

Supporting Information

© Wiley-VCH 2011

69451 Weinheim, Germany

Synthesis of (–)-Okilactomycin by a Prins-Type Fragment-Assembly Strategy**

Jason M. Tenenbaum, William J. Morris, Daniel W. Custar, and Karl A. Scheidt*

anie_201102037_sm_miscellaneous_information.pdf

Supporting Information

General Information	
Synthesis of α -Silyloxy Aldehyde 21	
Synthesis of β-Hydroxy Dioxinone 4	
Synthesis of δ -Hydroxy β -Ketoester 17	
Synthesis of Trioxabicyclooctane 18	
Synthesis of (–)-Okilactomycin 1	
Spectral Comparisons	
Stereochemical Determination of 10	
References	

General Information

All reactions were carried out under a nitrogen atmosphere in flame dried glassware with magnetic stirring. Dichloromethane, tetrahydrofuran, benzene, toluene, acetonitrile, ether, and methanol were purified by passage though a bed of activated alumina.¹ Reagents were purified following the guidelines of Armarego and Chai prior to use unless otherwise stated.² Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 (230-400 mesh). Preparative HPLC was carried out on an Agilent 1200 Series LC with an Agilent 6130 Quadropole Mass Anaylizer (ESI Source) and a LEAP CTC PAL Fraction Collector. Analytical thin laver chromatography (TLC) was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light or ceric ammonium molybdate stain followed by heating. Infrared spectra were recorded on a Bruker Tensor 37 FT-IR spectrometer. ¹H NMR spectra were recorded on an INOVA 500 (500 MHz) or an AVANCE III 500 MHz w/ direct cryoprobe (500 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 7.26 ppm). Data are reported as (ap = apparent, s = singlet, d = doublet, t = apparent triplet, q = quartet, m = multiplet, b =broad; coupling constant(s) in Hz; integration.) Proton-decoupled ¹³C NMR spectra were recorded on an AVANCE III 500 MHz w/ direct cryoprobe (125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.0 ppm). Optical rotations were measured on a Perkin Elmer Model 341 Polarimeter with a sodium lamp. Mass spectra were obtained on a Thermo Finnegan LCQ (ESI) or an Agilent 1100 series LC/MSD. High resolution mass spectra were obtained on a Agilent 6210 LC-TOF (ESI, APCI, APPI).

Synthesis of *a*-Silyloxy Aldehyde 21

((pent-4-ynyloxy)methyl)benzene (5). To a flame-dried, round-bottom flask with stir bar containing sodium hydride (3.1 g, 129 mmol) and THF (180 mL) was added neat 4pentyn-1-ol (5.0 mL, 54 mmol) dropwise by syringe. The reaction mixture was stirred at room temperature for 1 h. Benzyl chloride (6.2 mL, 54 mmol) and tetrabutylammonium iodide (0.9 g, 2.4 mmol) were added in one portion, respectively. The flask was fitted with a reflux condensor and heated to 70 °C for 18 h. The reaction mixture was cooled to room temperature and diluted with EtOAc (100 mL). The organic layer was washed with water (2 x 100 mL) and brine (100 mL). The organic layer was dried over Na₂SO₄ and The residue was purified by flash column chromatography (5% concentrated. EtOAc/hexanes) to afford alkyne 5 (8.1 g, 86%) as a colorless oil. Analytical data: ¹H NMR (500 MHz; CDCl₃): δ 7.35-7.34 (m, 4H), 7.30-7.27 (m, 1H), 4.52 (s, 2H), 3.58 (t, J = 6.2 Hz, 2H), 2.33 (td, J = 7.1, 2.7 Hz, 2H), 1.94 (t, J = 2.7 Hz, 1H), 1.84 (tt, J = 7.1, 6.2 Hz, 2H); ¹³C NMR (125 MHz; CDCl₃): δ 138.4, 128.3, 127.59, 127.54, 83.9, 73.0, 68.61, 68.43, 28.6, 15.3; HRMS (ESI): Mass calcd for $C_{12}H_{15}O [M+H]^+$, 175.1117. Found [M+H]⁺, 175.1110.

(*E*)-((**5-iodopent-4-enyloxy)methyl)benzene** (**6**). To a flame-dried, round-bottom flask with stir bar wrapped in aluminum foil was added Cp₂Zr(H)Cl (3.1 g, 12.1 mmol) and THF (36 mL). The flask was placed in a room temperature water bath and alkyne **5** (2.0 g, 11.5 mmol) was added dropwise by syringe. The flask was removed from the bath and the reaction mixture was stirred for 30 min. The flask was placed in the water bath again and *N*-iodosuccinimide (2.7 g, 12.1 mmol) was added in one portion. The reaction mixture was stirred for 15 min and then diluted with hexanes. The mixture was filtered through Celite and concentrated. The residue was re-dissolved in hexanes and filtered through Florisil and concentrated to afford vinyl iodide **6** (2.9 g, 84%) as a pale yellow oil which was used without further purification. Analytical data: ¹H NMR (500 MHz; CDCl₃): δ 7.37-7.28 (m, 5H), 6.51 (dt, *J* = 14.4, 7.2 Hz, 1H), 5.99 (dt, *J* = 14.3, 1.4 Hz, 1H), 4.49 (s, 2H), 3.47 (t, *J* = 6.3 Hz, 2H), 2.17 (ddd, *J* = 14.7, 6.8, 1.4 Hz, 2H), 1.73-1.68 (m, 2H); ¹³C NMR (125 MHz; CDCl₃): δ 145.9, 138.4, 128.4, 127.64, 127.59, 75.0, 72.9, 69.0, 32.7, 28.4.

(E)-7-(benzyloxy)-1-(tert-butyldiphenylsilyloxy)hept-3-en-2-one (S1). To a flamedried, round-bottom flask with stir bar containing a -78 °C solution of vinyl iodide 6 (11.0 g, 36.4 mmol) in THF (360 mL) was added n-BuLi (25 mL, 40 mmol, 1.61 M in hexanes) dropwise by syringe. In a separate flame-dried, round-bottom flask 2-(tertbutyldiphenylsilyloxy)-N-methoxy-N-methylacetamide (7) (14.5 g, 40.6 mmol) was dissolved in THF (57 mL). The amide solution was added to the vinyl iodide solution dropwise by canula over 30 min. The reaction mixture was stirred at -78 °C for 3 h. The reaction mixture was guenched with 0.1 N HCl and warmed to room temperature. The mixture was diluted with 1:1 Et₂O:hexanes and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were dried over Na_2SO_4 and concentrated. The residue was purified by flash column chromatography (5% to 10% EtOAc/hexanes) to afford enone S1 (11.1 g, 65%) as a colorless oil. Analytical data: IR (film) 3071, 2931, 2856, 1695, 1625, 1427, 1110, 823, 739, 700 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.66 (dt, J = 7.4, 1.0 Hz, 4H), 7.45-7.27 (m, 12H), 6.94 (dt, J = 15.7, 6.9 Hz, 1H), 6.46-6.42(m, 1H), 4.49 (s, 2H), 4.31 (s, 2H), 3.48 (t, J = 6.2 Hz, 2H), 2.35-2.30 (m, 2H), 1.77 (quintet, J = 7.0 Hz, 2H), 1.10 (s, 9H); ¹³C NMR (125 MHz; CDCl₃): δ 197.9, 147.7, 138.3, 135.5, 134.8, 132.7, 129.9, 129.6, 128.4, 127.80, 127.70, 127.63, 127.61, 125.5, 73.0, 69.2, 69.0, 29.4, 28.1, 26.7, 19.3; LRMS (ESI): Mass calcd for C₃₀H₃₆NaO₂Si $[2M+Na]^+$, 967.48. Found $[2M+Na]^+$, 967.09.

((2Z,3E)-7-(benzyloxy)-2-ethylidenehept-3-enyloxy)(*tert*-butyl)diphenylsilane (8). To a flame-dried, round-bottom flask with stir bar containing a -78 °C solution of ethyltriphenylphosphonium bromide (23.5 g, 63.3 mmol) in THF (165 mL) was added potassium bis(trimethylsilyl)amide (118 mL, 59 mmol, 0.5 M in toluene) dropwise by cannula over 30 min. The reaction mixture was warmed to 0 °C for 40 min, and then re-

cooled to -78 °C. To the reaction mixture was added a solution of enone S1 (11.1 g, 23.5 mmol) in THF (65 mL) dropwise by cannula over 45 min. The reaction mixture was warmed to 0 °C and stirred for 3 h. The mixture was poured into 0.1 N HCl (250 mL) and 1:1 Et₂O:hexanes (250 mL). The aqueous layer was extracted with EtOAc (3x), dried with Na₂SO₄, and concentrated to afford a white slurry. The slurry was taken up in 1:1 Et₂O:hexanes and filtered through a plug of SiO₂, eluting with Et₂O in order to remove the solid triphenylphosphine oxide. The resulting oil was purified by flash column chromatography (8% Et₂O/hexanes) to afford diene 8 (9.5 g, 84%) as a colorless oil. Analytical data: IR (film) 3070, 3031, 2930, 2855, 1427, 1109, 1072, 1027, 964, 824 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.71 (dt, J = 6.6, 1.4 Hz, 4H), 7.44-7.35 (m, 10H), 7.31-7.28 (m, 1H), 5.99 (d, J = 15.7 Hz, 1H), 5.81 (dt, J = 15.2, 7.4 Hz, 1H), 5.51 (q, J = 15.2, 7.5 (q, J = 15.2, 7.5 (q, J = 15.2), 7.5 (q, J = 15.2, 7.5 (q, J = 15.2), 7.5 (q, J = 15 7.1 Hz, 1H), 4.51 (s, 2H), 4.35 (s, 2H), 3.51 (td, J = 6.6, 1.2 Hz, 2H), 2.20 (q, J = 7.2 Hz, 2H), 1.77-1.71 (m, 2H), 1.52 (d, J = 7.1 Hz, 3H), 1.05 (m, 9H); ¹³C NMR (125 MHz; CDCl₃): δ 138.6, 137.3, 135.7, 133.8, 132.3, 129.5, 128.33, 128.14, 127.62, 127.56, 127.45, 126.8, 72.9, 69.8, 58.6, 29.72, 29.64, 26.8, 19.2, 13.5; LRMS (ESI): Mass calcd for C₃₂H₄₀NaO₂Si [M+Na]⁺, 507.27. Found [M+Na]⁺, 507.65.

(S)-4-benzyl-3-((1R,2S,5S)-2-(3-(benzyloxy)propyl)-4-((*tert*-

butyldiphenylsilyloxy)methyl)-5-methylcyclohex-3-enecarbonyl)oxazolidin-2-one

(10). To a flame-dried scintillation vial with stir bar wrapped in foil was added diene 8 (1.0 g, 2.1 mmol), silver hexafluorophosphate (0.52 g, 2.1 mmol), and CH₂Cl₂ (4.0 mL), respectively. The reaction mixture was cooled to -78 °C. To the solution was added Et₂AlCl (1.26 mL, 2.3 mmol, 1.8 M in toluene) dropwise by syringe. A -78 °C solution of (S)-3-acryloyl-4-benzyloxazolidin-2-one (9) (0.51 g, 2.2 mmol) in CH₂Cl₂ (3 mL) was added dropwise by cannula. The reaction mixture was stirred at -78 °C for 1 h, and then poured into saturated aqueous NaHCO₃ and diluted with EtOAc. The mixture was filtered through Celite and concentrated. The residue was diluted with CH₂Cl₂, filtered through a Biotage ISOLUTE® phase separator, and the organic filtrate was concentrated. The resulting residue was purified by flash column chromatography (15%) EtOAc/hexanes) to afford cyclohexene 10 (1.27 g, 86%) in a >20:1 ratio of diastereomers as a white solid. Analytical data: IR (film) 2931, 2857, 1781, 1697, 1385, 1212, 1110, 823, 701cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.70-7.67 (m, 4H), 7.42-7.37 (m, 6H), 7.31 (q, J = 8.6 Hz, 3H), 7.24-7.16 (m, 7H), 5.83 (d, J = 5.6 Hz, 1H), 4.70 (ddt, J = 10.8, 7.5, 10.8 Hz)3.5 Hz, 1H), 4.43 (s, 2H), 4.20-4.14 (m, 2H), 4.11-4.07 (m, 2H), 3.84 (ddd, J = 12.8, 5.4, 5.4, 5.4) 2.5 Hz, 1H), 3.46 (dt, J = 9.2, 6.3 Hz, 1H), 3.43-3.37 (m, 2H), 2.85-2.82 (m, 1H), 2.50 (dd, J = 13.0, 10.6 Hz, 1H), 2.34-2.29 (m, 1H), 1.81 (ddd, J = 13.3, 5.7, 2.2 Hz, 1H),1.78-1.72 (m, 1H), 1.72-1.65 (m, 1H), 1.61-1.56 (m, 1H), 1.39-1.34 (m, 2H), 1.05 (s, 9H), 1.00 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 175.3, 153.1, 140.4, 138.5, 135.59, 135.55, 133.80, 133.67, 129.6, 129.4, 129.0, 128.3, 127.68, 127.66, 127.62, 127.44, 127.28, 123.9, 73.0, 70.3, 66.3, 65.7, 55.3, 43.1, 38.3, 34.7, 30.9, 29.8, 28.7, 27.4,

26.9, 19.3, 19.1; LRMS (ESI): Mass calcd for $C_{45}H_{57}N_2O_5Si [M+NH_4]^+$, 733.40. Found $[M+NH_4]^+$, 733.25; $[\alpha]_D^{20}$ +81.9 (CHCl₃, *c* 0.87).

((1R,2S,5S)-2-(3-(benzyloxy)propyl)-4-((tert-butyldiphenylsilyloxy)methyl)-5-

methylcyclohex-3-enyl)methanol (S2). To a flame-dried, round-bottom flask with stir bar containing a 0 °C solution of cyclohexene 10 (2.7 g, 3.8 mmol), Et₂O (13 mL), and MeOH (0.25 mL) was added LiBH₄ (96 mg, 4.4 mmol) in one portion. The reaction mixture was stirred at 0 °C for 3.5 h and then carefully quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (15% to 20% EtOAc/hexanes) to afford primary alcohol S2 (1.7 g, 83%) as a colorless oil. Analytical data: IR (film) 3401, 2929, 2857, 1428, 1362, 1111. 739, 701 cm⁻¹; ¹H-NMR (500 MHz; CDCl₃): δ 7.69-7.66 (m, 4H), 7.42-7.33 (m, 10H), 7.29-7.27 (m, 1H), 5.82-5.81 (m, 1H), 4.49 (s, 2H), 4.21 (dd, J = 13.0, 1.1 Hz, 1H), 4.08(d, J = 13.0 Hz, 1H), 3.62 (ddd, J = 10.6, 7.9, 5.2 Hz, 1H), 3.53 (ddd, J = 10.6, 6.9, 5.9Hz, 1H), 3.47 (td, J = 6.5, 1.2 Hz, 2H), 2.35-2.30 (m, 1H), 2.25 (dt, J = 10.3, 5.2 Hz, 1H), 1.91 (ttd, J = 10.3, 5.3, 2.5 Hz, 1H), 1.78-1.71 (m, 1H), 1.64 (ddd, J = 12.9, 6.0, 1.9 Hz, 1H), 1.57 (ddd, J = 13.3, 10.2, 6.0 Hz, 1H), 1.53-1.45 (m, 1H), 1.39-1.37 (m, 1H), 1.18-1.13 (m, 1H), 1.05 (s, 9H), 0.95 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 140.5, 138.5, 135.53, 135.50, 133.90, 133.79, 129.53, 129.52, 128.3, 127.66, 127.58, 127.52, 127.51, 125.6, 72.8, 70.5, 66.0, 65.2, 40.1, 34.7, 31.6, 30.9, 27.4, 26.81, 26.67, 19.34, 19.28; LRMS (ESI): Mass calcd for C₃₅H₅₀NO₃Si [M+NH₄]⁺, 560.36. Found $[M+NH_{4}]^{+}$, 560.58; $[\alpha]_{D}^{20}$ +60.7 (MeOH, *c* 0.83).

(1R,2S,5S)-2-(3-(benzyloxy)propyl)-4-((tert-butyldiphenylsilyloxy)methyl)-5-

methylcyclohex-3-enecarbaldehyde (11). To a flame-dried, round-bottom flask with stir bar containing alcohol **S2** (1.9 g, 3.5 mmol) and CH₂Cl₂ (100 mL) was added Dess-Martin periodinane (3.1 g, 7.3 mmol) and a few drops of water. The mixture was stirred at room temperature for 45 min and quenched with saturated aqueous NaHCO₃ (60 mL) and ½ saturated aqueous Na₂S₂O₃ (60 mL). The mixture was stirred until both layers were clear, filtered through a Biotage ISOLUTE® phase separator, and the organic filtrate was concentrated. The residue was purified by flash column chromatography (5% EtOAc/hexanes) to afford aldehyde **11** (1.7 g, 90%) as a colorless oil. Analytical data: IR (film) 2931, 2857, 2710, 1723, 1428, 1361, 1111, 823, 739, 701 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 9.77 (s, 1H), 7.66 (tt, *J* = 6.1, 1.7 Hz, 4H), 7.43-7.27 (m, 11H), 5.84 (dd, *J* = 5.3, 1.4 Hz, 1H), 4.47 (s, 2H), 4.19 (dd, *J* = 13.2, 0.9 Hz, 1H), 4.09 (d, *J* = 13.2, Hz, 1H), 3.42 (t, *J* = 6.5 Hz, 2H), 2.63 (dq, *J* = 10.0, 4.9 Hz, 1H), 2.57 (ddd, *J* = 12.1, 5.0, 2.8 Hz, 1H), 2.30 (dq, *J* = 15.6, 7.6 Hz, 1H), 2.00 (ddd, *J* = 13.5, 6.1, 2.5 Hz, 1H), 1.75-

1.67 (m, 1H), 1.63-1.56 (m, 1H), 1.43-1.35 (m, 2H), 1.28 (dtd, J = 12.9, 10.4, 5.0 Hz, 1H), 1.06 (s, 9H), 0.98 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 204.9, 141.2, 138.4, 135.51, 135.49, 133.67, 133.63, 129.62, 129.60, 128.3, 127.64, 127.62, 127.57, 127.52, 124.0, 72.9, 70.2, 65.7, 50.9, 34.4, 30.7, 29.1, 27.7, 27.4, 26.8, 19.3; LRMS (ESI): Mass calcd for C₃₅H₄₈NO₃Si [M+NH₄]⁺, 558.34. Found [M+NH₄]⁺, 558.75; [α]_D²⁰ = +61.8° (MeOH, c 1.57).

(1S,2S,5S)-2-(3-(benzyloxy)propyl)-4-((tert-butyldiphenylsilyloxy)methyl)-1-

hydroxy-5-methylcyclohex-3-enecarbaldehyde (3). To a flame-dried, round-bottom flask with stir bar containing aldehyde 11 (1.6 g, 3.0 mmol) and CH₂Cl₂ (7 mL) was added triethylamine (6.0 mL), followed by *t*-butyldimethylsilyltriflate (7.2 mL 31 mmol) dropwise by syringe. The solution was stirred for 1 h at room temperature, then cooled to 0 °C and diluted with hexanes followed by saturated aqueous $Na_2S_2O_3$. The aqueous layer was extracted with hexanes (3x) and the combined organic layers were dried over Na₂SO₄ and concentrated. The resulting yellow oil was added to a round-bottom flask, dissolved in CH₂Cl₂ (64 mL), and cooled to 0 °C. To the solution was added a cold solution of dimethyldioxirane (53.8 mL 3.8 mmol, 0.07 M in acetone) dropwise by syringe. The reaction mixture was concentrated in vacuo after 5 min (bath >25 °C). The residue was redissolved in EtOAc (100 mL) and re-cooled to 0 °C. To the solution was added 0.1 N HCl (50 mL). The mixture was stirred at 0 °C for 30 min and then at room temperature for 30 min. The reaction mixture was extracted with EtOAc (3x), and the combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (10% to 20% EtOAc/hexanes) to afford α hydroxy aldehyde 3 (1.45 g, 88% over two steps) in a 13:1 ratio of diastereomers as a colorless oil. Analytical data: IR (film) 3431, 2955, 2857, 1724, 1454, 1111, 438 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 9.64 (s, 1H), 7.67 (ddd, J = 7.9, 4.0, 1.5 Hz, 4H), 7.43-7.27 (m, 11H), 5.71 (dd, J = 3.2, 1.5 Hz, 1H), 4.47 (s, 2H), 4.20 (q, J = 13.9 Hz, 2H), 3.47-3.39 (m, 2H), 3.21 (s, 1H), 2.55 (q, J = 6.7 Hz, 1H), 2.26 (d, J = 9.4 Hz, 1H), 1.93(dd, J = 13.6, 6.8 Hz, 1H), 1.81-1.73 (m, 1H), 1.62-1.52 (m, 3H), 1.19-1.12 (m, 1H), 1.07 (s, 9H), 0.97 (d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz; CDCl₃): δ 204.7, 140.3, 138.4, 135.56, 135.54, 133.5, 129.71, 129.69, 128.4, 127.67, 127.63, 127.54, 121.3, 78.6, 72.9, 69.9, 65.4, 43.6, 38.4, 28.2, 27.67, 27.63, 26.8, 19.7, 19.2; LRMS (ESI): Mass calcd for $C_{35}H_{48}NO_4Si [M+NH_4]^+$, 574.34. Found $[M+NH_4]^+$, 574.50; $[\alpha]_D^{20}$ +60.9 (MeOH, c 0.77).

(1*S*,2*S*,5*S*)-2-(3-(benzyloxy)propyl)-1-(*tert*-butyldimethylsilyloxy)-4-((*tert*-butyldiphenylsilyloxy)methyl)-5-methylcyclohex-3-enecarbaldehyde (21). To a flame-dried, round-bottom flask with stir bar containing α -hydroxy aldehyde 3 (3.7 g 6.6

mmol), 2,6-lutidine (4.6 mL, 40 mmol) and CH₂Cl₂ (67 mL) was added tbutyldimethylsilyltriflate (4.6 mL, 20 mmol) dropwise by syringe. The reaction mixture was stirred for 40 min, guenched with saturated aqueous NaHCO₃ (70 mL), and filtered through a Biotage ISOLUTE[®] phase separator. The organic filtrate was concentrated and the residue was purified by flash column chromatography (2% to 4%) EtOAc/hexanes) to afford α -silvloxy aldehyde **21** (3.9 g, 88%) as a pale yellow oil. Analytical data: IR (film) 2954, 2930, 2857, 2737, 2709, 1734, 1472, 1253, 1112, 837, 777, 739, 702 cm⁻¹; ¹H NMR (500 MHz; CDCl₂): δ 9.60 (s, 1H), 7.69-7.66 (m, 4H), 7.42-7.27 (m, 11H), 5.73 (dt, J = 3.0, 1.5 Hz, 1H), 4.46 (s, 2H), 4.17 (dd, J = 12.9, 1.0Hz, 1H), 4.09 (d, J = 12.9 Hz, 1H), 3.41 (td, J = 6.4, 1.2 Hz, 2H), 2.53 (d, J = 7.6 Hz, 1H), 2.30-2.28 (m, 1H), 1.79 (ddd, J = 13.8, 6.3, 1.2 Hz, 1H), 1.75-1.70 (m, 1H), 1.58 (dd, J = 13.8, 9.3 Hz, 1H), 1.53-1.45 (m, 2H), 1.12-1.08 (m, 1H), 1.05 (s, 9H), 0.99 (d, J = 7.1 Hz, 3H), 0.87 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 202.9, 139.8, 138.4, 135.54, 135.52, 133.61, 133.59, 129.62, 129.55, 128.3, 127.63, 127.59, 127.52, 121.7, 81.1, 72.9, 70.1, 65.7, 43.1, 35.7, 31.6, 29.1, 27.63, 27.56, 26.8, 25.8, 19.2, 19.0, 18.4, 14.1, -2.2, -2.5; LRMS (ESI): Mass calcd for $C_{41}H_{58}O_4Si_2Na$ $[M+Na]^+$, 693.38. Found $[M+Na]^+$, 693.53; $[\alpha]_D^{20}$ +62.1 (CHCl₃, *c* 1.02).

Synthesis of β-Hydroxy Dioxinone 4

(R)-4-(tert-butyldiphenylsilyloxy)-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N,2dimethylbutanamide (S3). To a -78 °C suspension of LiCl (21.8 g, 514 mmol) and diisopropylamine (25.7 mL, 183 mmol) in THF (123 mL) was added *n*-BuLi (82 mL, 172 mmol, 2.1 M solution in hexanes) via cannula. The resulting suspension was warmed to 0 °C briefly and then was cooled to -78 °C. An ice-cooled solution of (1S, 2S)pseudoephedrine propionamide (20.2 g, 91.5 mmol) in THF (300 mL) was added via cannula. The mixture was stirred at -78 °C for 1 h, at 0 °C for 15 min, and at 23 °C for 5 min. The mixture was cooled to 0 °C and a solution of TBDPS iodoethanol (23.5 g, 57.2 mmol) in THF (27 mL) was added via cannula. The mixture stirred for 18 hours in a water bath before being quenched by the addition of saturated NH₄Cl (300 mL). The organic layer was removed and the remaining aqueous layer was extracted with EtOAc (4 x 100 mL). The combined organic layers were combined and dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, 75% Et₂O/hexanes) to afford amide S3 (30.4 g, 98%) as a viscous oil (dr 20:1). Analytical data: IR (film) 3379, 3062, 1959, 1890, 1824, 1770, 1618, 1107 cm⁻¹; ¹H NMR (3:1 rotamer ratio, only major rotamer reported, 500 MHz, C_6D_6) δ 7.69-7.65 (m, 5H), 7.4-7.0 (m, 10H), 4.56-4.53 (m,1H), 3.58-3.52 (m, 2H), 2,80-2.76 (m, 1H) 2.49 (s, 3H), 1.94-1.90 (m, 1H), 1.49-1.45 (m, 1H), 1.21-1.19 (m, 1H), 1.09 (s, 9H), 0.97-0.96 (d, J = 5.5 Hz, 3H), 0.96-0.95 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 177.6, 143.6, 135.9, 135.8, 135.7, 134.1, 129.9, 129.8, 128.2, 126.7, 76.1, 61.8, 37.0, 32.6, 27.1, 27.0, 19.3, 17.1, 14.2; LRMS (ESI): Mass calcd for $C_{31}H_{42}NO_3Si [M+H]^+$, 504.75. Found 504.70; $[\alpha]_D^{20}$ +36.4 (CH₂Cl₂, *c* 1.0).

(R)-4-(tert-butyldiphenylsilyloxy)-2-methylbutan-1-ol (S4). To a -78 °C solution of diisopropylamine (33.1 mL, 234 mmol) in THF (233 mL) was added n-BuLi (103 mL, 217 mmol, 2.1 M solution in hexanes) via cannula. The resulting solution was stirred at -78 °C for 10 min, then warmed to 0 °C and held at that temperature for 10 min. Boraneammonia complex (90%, 6.9 g, 223 mmol) was added in one portion, and the suspension was stirred at 0 °C for 15 min and then armed to 23 °C. After 15 min, the suspension was cooled to 0 °C and a solution of **S3** (30.4 g, 55.7 mmol) in THF (140 mL) was added via cannula. The reaction mixture was warmed to 23 °C, held at this temperature for 2 h, and then cooled to 0 °C where excess hydride was quenched by the addition of 0.01 M aqueous HCl (500 mL). The mixture was stirred for 30 min at 0 °C and then extracted with EtOAc (4 x 150 mL). The combined organic extracts were washed with 0.1 m aqueous HCl (60 mL), 1 M NaOH (2 x 60 mL), and brine (50 mL). The organic layer was dried over Na_2SO_4 , filtered and concentrated. The residue was purified by flash column chromatography (SiO₂, 60% Et₂O/hexanes) to afford S4 (18.3 g, 96%) as a viscous oil. Analytical data: IR (film) 3351, 2931, 1959, 1890, 1824, 1773, 1465, 1427 cm⁻¹; ¹H NMR, (500 MHz, CDCl₃) δ 7.69–7.68 (m, 4H), 7.46–7.39 (m, 6H), 3.78–3.74 (m, 1H), 3.73-3.70 (m, 1H), 3.54-3.48 (m, 2H), 2.60 (br s, 1H), 1.88-1.85 (m, 1H), 1.64-1.62 (m, 1H), 1.57-1.49 (m, 1H), 1.06 (s, 9H), 0.92-0.91 (d, J = 7.02 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) & 135.8, 133.6, 129.9, 127.6, 68.4, 62.7, 37.0, 34.1, 27.0, 19.3, 17.4; LRMS (ESI): Mass calcd for $C_{21}H_{30}O_2SiNa [M+Na]^+$, 365.5. Found 365.2; $[\alpha]_D^{20}$ +6.3 (CH₂Cl₂, *c* 1.05).

(*R*)-*tert*-butyl(4-iodo-3-methylbutoxy)diphenylsilane (S5).To a solution of Ph₃P (16.8 g, 64.1 mmol) in CH₂Cl₂ (200 mL) was added imidazole (5.45 g, 80 mmol) and iodine (18.4 g, 72.1 mmol) at 23 °C. A solution of S4 in CH₂Cl₂ (24 mL) was added to this suspension via cannula. After 2 h, CH₂Cl₂ was removed *in vacuo*. The solid residue was purified by flash column chromatography (SiO₂, 10% EtOAc/hexanes) to afford S5 (20.2 g, 84%) as a colorless oil. Analytical data: IR (film) 3066, 2930, 1959, 1889, 1824, 1771, 1550 cm⁻¹; ¹H NMR, (500 MHz, CDCl₃) δ 7.68–7.66 (m, 4H), 7.44–7.38 (m, 6H),), 3.71-3.69 (t, *J* = 6.23 Hz, 2H), 3.27-3.24 (dd, *J* = 9.7, 4.5 Hz, 1H), 3.18-3.15 (dd, *J* = 9.7, 4.5 Hz 1H), 1.76-1.71 (m, 1H), 1.70-1.63 (m, 1H), 1.48-1.43 (m, 1H), 1.07 (s, 9H), 0.98-0.96 (d, *J* = 6.58 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.8, 134.0, 129.9, 127.9, 61.8, 39.2, 31.6, 27.2, 20.9, 19.5, 18.4; LRMS (ESI): Mass calculated for C₂₁H₂₉OSi [M–I]⁺, 325.5. Found 325.2; [α]_D²⁰ +1.2 (CH₂Cl₂ *c* 1.2).

(2R.4S)-6-(*tert*-butyldiphenylsilyloxy)-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N,2,4-trimethylhexanamide (S6). To a -78 °C suspension of LiCl (22.7 g, 535 mmol) and diisopropylamine (26.8 mL, 192 mmol) in THF (77 mL) was added n-BuLi (87 mL, 178 mmol, 2.05 M solution in hexanes) via cannula. The resulting suspension was warmed to 0 °C briefly and then was cooled to -78 °C. An ice-cooled solution of (15,25)pseudoephedrine propionamide (20.8 g, 93.8 mmol) in THF (144 mL) was added via cannula. The mixture was stirred at -78 °C for 1 h, at 0 °C for 15 min, and at 23 °C for 5 min. The mixture was cooled to 0 °C and a solution of S5 (20.2 g, 44.6 mmol) in THF (10 mL) was added via cannula. The mixture stirred for 18 hours at 23 °C before being quenched by the addition of saturated/ $\frac{1}{2}$ saturated NH₄Cl (300 mL). The organic layer was removed and the remaining aqueous layer was extracted with EtOAc (4 x 100 mL). The combined organic layers were combined and dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, 50% EtOAc/hexanes) to afford amide S6 (22.5 g, 93%) as a viscous oil (dr 20:1). Analytical data: IR (film) 3374, 2931, 1617, 1612, 1107 cm⁻¹; ¹H NMR (3:1 rotamer ratio, only major rotamer reported, 500 MHz, C₆D₆) & 7.79-7.77 (m, 5H), 7.26-7.00 (m, 10H), 4.5-4.40 (m, 1H), 3.78-3.70 (m, 2H), 2.40-2.35 (m, 1H), 2.25 (s, 3H), 1.82-1.80 (m, 1H), 1.61-1.59 (m, 1H), 1.25-1.20 (m, 1H), 1.15 (s, 9H), 1.05-1.02 (m, 1H), 0.96-0.94 (d, J = 8.4 Hz, 3H), 0.94-0.93 (d, J = 6.7 Hz, 3H), 0.90 (m, 1H), 0.85 (m, 1H), 0.65-0.64 (d, J = 6.2 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 178.2, 143.7, 135.9, 135.8, 134.3, 129.8, 128.5, 127.2, 126.5, 76.3, 62.2, 41.7, 40.1, 34.1, 27.5, 27.0, 26.3, 23.6, 19.8, 19.3, 17.9, 14.2; LRMS (ESI): Mass calcd for $C_{34}H_{48}NO_3Si [M+H]^+$, 546.8. Found 546.6; $[\alpha]_{D}^{20}$ +45.7 (*c* 0.9, CH₂Cl₂).

(2*R*,4*S*)-6-(*tert*-butyldiphenylsilyloxy)-2,4-dimethylhexan-1-ol (S7). To a -78 °C solution of diisopropylamine (24.5 mL, 173 mmol) in THF (170 mL) was added *n*-BuLi (80 mL, 160 mmol, 2.0 M solution in hexanes) via cannula. The resulting solution was stirred at -78 °C for 10 min, then warmed to 0 °C and held at that temperature for 10 min. Borane-ammonia complex (90%, 5.1 g, 165 mmol) was added in one portion, and the suspension was stirred at 0 °C for 15 min and then warmed to 23 °C. After 15 min, the suspension was cooled to 0 °C and a solution of amide S6 (22.5 g, 41.2 mmol) in THF (103 mL) was added via cannula. The reaction mixture was warmed to 23 °C, held at this temperature for 2 h, and then cooled to 0 °C where excess hydride was quenched by the addition of 0.01 M aqueous HCl (500 mL). The mixture was stirred for 30 min at 0 °C and then extracted with EtOAc (4 x 150 mL). The combined organic extracts were washed with 0.1 m aqueous HCl (500 mL), 1 M NaOH (2 x 50 mL), and brine (40 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (SiO₂, 40% Et₂O/hexanes) to afford S7 (14.3 g, 91%) as a colorless, viscous oil. Analytical data for II-62: IR (film) 3338, 2929, 1889,

1825, 1427, 1107 cm⁻¹; ¹H NMR, (500 MHz, CDCl₃) δ 7.69–7.68 (m, 4H), 7.45–7.38 (m, 6H), 3.74–3.68 (m, 2H),), 3.51-3.48 (m, 1H), 3.40-3.35 (m, 1H), 1.73-1.69 (m, 2H), 1.68-1.63 (m, 2H), 1.32-1.26 (m, 2H), 1.06 (s, 9H), 0.93-0.91 (d, *J* = 6.7Hz, 3H), 0.86-0.84 (d, *J* = 6.71 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.8, 134.3, 129.7, 127.8, 68.6, 62.2, 41.2, 39.3, 33.3, 27.1, 26.9, 20.6, 19.4, 17.3; LRMS (ESI): Mass calcd for C₂₄H₃₆O₂SiNa [M+Na]⁺, 407.63. Found 407.26; [α]_D²⁰ +9.5 (CH₂Cl₂, *c* 0.95).

(2*R*,4*S*)-6-(*tert*-butyldiphenylsilyloxy)-2,4-dimethylhexanal (13). To a suspension of powdered 4Å molecular sieves (8.4 g) and S7 (3.8 g, 9.89 mmol) in CH_2Cl_2 (68 mL) was added NMO (1.85 g, 15.8 mmol) followed by TPAP (172 mg, 0.49 mmol). After 45 min the green reaction mixture was filtered through Celite (eluting with CH_2Cl_2) and concentrated *in vacuo* to approximately 15 mL. The resulting material was filtered through SiO₂ (eluting with 40% Et₂O/hexanes, 300 mL). Removal of the solvent *in vacuo* afforded aldehyde 13 (3.45 g, 92%) as a colorless oil. Aldehyde 13 was used directly in the next step.

6-((2S,3R,5S)-7-(tert-butyldiphenylsilyloxy)-2-hydroxy-3,5-dimethylheptyl)-2,2-

dimethyl-4H-1,3-dioxin-4-one (15). A mixture of Cu(OTf)₂ (651 mg, 1.8 mmol) and (R)-Tol-BINAP (1.5 g, 2.25 mmol) in THF (58 mL) was stirred at room temperature under N₂ for 15 minutes to yield a clear yellow solution. A solution of Bu₄NPh₃SiF₂ (1.5 g, 2.7 mmol) in THF (16 mL) was added via cannula and the resulting solution was stirred for 15 minutes. The mixture was cooled to -78 °C and enol silane 14 (2.5 g, 11.7 mmol) was added dropwise followed immediately by a solution of 13 (3.45 g, 9.0 mmol) in THF (6.4 mL). The mixture was warmed to -50 °C and allowed to stir for 24 h. Trifluroacetic acid (3.6 mL) was added at -78 °C and the solution was allowed to warm to 23 °C. Stirring was continued for 1 h. The reaction mixture was diluted with EtOAc (90 mL) and saturated NaHCO₃ was added dropwise until gas evolution ceased. The organic layer was washed with brine (30 mL), dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (65% Et₂O/hexanes) to afford βhydroxy-dioxinone 15 (2.90 g, 61%) as an inseperable mixture of diastereomers (dr 7:1). Analytical data: IR (film) 3453, 2930, 1718, 1631, 1384 cm⁻¹; ¹H NMR, (500 MHz, CDCl₃) & 7.69–7.67 (m, 4H), 7.46–7.38 (m, 6H), 5.34 (s, 1H), 3.76-3.67 (m, 3H), 2.36-2.33 (dd, J = 14.3, 3.0 Hz, 1H), 2.28-2.23 (dd, J = 14.6, 9.7 Hz, 1H), 1.76-1.72 (m, 2H), 1.70 (s, 6H), 1.67-1.62 (m, 2H), 1.33-1.32 (m, 1H), 1.23-1.20 (m, 1H), 1.06 (s, 9H), 0.93-0.92 (d, J = 6.7 Hz, 3H), 0.88-0.87 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 161.3, 135.8, 134.2, 129.8, 127.8, 106.8, 95.2, 73.0, 62.1, 40.0, 38.7, 38.0, 36.6,

27.1, 25.6, 24.9, 20.9, 19.4, 15.5, 13.6; LRMS (ESI): Mass calculated for $C_{31}H_{48}NO_5Si$ $[M+NH_4]^+$, 542.33. Found 542.51; $[\alpha]_D^{20} -1.7$ (CH₂Cl₂, *c* 1.0).

6-((2S,3R,5S)-2-(tert-butyldimethylsilyloxy)-7-(tert-butyldiphenylsilyloxy)-3,5-

dimethylheptyl)-2,2-dimethyl-4H-1,3-dioxin-4-one (S8). To a 0 °C solution of 15 (2.90 g, 5.49 mmol) in CH₂Cl₂ (58 mL) was added 2,6-lutidine (1.9 mL, 16.5 mmol) and TBSOTf (1.3 mL, 6.0 mmol). The resulting solution was stirred at 0 °C for 90 minutes and quenched by the addition of saturated NaHCO₃ (120 ml). The aqueous layer was extracted with EtOAc (3x 15 ml). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by flash column chromatography (40% Et₂O/hexanes) to afford bis silvl ether **S8** (3.3 g, 92%) as a clear oil. Analytical data: IR (film) 1736, 1636, 1461, 1384 cm⁻¹; ¹H NMR, (500 MHz, CDCl₃) δ 7.68-7.67 (m, 4H), 7.45-7.37 (m, 6H), 5.27 (s, 1H), 3.87-3.84 (ddd, J = 8.8, 6.7, 5.1 Hz, 1H), 3.75-3.66 (m, 2H), 2.24-2.22 (dd, J = 6.7, 1.5 Hz, 1H), 1.81-1.79 (m, 1H), 1.68 (s, 3H), 1.66 (s, 3H), 1.21-1.18 (dd, J = 13.4, 6.1, 1H), 1.06 (s, 9H), 1.02-0.97 (m, 1H), 0.89 (s, 9H), 0.87-0.86 (d, J = 6.7, 3H), 0.86-0.82 (m, 4H), 0.79-0.78 (d, J = 6.4 Hz, 3H), 0.06(s, 3H), 0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 161.3, 135.7, 134.2, 129.8, 127.8, 106.5, 95.4, 72.9, 62.1, 40.9, 39.2, 37.5, 36.3, 27.1, 26.1, 26.0, 24.4, 20.7, 19.4, 18.2, 14.5, -4.1, -4.5; LRMS (ESI): Mass calculated for $C_{74}H_{120}NO_{10}Si_4$ [2M+NH₄]⁺, 1294.8. Found 1294.03; $[\alpha]_D^{20}$ -9.9 (CH₂Cl₂, c 1.0).

6-((2*S*,3*R*,5*S*)-2-(*tert*-butyldimethylsilyloxy)-7-hydroxy-3,5-dimethylheptyl)-2,2dimethyl-4*H*-1,3-dioxin-4-one (S9). To a 23 °C solution of bis silyl ether S8 (3.3 g, 5.05 mmol) in MeOH (106 mL) was added NH₄F (18.7 g, 505 mmol). The resulting mixture

mmol) in MeOH (106 mL) was added NH₄F (18.7 g, 505 mmol). The resulting mixture was warmed to 40 °C for 24 h. The solvent was removed *in vacuo* and the resulting residue was purified by flash column chromatography (75% Et₂O/hexanes) to afford **S9** (1.9 g, 92%) as a clear oil. Analytical data: IR (film) 3444, 2931, 1715, 1635, 1461, 1384 cm⁻¹; ¹H NMR, (500 MHz, CDCl₃) δ 5.27 (s, 1H), 3.88-3.85 (ddd, *J* = 11.2, 7.6, 3.9 Hz, 1H), 3.72-3.64 (m, 2H), 2.25-2.24 (dd, J = 3.6, 1.2, Hz, 1H), 1.75 (m, 1H), 1.70 (s, 3H), 1.68 (s, 3H), 1.64-1.62 (m, 2H), 1.41 (br s. 1H), 1.30-1.29 (m, 1H), 1.28-1.25 (m, 1H), 1.05-1.00 (m, 1H), 0.95-0.94 (d, *J* = 6.4 Hz, 3H), 0.90-0.88 (d, *J* = 7.0 Hz, 3H), 0.87 (s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 161.3, 106.5, 95.4, 72.7, 61.0, 40.6, 39.4, 37.5, 36.3, 27.1, 26.0, 24.5, 20.8, 18.2, 14.7, -4.1, -4.5; LRMS (ESI): Mass calculated for C₄₂H₈₀NaO₁₀Si₂ [2M+Na]⁺, 823.52. Found 823.62; [α]_D²⁵ -22.7 (CH₂Cl₂, *c* 1.0).

6-((2S,3R,5S)-2-(*tert*-butyldimethylsilyloxy)-3,5-dimethylhept-6-enyl)-2,2-dimethyl-

4H-1,3-dioxin-4-one (16). To a 23 °C solution of S9 (1.9 g, 4.64 mmol) in THF (22.5 mL) was added 2-nitrophenylselenocyanide (1.7 g, 7.42 mmol) and n-Bu₃P (1.8 mL, 7.42 mmol). The resulting solution stirred at 23 °C for 30 min. The mixture was than passed through a short plug of SiO_2 (eluting with 60% Et₂O/ hexanes) and concentrated. The resulting residue was purified by flash column chromatography (40% Et₂O/hexanes) to afford the intermediate organoselenide as a yellow oil. This oil was dissolved in THF (39 ml) and cooled to 0 °C. Hydrogen peroxide (30%, 8.1 mL) was added slowly. The resulting mixture was allowed to stir for 12 h at 0 °C. The reaction was quenched by the slow addition of saturated Na₂SO₃ (50 mL) at 0 °C. The aqueous layer was extracted with EtOAc (3 x 15 ml) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by flash column chromatography (40% Et₂O/hexanes) to afford 16 oil (1.35 g, 76%) as a yellow oil. Analytical data: IR (film) 2962, 1735, 1636, 1265 cm⁻¹; ¹H NMR, (500 MHz, CDCl₃) δ 5.58-5.51 (ddd, J = 17.1, 10.0, 8.8 Hz, 1H), 5.25 (s, 1H), 4.98-4.94 (d, J = 17.1 Hz, 1H), 4.94-4.93 (d, J = 10.0 Hz, 1H), 3.82-3.79 (ddd, J = 9.8, 6.4, 5.8 Hz, 1H), 2.26-2.25 (d, J = 6.1 Hz, 1H), 2.23-2.21(m, 1H), 1.69 (s, 3H), 1.67 (s, 3H), 1.27-1.21 (m, 2H), 1.09-1.04 (m, 2H), 1.02-1.01 (d, J = 6.7 Hz, 3H), 0.87 (s, 9H), 0.84-0.83 (d, J = 7.0 Hz, 3H), 0.03 (s, 3H), 0.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 161.3, 144.2, 113.6, 106.5, 95.4, 73.5, 39.7, 37.9, 36.3, 36.1, 26.0, 24.5, 22.0, 18.2, 14.2, -4.1, -4.5; LRMS (ESI): Mass calcd for C₄₂H₇₆NaO₈Si₂ $[2M+Na]^+$, 787.5. Found 787.7; $[a]_D^{20} -22.1$ (CH₂Cl₂, c 1.0).

6-((2*S***,3***R***,5***S***)-2-hydroxy-3,5-dimethylhept-6-enyl)-2,2-dimethyl-4***H***-1,3-dioxin-4-one (4). To a plastic bottle with stir bar containing a 0 °C solution of silyl ether 16** (3.0 g, 7.8 mmol) in THF (165 mL) was added HF·pyr (14 mL, 161 mmol) dropwise by plastic syringe. The solution was stirred at room temperature, additional HF·pyr (3 mL) was added every 24 hours and the reaction was monitored by TLC until complete consumption of starting material was observed. The solution was re-cooled to 0 °C and carefully quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with EtOAc (3x) and the combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (30% EtOAc/hexanes) to afford β-hydroxy dioxinone **4** (2.0 g, 93%) as a colorless oil. Analytical data: IR (film) 3459, 2962, 1716, 1635, 1392, 1276, 1205, 1015, 907, 805 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 5.55 (ddd, *J* = 17.2, 10.1, 8.6 Hz, 1H), 5.33 (s, 1H), 4.99-4.92 (m, 2H), 3.73 (dtd, J = 9.5, 4.8, 3.3 Hz, 1H), 2.37 (dd, J = 14.6, 3.1 Hz, 1H), 2.28 (dd, J = 14.6, 9.5 Hz, 1H), 2.22 (dtd, J = 10.7, 7.5, 3.2 Hz, 1H), 1.70 (s, 6H), 1.63 (d, J = 5.1 Hz, 1H), 1.38 (ddd, J = 13.5, 10.7, 3.0 Hz, 1H), 1.10 (ddd, J = 13.7, 10.3, 3.7 Hz, 1H), 1.02 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 169.8, 161.0, 143.7, 113.7, 106.6, 95.0, 73.1, 38.7, 38.1, 36.5, 35.8, 25.4, 24.7, 21.9, 14.9; LRMS (ESI): Mass calcd for C₁₅H₂₅O₄ [M+H]⁺, 269.17. Found [M+H]⁺, 269.14; $[\alpha]_D^{20}$ –24.8 (CHCl₃, *c* 0.52).

Synthesis of δ-Hydroxy β-Ketoester 17

(5*S*,6*R*,8*S*)-ethyl 5-(tert-butyldimethylsilyloxy)-6,8-dimethyl-3-oxodec-9-enoate (S10). To a flame-dried, round-bottom flask with stir bar containing a 0 $^{\circ}$ C solution of β silvloxy dioxinone 16 (2.25 g, 5.9 mmol) in CH₂Cl₂ (30 mL) was added KOEt (2.1 g, 24 mmol) in one portion. The solution was stirred for 30 min at 0 °C, warmed to room temperature for 4 h, and guenched with brine. The mixture was diluted with water and the aqueous layer was extracted with CH_2Cl_2 (3x). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (5% EtOAc/hexanes) to afford δ -silvloxy β -ketoester S10 (1.91 g, 88%) as a colorless oil. Analytical data: IR (film) 2958, 2930, 1749, 1721, 1642, 1463, 1252, 1076, 836, 776 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 5.54 (ddd, J = 17.2, 10.2, 8.3 Hz, 1H), 4.99-4.91 (m, 2H), 4.22-4.16 (m, 3H), 4.07 (dt, J = 8.9, 3.5 Hz, 1H), 3.50-3.42 (m, 2H), 2.67 (dd, J = 15.3, 8.9 Hz, 1H), 2.38 (dd, J = 15.3, 3.2 Hz, 1H), 2.20-2.15 (m, 1H), 1.70-1.64 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.18 (ddd, J = 13.5, 10.0, 3.6 Hz, 1H), 0.99(d, J = 6.7 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H), 0.85 (s, 9H), 0.03 (s, 3H), -0.01 (s, 3H);NMR (125 MHz; CDCl₃): δ 202.6, 167.1, 144.0, 113.3, 72.8, 61.2, 51.1, 45.3, 40.0, 36.4, 35.8, 25.84, 25.80, 21.6, 18.0, 14.1, 13.5, -4.6, -4.9; LRMS (ESI): Mass calcd for $C_{20}H_{38}O_4SiNa [M+Na]^+$, 393.24. Found $[M+Na]^+$, 393.32; $[\alpha]_D^{20}$ –41.6 (MeOH, c 1.02).

(5*S*,6*R*,8*S*)-ethyl 5-hydroxy-6,8-dimethyl-3-oxodec-9-enoate (17). To a plastic vial with stir bar containing a 0 °C solution of silyl ether S10 (52 mg, 0.14 mmol) in THF (2.7 mL) was added HF•pyr (0.25 mL, 2.9 mmol) dropwise by plastic syringe. After the solution was stirred at 0 °C for 24 h and then at room temperature for 24 h, it was carefully quenched with saturated aqueous NaHCO₃. The mixture was diluted with CH₂Cl₂ (10 mL), filtered through a Biotage ISOLUTE® phase separator, and the organic filtrate was concentrated. The residue was purified by flash column chromatography (25% EtOAc/hexanes) to afford δ-hydroxy β-ketoester 17 (32.6 mg, 94%) as a colorless oil. Analytical data: IR (film) 3524, 2964, 1743, 1713, 1643, 1461, 1412, 1318, 1031, 912 cm⁻¹; ¹H-NMR (500 MHz; CDC13): δ 5.56 (ddd, J = 17.2, 10.1, 8.5 Hz, 1H), 4.98-

4.91 (m, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.92 (dq, J = 8.5, 4.3 Hz, 1H), 3.48 (d, J = 1.6 Hz, 2H), 2.66 (m, 3H), 2.21 (dtd, J = 14.4, 7.2, 3.7 Hz, 1H), 1.64-1.57 (m, 1H), 1.39 (ddd, J = 13.5, 10.5, 3.2 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.07 (ddd, J = 13.7, 10.1, 3.9 Hz, 1H), 1.00 (d, J = 6.7 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 204.2, 166.9, 143.9, 113.4, 71.5, 61.5, 50.0, 46.2, 39.1, 35.71, 35.62, 21.8, 14.8, 14.1; LRMS (ESI): Mass calcd for C₁₄H₂₈NO₄ [M+NH₄]⁺, 274.20. Found [M+NH₄]⁺, 274.12; [α]_D²⁰ –22.2 (CHCl₃, *c* 0.32).

Synthesis of Trioxabicyclooctane 18

Ethyl 2-((1S,1'S,2'S,3R,5R,5'S)-2'-(3-(benzyloxy)propyl)-4'-((tertbutyldiphenylsilyloxy)methyl)-5'-methyl-3-((2R,4S)-4-methylhex-5-en-2-yl)-2,6,8trioxaspiro[bicyclo[3.2.1]octane-7,1'-cyclohex[3]ene]-5-yl)acetate (18). To a flamedried 1-dram vial containing a 0 °C solution of α -hydroxy aldehyde 3 (27 mg, 0.048 mmol), δ-hydroxy-β-ketoester 17 (12.2 mg, 0.048 mmol), and 4Å molecular sieves (27 mg) in CH₂Cl₂ (0.4 mL) was added BF₃•OEt₂ (18 µL, 0.14 mmol) dropwise by syringe. The reaction mixture was stirred at 0 °C for 4 h and warmed to room temperature for 12 h. The reaction mixture was quenched with 1.0 M pH 7 phosphate buffer, diluted with CH₂Cl₂, filtered through a Biotage ISOLUTE[®] phase separator and concentrated. The residue was purified by flash column chromatography (4%-15% EtOAc/hexanes, gradient) to afford trioxabicyclooctane 18 (13.4 mg, 35%) as a colorless oil. Analytical data: IR (film) 2929, 2856, 1736, 1719, 1471, 1462, 1427, 1112, 821, 701 cm⁻¹; ¹H NMR $(500 \text{ MHz}; \text{CDCl}_3): \delta 7.72-7.67 \text{ (m, 4H)}, 7.42-7.31 \text{ (m, 11H)}, 5.90 \text{ (d, } J = 3.7 \text{ Hz}, 1\text{H}),$ 5.57 (ddd, J = 17.2, 10.0, 8.4 Hz, 1H), 5.08 (s, 1H), 4.98-4.89 (m, 2H), 4.48 (d, J = 4.2Hz, 2H), 4.21-4.08 (m, 5H), 3.52-3.43 (m, 2H), 2.79 (s, 2H), 2.58-2.50 (m, 2H), 2.25-2.19 (m, 1H), 1.94-1.79 (m, 4H), 1.63 (tdd, J = 15.0, 7.4, 3.7 Hz, 3H), 1.52 (ddd, J =13.5, 10.5, 3.0 Hz, 1H), 1.34 (t, J = 12.1 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H and m, 1H), 1.05 (s, 9H), 1.05-1.00 (m, 1H), 0.98 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.85 $(d, J = 6.7 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (125 \text{ MHz}; \text{CDCl}_3): \delta 168.6, 144.2, 140.1, 138.6, 135.62,$ 135.59, 135.1, 134.8, 133.90, 133.74, 129.70, 129.58, 129.55, 128.4, 127.76, 127.65, 127.57, 127.52, 122.1, 113.2, 106.1, 101.3, 86.6, 75.4, 72.8, 70.6, 65.3, 60.8, 44.4, 39.03, 38.95, 37.31, 37.12, 35.69, 35.66, 31.2, 27.8, 27.6, 26.8, 26.6, 21.9, 19.3, 18.6, 14.42, 14.23; LRMS (ESI): Mass calcd for $C_{49}H_{70}NO_7Si [M+NH_4]^+$, 812.49. Found $[M+NH_4]^+$, 812.44; $[\alpha]_D^{20}$ +23.9 (CHCl₃, *c* 0.62).

Synthesis of (–)-Okilactomycin 1

(2R,6S)-ethyl 2-((1S,2S,5S)-2-(3-(benzyloxy)propyl)-1-(tert-butyldimethylsilyloxy)-4-((tert-butyldiphenylsilyloxy)methyl)-5-methylcvclohex-3-enyl)-6-((2R,4S)-4methylhex-5-en-2-yl)-4-oxotetrahydro-2H-pyran-3-carboxylate (22). To a flamedried, round-bottom flask with stir bar containing a -78 °C solution of a-silvloxy aldehyde 21 (1.4 g, 2.1 mmol), δ-hydroxy-β-ketoester 17 (0.59 g, 2.3 mmol), 4Å molecular sieves (1.4 g), and CH₂Cl₂ (17.5 mL) was added trimethylsilyltriflate (0.38 mL, 2.1 mmol) dropwise by syringe. The reaction was warmed to -40 °C, stirred for 45 min, re-cooled to -78 °C and quenched with 1.0 M pH 7 phosphate buffer. The mixture was filtered through a Biotage ISOLUTE® phase separator and the organic filtrate was concentrated. The residue was purified by flash column chromatography (2% to 6% EtOAc/hexanes, gradient) to afford tetrahydropyranone 22 (1.15 g, 60%) in a 13:1 ratio of diastereomers as a colorless oil. Analytical data: IR (film) 3071, 2929, 1746, 1713, 1472, 1369, 1250, 1111, 834, 774, 740, 701 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.67 (td, J = 7.2, 1.4 Hz, 4H), 7.42-7.30 (m, 11H), 5.86 (d, J = 4.6 Hz, 1H), 5.55 (ddd, J =17.2, 10.1, 8.4 Hz, 1H), 4.99-4.92 (m, 2H), 4.46 (d, J = 2.0 Hz, 2H), 4.18 (m, 3H), 4.11 (d, J = 13.1 Hz, 1H), 4.05 (d, J = 13.2 Hz, 1H), 3.69 (d, J = 9.3 Hz, 1H), 3.59 (ddd, J = 13.2 Hz, 1H), 3.69 (d, J = 13.2 Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz), 3.69 (d, J = 13.2 Hz, 1Hz), 3.69 (d,11.3, 5.6, 3.2 Hz, 1H), 3.42 (t, J = 6.3 Hz, 2H), 2.47-2.39 (m, 2H), 2.27 (dd, J = 16.0, 11.4 Hz, 1H), 2.22-2.16 (m, 2H), 1.84-1.71 (m, 3H), 1.48-1.42 (m, 2H), 1.31-1.24 (m, 2H) and t, J = 7.1 Hz, 3H), 1.08 (q, J = 5.1 Hz, 1H), 1.05 (s, 9H and m, 1H), 1.00 (d, J = 6.7Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H), 0.82 (s, 9H), 0.10 (s, 3H), 0.04 (s, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 204.0, 169.3, 143.8, 138.6, 138.2, 135.61, 135.49, 133.71, 133.66, 129.56, 129.48, 128.3, 127.68, 127.60, 127.57, 127.46, 123.3, 113.5, 79.9, 78.9, 72.8, 70.7, 65.5, 61.5, 43.3, 42.1, 39.4, 36.3, 35.59, 35.40, 31.6, 28.5, 27.7, 26.8, 26.1, 21.7, 19.3, 18.9, 14.0, -1.9, -2.7; LRMS (ESI): Mass calcd for $C_{55}H_{84}NO_7Si_2 [M+NH_4]^+$, 926.58. Found $[M+NH_4]^+$, 926.45; $[\alpha]_D^{20} + 26.5^\circ$ (CHCl₃, c 0.68).

(1*S*,2*S*,2'*S*,4a'*R*,5*S*,7a'*R*)-2-(3-(benzyloxy)propyl)-4-(hydroxymethyl)-4a',5-dimethyl-2'-((2*R*,4*S*)-4-methylhex-5-en-2-yl)-2',3'-dihydrospiro[cyclohex[3]ene-1,7'-furo[3,4*b*]pyran]-4',5'(4a'*H*,7a'*H*)-dione (23). To a plastic vial with stir bar containing

tetrahydropyranone 22 (0.10 g, 0.11 mmol) in CH₃CN (11 mL) was added aqueous HF (2.9 mL, 48% in water). The solution was stirred at room temperature for 18 h and carefully poured into a flask containing saturated aqueous NaHCO₃ (50 mL). NaHCO_{3(s)} was added until the pH > 7. The mixture was diluted with EtOAc and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with saturated aqueous NaHCO₃ (2x) and brine (1x), dried over Na₂SO₄, and concentrated. The residue was dissolved in THF (5.5 mL) in a scintillation vial. To the solution was added KOt-Bu (12.3 mg, 0.11 mmol) in one portion. The solution was stirred for 15 min and guenched with saturated agueous NH₄Cl. The mixture was diluted with water and CH₂Cl₂, filtered through a Biotage ISOLUTE® phase separator and the organic filtrate was concentrated. The residue was dissolved in CH₃CN (2.2 mL) in a scintillation vial. To the solution was added K_2CO_3 (63 mg, 0.46 mmol) and MeI (70 μ L, 1.1 mmol). The reaction mixture was heated to 70 °C for 2 h. re-cooled to room temperature and quenched with saturated aqueous NH₄Cl. The mixture was diluted with CH₂Cl₂ and filtered through a Biotage ISOLUTE® phase separator and the organic filtrate was concentrated. The residue was purified by flash column chromatography (20% to 30% to 35% EtOAc/hexanes) to afford lactone 23 (35 mg, 61%) as a colorless oil. Analytical data: IR (film) 3420, 2956, 2926, 2869, 1778, 1717, 1455, 1210, 1099, cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.36-7.28 (m, 5H), 5.71 (dd, J = 5.2, 1.3 Hz, 1H), 5.55 (ddd, J =17.2, 10.2, 8.3 Hz, 1H), 5.00-4.93 (m, 2H), 4.50 (d, J = 2.1 Hz, 2H), 4.28 (s, 1H), 4.15-4.12 (m, 1H), 4.07 (d, J = 13.6 Hz, 1H), 3.65 (ddd, J = 11.2, 6.3, 3.6 Hz, 1H), 3.54-3.46 (m, 2H), 2.59 (dd, J = 17.4, 3.5 Hz, 1H), 2.54-2.49 (m, 1H), 2.40 (dd, J = 17.4, 11.3 Hz, 1H), 2.25-2.17 (m, 2H), 1.93-1.82 (m, 3H), 1.72 (dtd, J = 9.9, 6.6, 3.3 Hz, 1H), 1.63 (td, J= 8.7, 4.1 Hz, 1H), 1.58 (s, 3H), 1.48-1.43 (m, 2H), 1.28-1.23 (m, 1H), 1.06 (m, 4H), 1.01 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 202.0, 171.9, 143.7, 141.3, 138.3, 128.4, 127.6, 121.9, 113.6, 88.3, 84.0, 78.0, 73.0, 69.8, 64.7, 55.6, 43.3, 41.5, 39.2, 35.6, 33.2, 30.0, 28.3, 27.1, 21.88, 21.86, 18.6, 14.5; LRMS (ESI): Mass calcd for $C_{32}H_{45}O_6 [M+H]^+$, 525.32. Found $[M+H]^+$, 525.30; $[\alpha]_D^{20}$ +32.8 (CHCl₃, *c* 0.09).

(1*S*,2*S*,2'*S*,4a'*R*,5*S*,7a'*R*)-2-(3-(benzyloxy)propyl)-4-((*tert*butyldiphenylsilyloxy)methyl)-4a',5-dimethyl-2'-((2*R*,4*S*)-4-methylhex-5-en-2-yl)-2',3'-dihydrospiro[cyclohex[3]ene-1,7'-furo[3,4-*b*]pyran]-4',5'(4a'*H*,7a'*H*)-dione (S11). To a flame-dried, round-bottom flask with stir bar containing a 0 °C solution of allylic alcohol 23 (210 mg, 0.40 mmol) in CH_2Cl_2 (20 mL) was added imidazole (85 mg, 1.25 mmol) followed by *t*-butyldiphenylchlorosilane (0.23 mL, 0.89 mmol). The solution was stirred at room temperature for 3 h and quenched with saturated aqueous NaHCO₃. The mixture was filtered through a Biotage ISOLUTE® phase separator and the organic filtrate was concentrated. The residue was purified by flash column chromatography (5% to 20% EtOAc/hexanes) to afford silyl ether **S11** (280 mg, 92%) as a colorless oil. Analytical data: IR (film) 3071, 2930, 2857, 1780, 1719, 1455, 1206, 1112, 702 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.69 (td, J = 4.7, 2.7 Hz, 4H), 7.43-7.36 (m, 6H), 7.35-7.28 (m, 5H), 5.81 (dd, J = 5.2, 1.4 Hz, 1H), 5.56 (ddd, J = 17.2, 10.1, 8.3 Hz, 1H), 5.01-4.94 (m, 2H), 4.50 (d, J = 2.6 Hz, 2H), 4.30 (s, 1H), 4.16 (s, 2H), 3.65 (ddd, J = 11.1, 6.3, 3.5 Hz, 1H), 3.53-3.47 (m, 2H), 2.59 (dd, J = 17.3, 3.4 Hz, 1H), 2.47 (dt, J = 11.1, 5.8 Hz, 1H), 2.41 (dd, J = 17.3, 11.3 Hz, 1H), 2.26-2.20 (m, 2H), 1.92 (ddd, J = 14.4, 6.0, 1.5 Hz, 1H), 1.60 (s, 3H), 1.49-1.42 (m, 2H), 1.29-1.22 (m, 1H), 1.08 (dd, J = 5.5, 3.7 Hz, 1H), 1.05 (s, 9H), 1.02 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 202.1, 171.8, 143.7, 140.1, 138.3, 135.47, 135.42, 133.62, 133.57, 129.58, 129.53, 128.4, 127.67, 127.60, 120.4, 113.5, 88.4, 84.0, 78.0, 72.9, 69.8, 65.1, 55.7, 43.1, 41.6, 39.1, 35.6, 33.3, 30.1, 28.4, 27.0, 26.7, 21.83, 21.74, 19.2, 18.7, 14.5; LRMS (ESI): Mass calcd for C₄₈H₆₆NO₆Si [M+NH₄]⁺, 780.47; [α]_D²⁰+27.7 (CHCl₃, *c* 0.94).

(1S,2S,2'S,4a'R,5S,7a'R)-4-((tert-butyldiphenylsilyloxy)methyl)-2-(3hydroxypropyl)-4a',5-dimethyl-2'-((2R,4S)-4-methylhex-5-en-2-yl)-2',3'dihydrospiro[cyclohex[3]ene-1,7'-furo[3,4-b]pyran]-4',5'(4a'H,7a'H)-dione (S12). To a round-bottom flask containing a solution of benzyl alcohol S11 (0.26 g, 0.34 mmol) in water (0.35 mL) and CH₂Cl₂ (17.5 mL) was added DDQ (2.4 g, 10.5 mmol) in one portion. The reaction mixture was stirred for 22 h and guenched with saturated aqueous NaHCO₃ (100 mL) and water (100 mL). The aqueous layer was extracted with CH_2Cl_2 (3x) and the combined organic layers were dried with Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (25% to 35% EtOAc/hexanes) to afford primary alcohol S12 (0.14 g, 62%) as a white foam. Analytical data: IR (film) 3449, 3071, 2930, 2858, 1774, 1718, 1458, 1383, 1112, 1060 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.68 (ddd, J = 7.6, 4.2, 1.9 Hz, 4H), 7.43-7.38 (m, 6H), 5.80 (dd, J = 5.3, 1.6Hz, 1H), 5.57 (ddd, J = 17.2, 10.2, 8.3 Hz, 1H), 5.01-4.94 (m, 2H), 4.31 (s, 1H), 4.15 (s, 1H), 4 2H), 3.70-3.65 (m, 3H), 2.60 (dd, J = 17.3, 3.4 Hz, 1H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1 H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1 H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1 H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1 H), 2.49-2.46 (m, 1H), 2.41 (dd, J = 17.3, 3.4 Hz, 1 H), 2.41 (dd, J = 17.3, 3.4 Hz, 1 H), 3.49-2.46 (m, 1H), 3.41 (dd, J = 10.4 H), 3.40 (m, 10.4 H), 17.4, 11.3 Hz, 1H), 2.25-2.19 (m, 2H), 1.91 (ddd, J = 14.5, 6.0, 1.7 Hz, 1H), 1.88-1.83 (m, 1H), 1.80-1.69 (m, 2H), 1.64 (s, 3H), 1.60-1.53 (m, 2H), 1.50-1.42 (m, 2H), 1.27-1.20 (m, 2H), 1.08 (dd, J = 9.8, 4.1 Hz, 1H), 1.04 (s, 9H), 1.01 (d, J = 6.7 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 202.1, 171.8, 143.8, 140.3, 135.51, 135.46, 133.67, 133.58, 129.63, 129.57, 127.69, 127.62, 120.3, 113.5, 88.4, 84.1, 78.1, 65.1, 62.7, 55.7, 43.3, 41.7, 39.3, 35.66, 35.61, 33.3, 29.96, 29.87, 28.4, 26.8, 21.85, 21.83, 19.3, 18.7, 14.5; LRMS (ESI): Mass calcd for

 $C_{41}H_{60}NO_6Si [M+NH_4]^+$, 690.42. Found $[M+NH_4]^+$, 690.63; $[\alpha]_D^{20}$ +24.1 (CHCl₃, *c* 0.22).

(1S,2S,2'S,4a'R,5S,7a'R)-2-allyl-4-((tert-butyldiphenylsilyloxy)methyl)-4a',5dimethyl-2'-((2R,4S)-4-methylhex-5-en-2-yl)-2',3'-dihydrospiro[cyclohex[3]ene-1,7'furo[3,4-b]pyran]-4',5'(4a'H,7a'H)-dione (24). To a flame-dried scintillation vial with stir bar containing a solution of alcohol S12 (130 mg, 0.19 mmol) in THF (2 mL) was added 2-nitrophenyl selenocyanate (80 mg, 0.35 mmol) followed by $P(n-Bu)_3$ (88 μ L, 0.35 mmol). The reaction mixture was stirred for 1 h, filtered through SiO₂ (eluting with 60% Et₂O/hexanes) and concentrated. The residue was purified by flash column chromatography (20% to 40% EtOAc/hexanes) to afford an orange oil. The oil was added to a scintillation vial and dissolved in THF (1.5 mL). The solution was cooled to 0 °C and charged with hydrogen peroxide (0.33 mL, 30% in water). The solution was stirred at room temperature for 18 h, re-cooled to 0 °C and carefully quenched with $\frac{1}{2}$ saturated Na₂S₂O₃. The mixture was diluted with CH₂Cl₂, filtered through a Biotage BIOTAGE ISOLUTE®® phase separator and the organic filtrate was concentrated. The residue was purified by flash column chromatography to afford diene 24 (75 mg, 60%) as a yellow oil. Analytical data: IR (film) 3071, 2929, 1779, 1719, 1382, 1112, 1060 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.70-7.67 (m, 4H), 7.43-7.37 (m, 6H), 5.85-5.78 (m, 1H), 5.76 (dt, J = 5.1, 1.6 Hz, 1H), 5.56 (ddd, J = 17.2, 10.2, 8.4 Hz, 1H), 5.11-5.06 (m, 2H), 5.01-4.94 (m, 2H), 4.35 (s, 1H), 4.14 (s, 2H), 3.69 (ddd, J = 11.3, 6.2, 3.5 Hz, 1H), 2.60(dd, J = 17.4, 3.4 Hz, 1H), 2.51-2.46 (m, 2H), 2.42 (dd, J = 17.4, 11.3 Hz, 1H), 2.32-2.29(m, 1H), 2.26-2.20 (m, 1H), 2.04-1.98 (m, 1H), 1.90 (ddd, J = 14.5, 6.0, 1.8 Hz, 1H), 1.73 (dtd, J = 9.8, 6.6, 3.3 Hz, 1H), 1.65 (s, 3H), 1.48-1.42 (m, 2H), 1.08 (dt, J = 9.2, 4.4 Hz)1H), 1.04 (s, 9H), 1.01 (d, J = 6.7 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 202.1, 171.7, 143.7, 140.0, 135.50, 135.45, 135.39, 133.64, 133.61, 129.59, 129.54, 128.3, 127.67, 127.59, 120.6, 116.9, 113.6, 88.1, 84.0, 78.1, 64.9, 55.7, 43.6, 41.5, 39.2, 37.8, 35.66, 35.58, 33.5, 28.2, 26.7, 21.86, 21.82, 19.3, 18.7, 14.5; LRMS (ESI): Mass calcd for $C_{41}H_{58}NO_5Si [M+NH_4]^+$, 672.41. Found $[M+NH_4]^+$, 672.55; $[\alpha]_D^{20}$ +37.6 (CHCl₃, c 0.21).

Tetracycle 25. To a flame-dried, 3-liter, 2-neck round-bottom flask fitted with a reflux condensor and a stir bar containing a solution of diene **24** (69 mg, 0.11 mmol) in CH₂Cl₂

(1.6 L) was added a freshly prepared solution of Grubbs 2nd Generation catalyst (39 mg, 45 µmol) in CH₂Cl₂ (5 mL) by cannula. The solution was heated at reflux for 24 h, cooled to room temperature, stirred while exposed to air for 24 h and concentrated (bath <25 °C). The residue was filtered through SiO₂ (eluting with 60% EtOAc/hexanes), concentrated in a flame-dried, round-bottom flask and dissolved in EtOAc (12 mL). The solution was charged with PtO₂ (70 mg, 0.30 mmol) and the flask was fitted with a balloon filled with H₂ gas. The reaction mixture was stirred vigorously for 1.5 h, filtered through Celite and concentrated. The residue was purified with 10% EtOAc/hexanes to afford tetracycle 25 (43 mg, 65%) as a colorless oil. Analytical data: IR (film) 2958, 1785, 1742, 1718, 1458, 1373, 1273, 1254, 1112, 704 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 7.67 (ddd, J = 7.7, 4.1, 1.8 Hz, 4H), 7.42-7.36 (m, 6H), 5.66 (dd, J = 5.4, 1.6 Hz, 1H), 4.36 (s, 1H), 4.08 (s, 2H), 3.58 (ddd, J = 10.9, 9.7, 3.8 Hz, 1H), 2.80 (dd, J = 18.2, 3.9Hz, 1H), 2.46-2.39 (m, 2H), 2.23-2.20 (m, 1H), 1.84 (dt, J = 12.1, 6.4 Hz, 1H), 1.74-1.71 (m, 1H), 1.69 (s, 3H), 1.64-1.50 (m, 6H), 1.40-1.35 (m, 1H), 1.31-1.22 (m, 3H), 1.04 (s, 9H), 0.91 (d, J = 7.0 Hz, 3H), 0.89 (s, 3H), 0.87 (d, J = 7.0 Hz, 3H); ¹³C NMR (125) MHz; CDCl₃): δ 203.0, 171.9, 138.4, 135.54, 135.46, 133.72, 133.63, 129.57, 129.51. 127.67, 127.59, 123.2, 86.1, 84.8, 82.5, 64.9, 54.1, 45.4, 43.2, 41.9, 38.6, 37.9, 34.18, 34.04, 30.6, 28.3, 26.8, 24.6, 24.1, 23.6, 19.3, 18.8, 18.0; LRMS (ESI): Mass calcd for $C_{39}H_{56}NO_5Si [M+NH_4]^+$, 646.39. Found $[M+NH_4]^+$, 646.56; $[\alpha]_D^{20}$ +13.3 (CHCl₃, c 0.22).

Allylic alcohol S13. To a plastic vial with stir bar containing a solution of silvl ether 25 (47 mg, 0.075 mmol) in THF (10 mL) was added HF·pyr (0.26 mL, 3.0 mmol). The solution was stirred for 48 h and carefully quenched with saturated aqueous $NaHCO_3$ (50) mL). The aqueous layer was extracted with EtOAc (3x). The combined organic layers were dried over Na_2SO_4 and concentrated. The residue was purified by flash column chromatography (20% to 40% EtOAc/hexanes) to afford allylic alcohol S13 (30 mg, >99%) as a colorless oil. Analytical data: 3412, 2954, 1782, 1719, 1457, 1234, 1110, 756 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 5.59 (dd, J = 5.2, 1.5 Hz, 1H), 4.35 (s, 1H), 4.10 (dd, J = 13.4, 1.0 Hz, 1H), 4.01 (d, J = 13.4 Hz, 1H), 3.57 (ddd, J = 10.9, 9.7, 3.8 Hz)1H), 2.80 (dd, J = 18.2, 3.9 Hz, 1H), 2.52-2.47 (m, 1H), 2.43 (dd, J = 18.2, 11.1 Hz, 1H), 2.20 (dd, J = 10.3, 5.4 Hz, 1H), 1.85-1.80 (m, 1H), 1.72 (dd, J = 14.3, 11.0 Hz, 1H), 1.68 (s. 3H), 1.65-1.49 (m, 5H), 1.39-1.19 (m, 5H), 1.03 (d, J = 7.1 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H), 0.87 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 202.8, 171.9, 139.6, 124.7, 86.0, 84.7, 82.6, 64.7, 54.0, 45.3, 43.2, 42.0, 38.5, 37.9, 34.00, 33.92, 30.6, 28.1, 24.5, 24.0, 23.6, 18.6, 17.9; LRMS (ESI): Mass calcd for $C_{23}H_{38}NO_5 [M+NH_4]^+$, 408.27. Found $[M+NH_4]^+$, 408.50; $[\alpha]_D^{20}$ –1.7 (CHCl₃, *c* 0.38).

Enone S14. To a flame-dried 1 dram vial containing a -78 °C solution of allylic alcohol S13 (8.3 mg, 0.021 mmol) in THF (1.0 mL) was added a freshly prepared solution of lithium bis(trimethylsilyl)amide (0.13 mL, 0.065 mmol, 0.5 M in THF) dropwise by The solution was stirred at -78 °C for 1 h and then charged with svringe. dimethylmethylideneammonium iodide (130 mg, 0.7 mmol) in one portion. The reaction mixture was warmed to 0 °C for 10 min and then stirred at room temperature for 3.5 h. The reaction mixture was guenched with EtOAc (1 mL) and saturated agueous NH_4Cl (1 mL). The mixture was diluted with water and CH₂Cl₂, filtered through a Biotage ISOLUTE® phase separator and the organic filtrate was concentrated. The residue was purified by flash column chromatography (20% to 30% EtOAc/hexanes) to afford enone **S14** (8.0 mg, 95%) as a colorless oil. Analytical data: IR (film) 3399, 2953, 1782, 1708, 1627, 1457, 1261, 1130, 1027, 965 cm⁻¹; ¹H NMR (500 MHz; CDCl₃): δ 6.43 (s, 1H), 5.66 (d, J = 1.4 Hz, 1H), 5.59 (d, J = 4.7 Hz, 1H), 4.43 (s, 1H), 4.08 (d, J = 13.3 Hz, 1H), 4.00 (d, J = 13.3 Hz, 1H), 3.90 (d, J = 9.5 Hz, 1H), 2.48 (dt, J = 11.2, 5.9 Hz, 1H), 2.19 (dd, J = 10.0, 5.4 Hz, 1H), 2.00-1.94 (m, 1H), 1.80 (dt, J = 12.1, 6.3 Hz, 1H), 1.70 (s, 3 Hz)and dd, J = 14.5, 10.9 Hz, 1H), 1.61-1.51 (m, 4H), 1.27-1.17 (m, 5H), 1.07 (d, J = 6.6 Hz, 3H), 1.00 (d, *J* = 7.0 Hz, 3H), 0.96 (dd, *J* = 14.2, 7.6 Hz, 1H), 0.89 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 192.3, 171.8, 142.1, 139.5, 124.8, 121.5, 86.0, 84.2, 82.4, 64.7, 52.2, 45.1, 41.8, 37.8, 34.6, 34.01, 33.95, 30.1, 28.2, 25.9, 23.7, 23.4, 20.6, 18.7; LRMS (ESI): Mass calcd for $C_{24}H_{38}NO_5$ [M+NH₄]⁺, 420.28. Found [M+NH₄]⁺, 420.42; $\left[\alpha\right]_{D}^{20}$ -37.6 (CHCl₃, c 0.55).

Aldehyde 26. To a 1-dram vial containing a solution of enone S14 (5 mg, 0.012 mmol) in CH_2Cl_2 (1.2 mL) was added NaHCO₃ (10 mg, 0.11 mmol) followed by Dess-Martin periodinane (10.6 mg, 0.025 mmol). The reaction mixture was stirred at room temperature for 1 h and quenched with saturated aqueous NaHCO₃ (1 mL) and saturated aqueous Na₂S₂O₃ (1 mL) and stirred until the two layers were clear. The mixture was filtered through a Biotage ISOLUTE® phase separator and the organic filtrate was concentrated. The residue was purified by flash column chromatography (10% to 20% EtOAc/hexanes) to afford aldehyde 26 (4 mg, 83%) as a white solid. Analytical data: IR (film) 2951, 2918, 2720, 1786, 1686, 1628, 1457, 1375, 1252, 1128, 1027, 974 cm⁻¹; ¹H

NMR (500 MHz; CDCl₃): δ 9.35 (s, 1H), 6.58 (dd, J = 5.8, 1.5 Hz, 1H), 6.46 (s, 1H), 5.68 (d, J = 1.1 Hz, 1H), 4.46 (s, 1H), 3.93 (d, J = 9.5 Hz, 1H), 2.73-2.68 (m, 1H), 2.48-2.44 (m, 1H), 2.02-1.97 (m, 1H), 1.79 (dt, J = 12.2, 6.3 Hz, 1H), 1.74-1.66 (m, 2H and s, 3H), 1.55 (dd, J = 14.1, 9.5 Hz, 1H), 1.38 (ddd, J = 15.1, 6.4, 1.8 Hz, 1H), 1.33-1.22 (m, 5H), 1.14 (d, J = 6.9 Hz, 3H), 1.08 (d, J = 6.6 Hz, 3H), 0.99 (dd, J = 14.2, 7.7 Hz, 1H), 0.91 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 193.3, 191.8, 171.2, 150.6, 143.2, 141.8, 121.8, 84.9, 83.8, 82.4, 52.2, 45.0, 42.8, 37.6, 34.6, 33.6, 32.3, 30.2, 25.97, 25.77, 23.59, 23.49, 20.5, 19.2; LRMS (ESI): Mass calcd for C₂₄H₃₆NO₅ [M+NH₄]⁺, 418.26. Found [M+NH₄]⁺, 418.45; [α]_D²⁰ – 26.3 (CHCl₃, *c* 0.4).

(-)-Okilactomycin (1). To a 1-dram vial containing enone 26 (4 mg, 0.01 mmol) in THF (0.5 mL) was added 2-methyl-2-butene (42 µL, 0.4 mmol), and t-butanol (0.5 mL). To the reaction mixture was added a freshly prepared solution of NaH₂PO₄ (11.8 mg, 0.085 mmol) and NaClO₂ (6.9 mg, 0.075 mmol) in water (0.17 mL). The reaction mixture was stirred at room temperature for 1 h, quenched with 1 N HCl, and diluted with CH₂Cl₂. The mixture was filtered through a Biotage ISOLUTE® phase separator and the organic filtrate was concentrated. The residue was purified by preparative HPLC (Phenomenex Gemini NX 5 µm C-18 110A 10 mm x 250 mm column, 42% to 77% CH₃CN w/ 0.5% formic acid/water w/ 0.5% formic acid at 8 mL/min over 14 min) to afford (-)okilactomycin 1 (2 mg, 50%) as a white solid. Analytical data: IR (film) 2925, 2862, 1781, 1709, 1625, 1458, 1262, 1187, 974 cm⁻¹; ¹H NMR (500 MHz; acetone-d6): δ 6.76 (dd, J = 6.0, 2.0 Hz, 1H), 6.31 (d, J = 0.8 Hz, 1H), 5.76 (d, J = 1.4 Hz, 1H), 4.75 (s, 1H),4.23 (d, J = 9.5 Hz, 1H), 2.65-2.59 (m, 1H), 2.44-2.41 (m, 1H), 2.01 (ddd, J = 12.9, 6.4, 3.1 Hz, 1H), 1.93-1.78 (m, 3H), 1.72 (dd, J = 13.8, 9.3 Hz, 1H), 1.69 (s, 3H), 1.67-1.61 (m, 2H), 1.38-1.28 (m, 2H), 1.25-1.19 (m, 1H), 1.11-1.09 (m, 6H), 1.06-1.04 (m, 1H), 0.93 (dd, J = 14.0, 7.6 Hz, 1H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz; acetone d_6): δ 193.4, 171.8, 168.1, 144.0, 140.2, 134.4, 121.0, 85.5, 83.8, 82.7, 53.2, 45.6, 42.7, 38.6, 35.5, 34.6, 33.3, 31.0, 28.4, 25.5, 24.01, 23.88, 20.70, 20.50; HRMS (ESI): Mass calcd for $C_{24}H_{31}O_6$ [M-H]⁻, 415.2126. Found [M-H]⁻, 415.2122; $[\alpha]_D^{20}$ –20 (*c* 0.04, MeOH). Literature value for (+)-okilactomycin: $[\alpha]_D^{20}$ (+34, *c* 1.0, MeOH.⁴

Spectral Comparisons

¹H NMR spectroscopy chemical shifts of okilactomycin³

Natural (+)-Okilactomycin	Synthetic (–)-Okilactomycin
δ (ppm in acetone-d6)	δ (ppm in acetone-d6)
6.76 (dd, $J = 6.0, 1.9$ Hz, 1H)	6.76 (dd, $J = 6.0$, 2.0 Hz, 1H)
6.32 (d, $J = 0.5$ Hz, 1H)	6.31 (d, $J = 0.8$ Hz, 1H)
5.76 (d, $J = 1.3$ Hz, 1H)	5.76 (d, $J = 1.4$ Hz, 1H)
4.75 (s, 1H)	4.75 (s, 1H)
4.23 (d, $J = 9.5$ Hz, 1H)	4.23 (d, $J = 9.5$ Hz, 1H)
2.65-2.60 (m, 1H)	2.65-2.59 (m, 1H)
2.44-2.41 (m, 1H)	2.44-2.41 (m, 1H)
2.01 (ddd, $J = 12.9, 6.5, 3.2$ Hz, 1H)	2.01 (ddd, $J = 12.9$, 6.4, 3.1 Hz, 1H)
1.91-1.78 (m, 3H)	1.93-1.78 (m, 3H)
1.72 (dd, $J = 14.1, 9.6$ Hz, 1H)	1.72 (dd, $J = 13.8$, 9.3 Hz, 1H)
1.69 (s, 3H)	1.69 (s, 3H)
1.67-1.62 (m, 2H)	1.67-1.61 (m, 2H)
1.39-1.30 (m, 2H)	1.38-1.28 (m, 2H)
1.25-1.19 (m, 1H)	1.25-1.19 (m, 1H)
1.11-1.09 (m, 6H)	1.11-1.09 (m, 6H)
1.06-1.04 (m, 1H)	1.06-1.04 (m, 1H)
0.93 (dd, $J = 14.1, 7.6$ Hz, 1H)	0.93 (dd, $J = 14.0$, 7.6 Hz, 1H)
0.89 (d, $J = 6.8$ Hz, 3H)	0.89 (d, $J = 6.8$ Hz, 3H)

Natural (+)-Okilactomycin δ (ppm in acetone-d6)	Synthetic (–)-Okilactomycin δ (ppm in acetone-d6)
193.4	193.4
171.8	171.8
168.1	168.1
144.0	144.0
140.1	140.2
134.4	134.4
121.0	121.0
85.5	85.5
83.8	83.8
82.7	82.7
53.2	53.2
45.7	45.6
42.8	42.7
38.6	38.6
35.6	35.5
34.6	34.6
33.3	33.3
31.0	31.0
28.4	28.4
25.5	25.5
24.05	24.01
23.89	23.88
20.71	20.70
20.53	20.50

¹³C NMR spectroscopy chemical shifts of okilactomycin

Stereochemical Determination of 10

The relative stereochemistry of the major diastereomer of **10** was determined by the X-ray diffraction. Recrystallized from slow cooling in hot methanol.

X-ray crystal structure of (S)-4-benzyl-3-((1R,2S,5S)-2-(3-(benzyloxy)propyl)-4-((tert-butyldiphenylsilyloxy)methyl)-5-methylcyclohex-3-enecarbonyl)oxazolidin-2-one (10).

X-ray diffraction was performed at -173 °C and raw frame data were processed using SAINT. Molecular structure was solved using direct methods and refined by F2 by full-matrix least-squares techniques. The GOF = 0.973 for 473 variables refined to R1 = 0.0637 for 5034 reflections with I>2 σ (I). A multi-scan absorption correction (SADABS, Bruker) was applied. Minimum and maximum transmission factors were 0.5801 and 0.9558, respectively. The Flack parameter was refined to 0.01(5). Further information is contained in the CIF file (CCDC 816131).

References

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518-1520.

(2) Armarego, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*; 6th ed.; Butterworth-Heinemann, 2009.

(3) Spectra of authentic (+)-okilactomycin was provided by Dr. Margaret Biddle and Dr. Hironori Harada, Astellas Pharmaceuticals, Private Communication.

(4) H. S. Imai, K. I. Suzuki, M. Morioka, Y. Numasaki, S. Kadota, K. Nagai, T. Sato, M. Iwanami, T. Saito, *J. Antibiot*. **1987**, *40*, 1475-1482.

S25

pg -	al south and		S28
om 200	ومعارضهم والمراجع والمحافظ والمحافظ والمحافظ والمحاد		
180	والمرابع المرابع والمراجعة والمحافظ والمرابع المرابع	$\overline{\rangle}$	
160	فالمراجع والمحافظ والمحافظ	o OB	
140	والمراجع والمعالمة المراجع المراجع والمحدم المراجع		
120	ليحاط والمعارفة والمراجع والمحاط والمحاط		
100	يعربه بالمسابع فيحابط بالمحاط		
80-	and the second of the second		
60	بالمعادية المالية المتعارية المالية المعادية لمع		
40-	والمستعمل المستعمل المستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل وال		
20-	والمراقعة والمحادثة والمراجعة والمحادثة والمحادثة		
0-	يحاملهما والمحادثين والماري ممارك والمحادثية كالمركمة		
	lini) te str		

		S38
pb -		
В		
20		
0		
_		
_		
<u>∞</u> –		
Ŭ	, <u> </u>	
_		
-		
00 0		
_		
1 4 –		
0		
_		
_		
20		
Ŭ		
_		
1		
0		
-		
8		
Ŭ		
•		
°-		
_		
4		
0		
-		
20		
0-		
-		

Me

Me

Me

	- <u> </u>
	그 걸 뒷
-	
	· · · · · · · · · · · · · · · · · · ·
	· 특 팬
-	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
_	
	· · · · · · · · · · · · · · · · · · ·
_	· · · · · · · · · · · · · · · · · · ·
-	
	2
1 I	
_	
	· · · · · · · · · · · · · · · · · · ·
_	
_	
	승규는 것이 아파 가지 않는 것이 않는 것이 아파 가지 않아 않는 것이 않는
	이 비행 중에서 이 것이 있는 것이 없다.
-	
_	
_	
-	
-	· · · · · · · · · · · · · · · · · · ·
	<u> </u>
_	
	5
	<u> </u>
-	
- I	
	- -
	1
1	

dillion of

1	-		S66
ppm			5
1 200	بالبليمين ومرازيه		
18	والمتعادية والمتعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية		
80	and second second second		,CO₂Et
160	la d'arte de la desta de la		
140	حاديا ويرتجع والمحاط والمراجع والمحافظ		
120	aali kasata sa farang ki kasa ki pa		
_	وهالعامولي والمعاملية		
00	والمستعدية والمستحد والمستحدة		
80-	In the second		
_	ներութիսկորինես		
60-	a series and the series of	_	
40-	a an	_	
	والمتعامل والقرية المداويل ا		
<u>`</u> ŏ	il al de su de su de la		
0-	also the roll product of		
_	and the second of the		

-	
ndc	
n 2	
00	
0	
-	
18_	
0	
-	
-	
60	
-	
14	
0	
-	
1	
20	
-	
_	
00	
-	
-	
80	
-	
-	
6	
0	
_	
40	
-	
20	
-	
-	
\sim	
0	
-	

ppm 200	ter for the second stress of t
180	ta setsetset also setter Also setsetsetsetsetsetset Also setsetsetsetsetsetsetsetsetsetsetsetsets
160	and did in the second to find the find the find the second to the second t
140	and the second secon
120	
100	and a strategy and a part of the second s
80	
60	n an
40	ne shing ta the second s
20	
0- -	and grad the first the state of the second state of the first the second state of the first the second state of t

_

BnO Me /**—**Ме -н **23** OH

S72

≤e

ppm 200	
180	Pre-t - K o
160	
140	
120	
100	
80_	
60-	
40	
20	
0-	

ppm 2	
00	
180	
- 160	
140	
1	
20	
100	
8_	
60	
40	
20	
0-	
_	

ppm 200	and the second	
180	المالية إليانية والمعادية والمعادية والمالية	
160	all the strate strate and the	
140	adata ya da ka wata da a	
120	and the stand for the standard	
100	a superior and the second s	
- 80	and the desired	
60	والعرابة والمستعمل والمست	riby digit
40	وللعطيا فراجي المناقل البارية والمناقفة	
20	and the structure of the structure of the	
- 0	والمعارك المراجل والمرامي المحمد والموامية والمرابع ومعرفه	A supervision of the second

ppm 200	the full constant of the set of the full set of the set
180	
160	na a transformation (a transformation) na a transformation (a transformation)
140	and a second
120	i portunita de la companya de la com A companya de la comp
100	ing and a start of the start of
80	
60	allocated to the second se
40-	
20	
-0	માનું મહ્યા પ્રથમિત વિદ્યુપ્ત કે મુખ્યત્વે કે કે બન્દ બાદ કે બીલ્ટી કે બિહ્યુ કે બિહ્યુ કે બિહ્યુ કે બિહ્યુ કે આવ્યું જ બાદ કે બાદ બાદ કુ બાદ બાદ બાદ બાદ કે બાદ

checkCIF/PLATON report

No syntax errors found. CIF dictionary Interpreting this report

Datablock: c_users_scheidt_desktop_work_n0565_0m

Bond precision:	C-C = 0.0071 2	A V	Navelength	1=1.54178				
Cell:	a=9.2888(8)	b=15.3271(1	.2)	c=14.2532(11)				
	alpha=90	beta=100.63	3(6)	gamma=90				
Temperature:	100 K							
	Calculated		Reported					
Volume	1994.4(3)		1994.4(3)					
Space group	P 21		P2(1)					
Hall group	P 2yb		P 2yb					
Moiety formula	C45 H53 N O5 Si		C45 H53 M	1 05 Si				
Sum formula	C45 H53 N O5 Si		C45 H53 N	1 05 Si				
Mr	715.97		715.97					
Dx,g cm-3	1.192		1.192					
Z	2		2					
Mu (mm-1)	0.877		0.877					
F000	768.0		768.0					
F000'	770.59							
h,k,lmax	11,18,17		11,18,16					
Nref	3719[7146]		6565					
Tmin,Tmax	0.915,0.955		0.580,0.9	956				
Tmin'	0.543							
Correction method= MULTI-SCAN								
Data completeness= 1.77/0.92 Theta(max)= 67.240								
R(reflections)= 0.0637(5034) wR2(reflections)= 0.1866(6565)								
S = 0.973 Npar= 473								
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.								

Alert level C

PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low0.97PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ..7

Alert level G

REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is

```
correct. If it is not, please give the correct count in the
            _publ_section_exptl_refinement section of the submitted CIF.
           From the CIF: _diffrn_reflns_theta_max
                                                           67.24
           From the CIF: _reflns_number_total
                                                           6565
                                                 3719
           Count of symmetry unique reflns
           Completeness (_total/calc)
                                              176.53%
           TEST3: Check Friedels for noncentro structure
           Estimate of Friedel pairs measured
                                                  2846
          Fraction of Friedel pairs measured
                                                 0.765
          Are heavy atom types Z>Si present
                                                   yes
                                                                        0.70 mm
PLAT063 ALERT 4 G Crystal Size Likely too Large for Beam Size ....
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large.
                                                                        0.13
PLAT791_ALERT_4_G Note: The Model has Chirality at C20
                                                                           S
                                                         (Verify)
PLAT791_ALERT_4_G Note: The Model has Chirality at C21
                                                         (Verify)
                                                                           R
PLAT791_ALERT_4_G Note: The Model has Chirality at C23
                                                                           S
                                                         (Verify)
PLAT791_ALERT_4_G Note: The Model has Chirality at C28
                                                         (Verify)
                                                                           S
   0 ALERT level A = Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
   2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
   7 ALERT level G = General information/check it is not something unexpected
   0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   1 ALERT type 2 Indicator that the structure model may be wrong or deficient
   2 ALERT type 3 Indicator that the structure quality may be low
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

6 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/02/2011; check.def file version of 16/02/2011

Datablock c_users_scheidt_desktop_work_n0565_0m - ellipsoid plot

