xi(t)∑
∀i

Xi(t)

I calculated the (undiscounted) number of new HIV infections that occur in the entire

population over the time horizon, T .

New HIV infections =
∫ T

0

∑
i≤2

∑
j≥3

λi,j(t)Xi(t)dt
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Total health benefits for the entire population were measured in discounted quality-

adjusted life years (QALYs). I assumed an infinite time horizon to account for health

benefits occurring after the intervention duration.

QALYs =
∫ ∞
0

e−rt
∑
∀i

qiXi(t)dt

Total discounted costs for the entire population were calculated as the sum of annual

healthcare costs for all individuals, including costs of antiretroviral treatment, and total

screening and counseling costs over the intervention’s duration.

Costs

=

∫ ∞
0

e−rt
∑
∀i

ciXi(t)dt+

∫ T

0

e−rt [(eNAAT cNAAT )ψACUTE + (cASSAY + ccoun)ψASSAY ]X1(t)dt

+

∫ T

0

e−rt
[
(eNAAT cNAAT + cWB + ccoun + cviral)sensNAAT

(
ωASSAY − ωNAAT

1/θACUTE

)
ψACUTE

]
X3(t)dt

+

∫ T

0

e−rt
[
(cASSAY + cWB + ccoun)

(
1− ωASSAY

1/θACUTE

)
ψASSAY

]
X3(t)dt

+

∫ T

0

e−rt [(cASSAY + cWB + ccoun)(ψASSAY + ψ5)]X5(t)dt

+

∫ T

0

e−rt [(cASSAY + cWB + ccoun)(ψASSAY + ψ7)]X7(t)dt

+

∫ T

0

e−rt [(cASSAY + cWB + ccoun)(ψASSAY + ψ10)]X10(t)dt

Finally, I calculated the incremental cost-effectiveness ratio (ICER) of each HIV screening

strategy, relative to the status quo.

ICER =
CostIntervention − CostStatusQuo

QALYIntervention −QALYStatusQuo

I also calculated the ICER of one screening strategy relative to another, if appropriate.
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