

Supplemental Figure 1. Native gel analysis of negGFP-hSAM fusions. The soluble fraction of cell lystaes containing negGFP-hSAM fusion proteins were run on native gels and the bands visualized by fluorescence. Samples that were purified, concentrated, and rerun are shown in the boxed gel. All gels include a DGK-SAM monomeric mutant and a DGK-SAM polymer in the first two lanes as controls.

Protein	Gene ID#	Gel Result	EM Result	Function
AIDA1C/ANKS1B / cajalin2-2SAMs	56899	NP/WP		Acts as a neuronal scaffolding protein in the postsynaptic density. Tandem SAM NMR structure solved (PDB ID#2KIV) and shows head-to-tail dimer that occludes nuclear import signal. ¹
AIDA1C/ANKS1B/ cajalin2-SAM2	fragment	E		
AIDA1C/ANKS1B/ cajalin2-SAM1	fragment	NP/WP		NMR srtucture solved. (PDB ID#2KE7)
ANKS1A/ odin- 2SAMs	23294	BO		Odin (ANKS1A) is a Src family kinase target in colorectal cancer cells. ²
ANKS1A /odinSAM1	fragment	BO		
ANKS3	124401	PP	Likely Polymer	Unknowen
ANKS6/ SAMD6	203286	во		The polycystic kidney disease-related proteins Bicc1 (BicaudalC1) and SamCystin (ANKS6) interact although not necessarily through their respective SAM domains. ANKS6 self-associates (co-immunoprecipitation) in a manner that requires both the SAM domain and the ankyrin repeats. Mutations in either gene cause renal cysts in rodents. ³
Atherin/ SAMD1	90378	PP	Likely Polymer	A lesion-specific, LDL-binding protein in human atherosclerosis. ⁴
BAR	51283	NP/WP		Involved in the regulation of neuronal survival. ⁵ ; Appears as a monomer at high concentration (unpublished result)
BicaudalC1	80114	PP		Controls cilia orientation and leftward flow. ⁶
C14orf174	161394	PP		UNK
Caskin-1-2SAMs	57524	PP	Likely Polymer	Binds CASK, a scaffolding protein at neuronal synapses in the vertebrate brain; may couple CAST to downstream effectors. ⁷
Caskin-1-SAM1	fragment	BO		_
Caskin-1-SAM2	fragment	NP/WP		
Caskin2/ANKS5B– 2SAMs	57513	PP	Likely Polymer	See Caskin 1
Caskin2–SAM1	fragment	NP/WP		
Caskin2–SAM2	fragment	NP/WP		
CentaurinD1/ ARAP1	116985	NP/WP		In vitro, displays RHO-GAP and phosphatidylinositol (3,4,5) trisphosphate (PIP3)-dependent ARF-GAP activity; Associates with the Golgi, and mediates changes in the Golgi and the formation of filopodia; Thought to regulate the cell-specific trafficking of a receptor protein involved in apoptosis. [provided by RefSeq]

Protein	Gene ID#	Gel Result	EM Result	Function
CNKSR2	22866	NP/WP		Functions as a scaffold protein to mediate the mitogen-activated protein kinase pathways downstream from Ras; Induced by vitamin D and inhibits apoptosis in certain cancer cells; May play a role in complex assembly of synaptic proteins at the postsynaptic membrane and coupling of signal transduction to membrane/cytoskeletal remodeling. [provided by RefSeq]
CNKSR3	154043	во		CNKSR3, a homologue of scaffold proteins involved in MAPK pathway regulation, is a direct target of MR and is required for the maintenance of transepithelial sodium transport in the kidney. ⁸
DDHD-containing2	23259	ВО		Locallized in golgi; regulates golgi-to-plasma membrane trafficking. ⁹
DGKd	8527	РР		Involved in lipid signalling - converts diacylglycerol to phosphatidic acid. Plays inhibitory role in CopII vesicle formation. Required for efficient uptake of cargo into clathrin- coated vesicles. Involved in diabetes. ¹⁰⁻¹⁴
DGKh	160851	РР		Involved in lipid signalling - converts diacylglycerol to phosphatidic acid. Linked to bipolar depression. ^{15,16}
DGKh-long	repeat	PP		
DKFZp686D0662, ETS1	2113	NP/WP		Regulates numerous genes and is involved in stem cell development, cell senescence and death, and tumorigenesis. Regulates protein tyrosine kinases in cancer cells. ¹⁷⁻²⁰
ELF3/ESE-1	1999	NP/WP		ETS transcription factor implicated in a variety of cancers and a potential role in airway inflammation ²¹⁻²³
Elf-5	2001	NP/WP		Member of an epithelium-specific subclass of the Ets transcritpion factor family; Regulates the later stages of terminal differentiation of keratinocytes and epithelium-specific genes found in tissues containing glandular epithelium such as salivary gland and prostate. [provided by RefSeq]
EPHA2	1969	NP/WP		EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system; Involved in many forms of cancer and is an effector of chemotherapeutic agents; Kinase activity required for regulation of cell adhesion and cytoskeletal rearrangement
EPHA5	2044	NP/WP		EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. [provided by RefSeq]

Protein	Gene ID#	Gel Result	EM Result	Function
EPHA6	285220	NP/WP		EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system; Involved in neural circuits underlying aspects of learning and memory. [provided by RefSeq]
EPHA7	13841	NP/WP		EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Implicated in hepato-, prostate and lung cancers. ²⁴⁻²⁶
EPHB1	2047	NP/WP		EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system; Loss of expression of EphB1 protein in gastric carcinoma is associated with invasion and metastasis; Regulate the proliferation and migration of neural progenitors in the hippocampus; Involved in bone cancer pain. Regulates NMDA-receptors ²⁷⁻³⁰
EPHB2	2048	NP/WP		Ephrin receptors and their ligands, the ephrins, mediate numerous developmental processes, particularly in the nervous system. EphB2 enhances proliferation through a kinase-dependent pathway and inhibits migration independent of its kinase activity. ³¹
EPHB3	2049	Е, Х		May have roles in squamous cell carcinoma of the lung; EphB3-ephrin-B interaction promotes mesenchymal-to-epithelial transition (MET) by re- establishing epithelial cell-cell junctions and such an MET-promoting effect contributes to EphB3- mediated tumor suppression. ^{32,33}
EPHB6	2051	NP/WP		EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells; May play an important role in regulating thymocyte differentiation and modulating responses of mature T cells; Both positively and negatively regulates cell adhesion and migration. ^{34,35}
ESE3	26298	NP/WP		Belongs to an ETS transcription factor subfamily characterized by epithelial-specific expression (ESEs); Acts as a transcriptional repressor and may be associated with asthma susceptibility; May be involved in epithelial differentiation and carcinogenesis. [provided by RefSeq]
GA-binding protein/GABP	2551	NP/WP		Transcription factor subunits which functions as a DNA-binding subunit; Likely involved in activation of cytochrome oxidase expression and nuclear control of mitochondrial function; May play a role in the Down Syndrome phenotype. [provided by RefSeq]

Protein	Gene ID#	Gel Result	EM Result	Function
INPPL1	3636	NP/WP		An SH2-containing 5'-inositol phosphatase that is involved in the regulation of insulin function; Plays a role in the regulation of epidermal growth factor receptor turnover and actin remodelling; Supports metastatic growth in breast cancer and is a valuable biomarker for breast cancer. [provided by RefSeq]
Kazrin-3SAMs, purified	23254	PP	Likely Polymer	KazrinE is a desmosome-associated liprin that colocalises with acetylated microtubules ³⁶
Kazrin-S1	fragment	Ε		
Kazrin-S2	fragment	E		
Kazrin-S3	fragment	Ε		
L3MBTL4, purified	91133	РР		LMBT proteins are polycomb group proteins, involved in the maintenance of transcriptional repression. Homozygous mutations in the l(3)mbt gene cause brain tumors in Drosophila, identifying l(3)mbt as a tumor suppressor gene. Maps to a chromosomal region deleted in myeloid hematopoietic malignancies. Implicated in breast cancers. ³⁷
LBP-1, purified	7342	РР	Likely Polymer	LBP-1 proteins form dimers and act as transcription factors that activate a number of genes related to cell growth and differentiation. Shown to self-associate via SAMs ³⁸
Liprin A1–SAM1	fragment	Ε		
Liprin A1–SAM2	fragment	E		
Liprin A1–SAM3	fragment	Ε		
LiprinA1-3SAMs, purified	8500	NP/WP		Binds to tyrosine phosphatase LAR (important for axon guidance and mammary gland development), and appears to localize LAR to cell focal adhesions; May regulate the disassembly of focal adhesion and thus help orchestrate cell-matrix interactions. [provided by RefSeq]
LiprinA2–3SAMs, purified	8499	NP/WP		This protein is most closely related to PPFIA1, a liprin family member known to interact with the protein phosphatase LAR. The expression of this gene is found to be downregulated by androgens in a prostate cancer cell line. [provided by RefSeq]
LiprinA2-SAM1	fragment	Ε		
LiprinA2–SAM2	fragment	E		
LiprinA2–SAM3	fragment	E		
LiprinA3–3SAMs, purified	8541	NP/WP		See Liprin A1
LiprinA3–SAM1	fragment	E		
LiprinA3–SAM2	fragment	E		
LiprinA3–SAM3	fragment	X		
LiprinA4-3SAMs, purified	8497	NP/WP		See LiprinA1

Protein	Gene ID#	Gel Result	EM Result	Function
LiprinA4-SAM1	fragment	Ε		
LiprinA4–SAM1- insertion	fragment	E		Sequence contains a small insertion not found in the NCBI database
LiprinA4-SAM2	fragment	Е, Х		
LiprinA4–SAM3	fragment	Е, Х		
LiprinB1-3SAM	8496	РР	Likely Polymer	Binds to tyrosine phosphatase LAR (important for axon guidance and mammary gland development); Found to interact with S100A4, a calcium-binding protein related to tumor invasiveness and metastasis. [provided by RefSeq]
LiprinB1-3SAMs, rerun	8496	PP		
LiprinB1-SAM1	fragment	BO		
LiprinB1-SAM2	fragment	Ε		
LiprinB1-SAM3	fragment	Е, Х		
LiprinB2–3SAMs	8495	PP		See other liprin entries
LiprinB2–SAM1	fragment	Ε		*
LiprinB2–SAM2	fragment	Е, Х		
LiprinB2–SAM3	fragment	Ε		
LMBT- like_Q96JM7_L3MBTL3	84456	РР		Polycomb group (PcG) proteins participate in DNA- binding complexes with gene-repressing activity, many of which have been highlighted for their involvement in hematopoiesis; Deletion is predicted to be responsible for myeloid hematopoietic malignancies. H-L(3)MBT directly interacts with TEL. ^{39,40}
LRSAM1	90678	NP/WP		Multifunctional RING finger protein that selectively regulates cell adhesion molecules, has ubiquitin ligase activity, and plays a role in receptor endocytosis and viral budding. Mutations found in patients with Charcot-Marie-Tooth disease. ⁴¹⁻⁴³
МОВ	259230	NP/WP		The protein encoded by this gene is predicted to be a five-pass transmembrane protein. Regulates subcellular pools of diacylglycerol-binding proteins in the Golgi apparatus; Regulates, lipid messengers; Influences apoptosis. ^{44.46}
Neurabin-1	55607	NP/WP	·	Acts as regulatory subunit of protein phosphatase I, and controls actin cytoskeleton reorganization. [provided by RefSeq]
Ph1	1911	РР		Drosophila 'Polycomb' group of genes responsible for the stable inheritance of gene activity; Form a multimeric, chromatin-associated protein complex. Homologous to Drosophila 'polyhomeotic' (Ph); The specific function in human cells has not yet been determined. [provided by RefSeq]
PH2	1912	РР		Drosophila 'Polycomb' group of genes responsible for the stable inheritance of gene activity; Form a multimeric, chromatin-associated protein complex. Homologous to Drosophila 'polyhomeotic' (Ph); The specific function in human cells has not yet been determined. [provided by RefSeq]

Protein	Gene ID#	Gel Result	EM Result	Function
РНС3	80012	РР		Loss of PHC3 may favor tumorigenesis by potentially disrupting the ability of cells to remain in G(0)
SAMD12	401474	BO		Unknown
SAMD13-long	148418	PP		Unknown
SAMD13-short	Repeat	PP		Repeat
SAMD3	154075	PP		Unknown
SAMD4B	55095	NP/WP		Inhibits AP-1-, p53- and p21-mediated transcriptional activity. ⁴⁷
SAMD8	142891	PP		Homology to sphingomyelin synthases [RefSeq]
SAMD9	54809	PP	Likely Polymer	SAMD9 could be a key molecule to control cancer cell death by inactivated Sendai virus particle or IFN-beta treatment; Deficient in normophosphatemic familial tumoral calcinosis; Interacts with RGL2 to diminish the expression of EGR1. ^{48,49}
SAMHD1	25939	M/BO		This gene may play a role in regulation of the innate immune response. The encoded protein is upregulated in response to viral infection and may be involved in mediation of tumor necrosis factor-alpha proinflammatory responses. Mutations in this gene have been associated with Aicardi-Goutieres syndrome. [provided by RefSeq]
SAMSN1	64092	NP/WP		SAMSN1 is a member of a novel gene family of putative adaptors and scaffold proteins containing SH3 and SAM (sterile alpha motif) domains. ⁵⁰
SARM1-2SAMs	23098	PP		TIR adaptor SARM is a negative regulator of Toll- like receptor signaling; Also a candidate gene in the onset of hereditary infectious/inflammatory diseases; Regulates neuronal response to stress. ⁵¹⁻⁵³
SARM1-SAM1	fragment	NP/WP		
SARM1-SAM2	fragment	Ε		
SASH1-SAM1	23328	NP/WP		Downregulated expression of the candidate tumour suppressor gene SASH1 is associated with colon cancer. Tumor suppressor gene possibly involved in tumorigenesis of breast and other solid cancers. ^{54,55}
SASH1-SAM2	fragment	NP/WP		
SASH3	54440	NP/WP		The protein encoded by this gene contains a Src homology-3 (SH3) domain and a sterile alpha motif (SAM), both of which are found in proteins involved in cell signaling. This protein may function as a signaling adapter protein in lymphocytes. ⁵⁶
SCMH1	22955	РР		A polycomb group protein involved in transcriptional repression; A crystal structure of the SAM of a homologue shows it forms helical polymers; Forms co-polymers with PH. ^{57,58}
SCM- like1/CRAb/SFMBT1	51460	РР		This gene shares high similarity with the Drosophila Scm (sex comb on midleg) gene. It encodes a protein which contains four malignant brain tumor repeat (mbt) domains and may be involved in antigen recognition. Several alternative splice variants have been characterized. [provided by RefSeq]

Protein	Gene ID#	Gel Results	EM Results
SEC23-interacting protein/SEC23IP	11196	во	COPII-coated vesicles are involved in protein transport from the endoplasmic reticulum to the Golgi apparatus. The protein encoded by this gene was identified by its interaction with a mouse protein similar to yeast Sec23p, an essential component of the COPII. Overexpression of this protein has been shown to cause disorganization of the endoplasmic reticulum-Golgi intermediate compartment and Golgi apparatus, which suggests its role in the early secretory pathway. [provided by RefSeq]
Shank1	50944	Х	Plays scaffolding role in post synaptic density. ⁵⁹
Shank2	22941	PP	Plays scaffolding role in post synaptic density; Mutations linked to autism and mental retardation; Regulates Na+/H+ exchanger 3. ⁵⁹⁻⁶¹
Shank3	85358	PP	Plays scaffolding role in post synaptic density; Crystal structure and EM results show that Shank3- SAM can form sheets made of aligned polymers. ^{59,62}
SLP76/LCP2	3937	NP/WP	SLP-76 was originally identified as a substrate of the ZAP-70 protein tyrosine kinase following T cell receptor (TCR) ligation in the leukemic T cell line Jurkat. Functions as an adaptor or scaffold protein. Studies using SLP-76 deficient T cell lines or mice have provided strong evidence that SLP-76 plays a positive role in promoting T cell development and activation as well as mast cell and platelet function. [provided by RefSeq]
Smaug_SAMD4A	23034	NP/WP	Sterile alpha motifs (SAMs) in proteins such as SAMD4A are part of an RNA-binding domain that functions as a posttranscriptional regulator by binding to an RNA sequence motif known as the Smaug recognition element, which was named after the Drosophila Smaug protein. ⁶³⁻⁶⁵
StarD13-deletion	90627	во	The gene is located in a region of chromosome 13 that has loss of heterozygosity in hepatic cancer. [provided by RefSeq] has GAP activity specific for RhoA and Cdc42; inhibits the Rho mediated assembly of actin stress fibers in cultured cells and is underexpressed in hepatocellular carcinoma tissues
STIM1	6786	Е	Monomeric in the calcium-bound state. In the apo state the protein has a tendency to aggregate. Transmembrane protein that mediates Ca2+ influx after depletion of intracellular Ca2+ stores by gating of store-operated Ca2+ influx channels (SOCs). ⁶⁶⁻⁶⁹ May be associated with the Beckwith-Wiedemann syndrome, Wilms tumor, rhabdomyosarcoma, adrenocrotical carcinoma, and lung, ovarian, and breast cancer.

Protein	Gene ID#	Gel Results	EM Results	Function
STIM2, purified	57620	РР		Regulates calcium concentrations in the cytosol and endoplasmic reticulum, and is involved in the activation of plasma membrane Orai Ca(2+) entry channels. This gene initiates translation from a non- AUG (UUG) start site. [provided by RefSeq]
STIM2-long	repeat	Ε		repeat
Tankyrase1	8658	РР		Spindle aberration associated gene. May play structural scaffolding role; Regulates telomere elongation (inhibited by SAM multimerization). Shown to form polymers via EM; Aberrantly expressed in colon tumors and contain multiple epitopes that induce humoral and cellular immune responses in cancer patients. ⁷⁰⁻⁷³
Tankyrase-2	80351	PP		See Tankyrase 1
TEL/ETV6	2120	РР		This gene encodes an ETS family transcription factor. Required for hematopoiesis and maintenance of the developing vascular network. This gene is known to be involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. [provided by RefSeq]
TEL2	51513	РР		Transcriptional regulator that plays an important role in a variety of cellular processes throughout development and differentiation, and are involved in oncogenesis as well; Cooperates with Myc in B lymphomagenesis (Potter et al., 2000 [PubMed 10828014]).[supplied by OMIM] ⁷⁴⁻⁷⁷
TP63	8626	NP/WP		This gene encodes a member of the p53 family of transcription factors. Involved in development and maintenance of stratified epithelial tissues. Mutations associated with ectodermal dysplasia, and cleft lip/palate syndrome 3 (EEC3); split-hand/foot malformation 4 (SHFM4); ankyloblepharon- ectodermal defects-cleft lip/palate; ADULT syndrome (acro-dermato-ungual-lacrimal-tooth); limb-mammary syndrome; Rap-Hodgkin syndrome (RHS); and orofacial cleft 8. [provided by RefSeq]
TP63-optimized	repeat	NP/WP		Repeat
TP73	7161	Х		This gene encodes tumor protein p73, which is a member of the p53 family of transcription factors involved in cellular responses to stress and development. [provided by RefSeq]
TP73-optimized	repeat	X	-	Repeat

Protein	Gene ID#	Gel Results	EM Results	Function
Usher1G-optimized	124590	Е		Interacts with harmonin, which is associated with Usher syndrome type 1C; Plays a role in the development and maintenance of the auditory and visual systems and functions in the cohesion of hair bundles formed by inner ear sensory cells; Mutations in this gene are associated with Usher syndrome type 1G (USH1G). [provided by RefSeq]
WDSUB1	151525	NP/WP		Unknown
WDSUB1-long	repeat	NP/WP		

PP = Possible Polymer, BO = Borderline Oligomer, NP/WP = Non-polymer/Weak polymer, X = Proteolyzed, E = Low expression

YELLOW – SAM previously shown to form polymer, <mark>GREEN</mark> – Homologous SAM shown to form polymer, <mark>BLUE</mark> – SAM shown to be monomeric

1. Kurabi A, Brener S, Mobli M, Kwan JJ, Donaldson LW. A nuclear localization signal at the SAM-SAM domain interface of AIDA-1 suggests a requirement for domain uncoupling prior to nuclear import. *J. Mol. Biol.* 2009;392(5):1168-1177.

2. Emaduddin M, Edelmann MJ, Kessler BM, Feller SM. Odin (ANKS1A) is a Src family kinase target in colorectal cancer cells. *Cell Commun. Signal.* 2008;6:7.

3. Stagner EE, Bouvrette DJ, Cheng J, Bryda EC. The polycystic kidney disease-related proteins Bicc1 and SamCystin interact. *Biochem. Biophys. Res. Commun.* 2009;383(1):16-21.

4. Lees AM, Deconinck AE, Campbell BD, Lees RS. Atherin: a newly identified, lesion-specific, LDL-binding protein in human atherosclerosis. *Atherosclerosis*. 2005;182(2):219-230.

5. Roth W, Kermer P, Krajewska M, et al. Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways. *Cell Death Differ*. 2003;10(10):1178-1187.

6. Maisonneuve C, Guilleret I, Vick P, et al. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. *Development*. 2009;136(17):3019-3030.

7. Tabuchi K, Biederer T, Butz S, Sudhof TC. CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. *J. Neurosci.* 2002;22(11):4264-4273.

8. Ziera T, Irlbacher H, Fromm A, et al. Cnksr3 is a direct mineralocorticoid receptor target gene and plays a key role in the regulation of the epithelial sodium channel. *FASEB J.* 2009;23(11):3936-3946.

9. Sato S, Inoue H, Kogure T, Tagaya M, Tani K. Golgi-localized KIAA0725p regulates membrane trafficking from the Golgi apparatus to the plasma membrane in mammalian cells. *FEBS Lett.* 2010;584(21):4389-4395.

10. Chibalin AV, Leng Y, Vieira E, et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. *Cell*. 2008;132(3):375-386.

11. Kawasaki T, Kobayashi T, Ueyama T, Shirai Y, Saito N. Regulation of clathrin-dependent endocytosis by diacylglycerol kinase delta: importance of kinase activity and binding to AP2alpha. *Biochem. J.* 2008;409(2):471-479.

12. Harada BT, Knight MJ, Imai S, et al. Regulation of enzyme localization by polymerization: polymer formation by the SAM domain of diacylglycerol kinase delta1. *Structure*. 2008;16(3):380-387.

13. Luo B, Regier DS, Prescott SM, Topham MK. Diacylglycerol kinases. Cell. Signal. 2004;16(9):983-989.

14. Nagaya H, Wada I, Jia Y, Kanoh H. Diacylglycerol kinase delta suppresses ER-to-Golgi traffic via its SAM and PH domains. *Mol. Biol. Cell.* 2002;13(1):302-316.

15. Baum AE, Akula N, Cabanero M, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. *Mol. Psychiatry*. 2008;13(2):197-207.

16. Murakami T, Sakane F, Imai S, Houkin K, Kanoh H. Identification and characterization of two splice variants of human diacylglycerol kinase eta. *J. Biol. Chem.* 2003;278(36):34364-34372.

17. Hahne JC, Kummer S, Heukamp LC, et al. Regulation of protein tyrosine kinases in tumour cells by the transcription factor Ets-1. *Int. J. Oncol.* 2009;35(5):989-996.

18. Russell L, Garrett-Sinha LA. Transcription factor Ets-1 in cytokine and chemokine gene regulation. *Cytokine*. 2010;51(3):217-226.

19. Clark JP, Cooper CS. ETS gene fusions in prostate cancer. Nat Rev Urol. 2009;6(8):429-439.

20. Dwyer J, Li H, Xu D, Liu J. Transcriptional regulation of telomerase activity: roles of the the Ets transcription factor family. *Ann. N. Y. Acad. Sci.* 2007;1114:36-47.

21. Lee S, Bahn JH, Choi CK, et al. ESE-1/EGR-1 pathway plays a role in tolfenamic acid-induced apoptosis in colorectal cancer cells. *Mol. Cancer Ther.* 2008;7(12):3739-3750.

22. Wu J, Duan R, Cao H, et al. Regulation of epithelium-specific Ets-like factors ESE-1 and ESE-3 in airway epithelial cells: potential roles in airway inflammation. *Cell Res.* 2008;18(6):649-663.

23. Prescott JD, Koto KSN, Singh M, Gutierrez-Hartmann A. The ETS transcription factor ESE-1 transforms MCF-12A human mammary epithelial cells via a novel cytoplasmic mechanism. *Mol. Cell. Biol.* 2004;24(12):5548-5564.

24. Zhang S, Zhang G, Zhao Y, et al. [Expression of EphA7 protein in primary hepatocellular carcinoma and its clinical significance]. *Zhonghua Wai Ke Za Zhi*. 2010;48(1):53-56.

25. Tsuboi M, Mori H, Bunai T, et al. Secreted form of EphA7 in lung cancer. Int. J. Oncol. 2010;36(3):635-640.

26. Abdul-Aziz NM, Turmaine M, Greene NDE, Copp AJ. EphrinA-EphA receptor interactions in mouse spinal neurulation: implications for neural fold fusion. *Int. J. Dev. Biol.* 2009;53(4):559-568.

27. Dong Y, Mao-Ying Q, Chen J, et al. Involvement of EphB1 receptor/ephrinB1 ligand in bone cancer pain. *Neurosci. Lett.* 2011;496(3):163-167.

28. Nolt MJ, Lin Y, Hruska M, et al. EphB controls NMDA receptor function and synaptic targeting in a subunit-specific manner. *J. Neurosci.* 2011;31(14):5353-5364.

29. Chumley MJ, Catchpole T, Silvany RE, Kernie SG, Henkemeyer M. EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. *J. Neurosci.* 2007;27(49):13481-13490.

30. Wang G, Uludag H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. *Expert Opin Drug Deliv*. 2008;5(5):499-515.

31. Hua Y, Ouyang H, Chen Z, et al. Promoted cancer growth by stimulating cell proliferation and decreasing apoptosis using a lentivirus-based EphB2 RNAi in pancreatic carcinoma CFPAC-1 cells. *Biomed. Pharmacother.* 2011;65(2):123-131.

32. Chiu S, Chang K, Ting C, et al. Over-expression of EphB3 enhances cell-cell contacts and suppresses tumor growth in HT-29 human colon cancer cells. *Carcinogenesis*. 2009;30(9):1475 -1486.

33. Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2-q29 in squamous cell carcinoma of the lung. *BMC Cancer*. 2009;9:237.

34. Fox BP, Kandpal RP. EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells. *Oncogene*. 2009;28(14):1706-1713.

35. Freywald A, Sharfe N, Rashotte C, Grunberger T, Roifman CM. The EphB6 Receptor Inhibits JNK Activation in T Lymphocytes and Modulates T Cell Receptor-mediated Responses. *Journal of Biological Chemistry*. 2003;278(12):10150 - 10156.

36. Nachat R, Cipolat S, Sevilla LM, et al. KazrinE is a desmosome-associated liprin that colocalises with acetylated

microtubules. J. Cell. Sci. 2009;122(Pt 22):4035-4041.

37. Addou-Klouche L, Adélaïde J, Finetti P, et al. Loss, mutation and deregulation of L3MBTL4 in breast cancers. *Mol. Cancer*. 2010;9:213.

38. Katsura A, Kimura K, Hosoi K, et al. Transactivation activity of LBP-1 proteins and their dimerization in living cells. *Genes to Cells*. 2009;14(10):1183-1196.

39. Boccuni P, MacGrogan D, Scandura JM, Nimer SD. The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). *J. Biol. Chem.* 2003;278(17):15412-15420.

40. Arai S, Miyazaki T. Impaired maturation of myeloid progenitors in mice lacking novel Polycomb group protein MBT-1. *EMBO J.* 2005;24(10):1863-1873.

41. Guernsey DL, Jiang H, Bedard K, et al. Mutation in the gene encoding ubiquitin ligase LRSAM1 in patients with Charcot-Marie-Tooth disease. *PLoS Genet*. 2010;6(8). Available at: http://www.ncbi.nlm.nih.gov/pubmed/20865121 [Accessed June 6, 2011].

42. Amit I, Yakir L, Katz M, et al. Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. *Genes Dev*. 2004;18(14):1737-1752.

43. Li B, Su Y, Ryder J, et al. RIFLE: a novel ring zinc finger-leucine-rich repeat containing protein, regulates select cell adhesion molecules in PC12 cells. *J. Cell. Biochem.* 2003;90(6):1224-1241.

44. Lafont E, Milhas D, Carpentier S, et al. Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. *Cell Death Differ*. 2010;17(4):642-654.

45. Villani M, Subathra M, Im Y, et al. Sphingomyelin synthases regulate production of diacylglycerol at the Golgi. *Biochem. J.* 2008;414(1):31-41.

46. Yeang C, Varshney S, Wang R, et al. The domain responsible for sphingomyelin synthase (SMS) activity. *Biochim. Biophys. Acta.* 2008;1781(10):610-617.

47. Luo N, Li G, Li Y, et al. SAMD4B, a novel SAM-containing protein, inhibits AP-1-, p53- and p21-mediated transcriptional activity. *BMB Rep.* 2010;43(5):355-361.

48. Tanaka M, Shimbo T, Kikuchi Y, Matsuda M, Kaneda Y. Sterile alpha motif containing domain 9 is involved in death signaling of malignant glioma treated with inactivated Sendai virus particle (HVJ-E) or type I interferon. *Int. J. Cancer.* 2010;126(8):1982-1991.

49. Hershkovitz D, Gross Y, Nahum S, et al. Functional characterization of SAMD9, a protein deficient in normophosphatemic familial tumoral calcinosis. *J. Invest. Dermatol.* 2011;131(3):662-669.

50. Claudio JO, Zhu YX, Benn SJ, et al. HACS1 encodes a novel SH3-SAM adaptor protein differentially expressed in normal and malignant hematopoietic cells. *Oncogene*. 2001;20(38):5373-5377.

51. Dalod M. Studies of SARM1 uncover similarities between immune and neuronal responses to danger. *Sci. STKE*. 2007;2007(417):pe73.

52. Mink M, Csiszar K. SARM1: A candidate gene in the onset of hereditary infectious/inflammatory diseases. *Clin. Immunol.* 2005;115(3):333-334.

53. Carty M, Goodbody R, Schröder M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. *Nat. Immunol.* 2006;7(10):1074-1081.

54. Rimkus C, Martini M, Friederichs J, et al. Prognostic significance of downregulated expression of the candidate tumour suppressor gene SASH1 in colon cancer. *Br J Cancer*. 2006;95(10):1419-1423.

55. Zeller C, Hinzmann B, Seitz S, et al. SASH1: a candidate tumor suppressor gene on chromosome 6q24.3 is downregulated in breast cancer. *Oncogene*. 2003;22(19):2972-2983.

56. Beer S, Simins AB, Schuster A, Holzmann B. Molecular cloning and characterization of a novel SH3 protein (SLY) preferentially expressed in lymphoid cells. *Biochim. Biophys. Acta*. 2001;1520(1):89-93.

57. Levine SS, Weiss A, Erdjument-Bromage H, et al. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. *Mol. Cell. Biol.* 2002;22(17):6070-6078.

58. Kim CA, Sawaya MR, Cascio D, Kim W, Bowie JU. Structural organization of a Sex-comb-on-midleg/polyhomeotic copolymer. *J. Biol. Chem.* 2005;280(30):27769-27775.

59. Sheng M, Kim E. The Shank family of scaffold proteins. J. Cell. Sci. 2000;113 (Pt 11):1851-1856.

60. Berkel S, Marshall CR, Weiss B, et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. *Nat. Genet.* 2010;42(6):489-491.

61. Han W, Kim KH, Jo MJ, et al. Shank2 associates with and regulates Na+/H+ exchanger 3. J. Biol. Chem. 2006;281(3):1461-1469.

62. Baron MK, Boeckers TM, Vaida B, et al. An Architectural Framework That May Lie at the Core of the Postsynaptic Density. *Science*. 2006;311(5760):531-535.

63. Baez MV, Boccaccio GL. Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules. *J. Biol. Chem.* 2005;280(52):43131-43140.

64. Oberstrass FC, Lee A, Stefl R, et al. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. *Nat. Struct. Mol. Biol.* 2006;13(2):160-167.

65. Johnson PE, Donaldson LW. RNA recognition by the Vts1p SAM domain. Nat. Struct. Mol. Biol. 2006;13(2):177-178.

66. Johnstone LS, Graham SJL, Dziadek MA. STIM proteins: integrators of signalling pathways in development, differentiation and disease. J. Cell. Mol. Med. 2010;14(7):1890-1903.

67. Liou J, Kim ML, Heo WD, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. *Curr. Biol.* 2005;15(13):1235-1241.

68. Luik RM, Wu MM, Buchanan J, Lewis RS. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions. *The Journal of Cell Biology*. 2006;174(6):815 -825.

69. Liou J, Fivaz M, Inoue T, Meyer T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. *Proceedings of the National Academy of Sciences*. 2007;104(22):9301 -9306.

70. Hatsugai K, Ohishi T, Sugimoto Y, Seimiya H. Tankyrase-1 assembly to large protein complexes blocks its telomeric function. *FEBS Lett.* 2010;584(18):3885-3890.

71. Dynek JN, Smith S. Resolution of sister telomere association is required for progression through mitosis. *Science*. 2004;304(5667):97-100.

72. De Rycker M, Price CM. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. *Mol. Cell. Biol.* 2004;24(22):9802-9812.

73. Shebzukhov YV, Lavrik IN, Karbach J, et al. Human tankyrases are aberrantly expressed in colon tumors and contain multiple epitopes that induce humoral and cellular immune responses in cancer patients. *Cancer Immunol. Immunother*. 2008;57(6):871-881.

74. Cardone M, Kandilci A, Carella C, et al. The novel ETS factor TEL2 cooperates with Myc in B lymphomagenesis. *Mol. Cell. Biol.* 2005;25(6):2395-2405.

75. Gu X, Shin BH, Akbarali Y, et al. Tel-2 is a novel transcriptional repressor related to the Ets factor Tel/ETV-6. *J. Biol. Chem.* 2001;276(12):9421-9436.

76. Poirel H, Lopez RG, Lacronique V, et al. Characterization of a novel ETS gene, TELB, encoding a protein structurally and functionally related to TEL. *Oncogene*. 2000;19(41):4802-4806.

77. Potter MD, Buijs A, Kreider B, van Rompaey L, Grosveld GC. Identification and characterization of a new human ETS-family transcription factor, TEL2, that is expressed in hematopoietic tissues and can associate with TEL1/ETV6. *Blood*.

2000;95(11):3341-3348.