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SUPPLEMENTAL DATA 

COMPUTATIONAL METHODS  
This section describes the preparation of the systems simulated in this study, the molecular dynamics 
(MD) simulations, the thermodynamic integration methods, and the error analysis for the thermodynamic 
integration simulations. 
 
System Preparation and MD Simulations.  
CHARMM (1) was used to build, minimize, and equilibrate the protein structure from the wild type 
crystal structure, 1QK2 (2). The following residues were protonated in all simulations: E107, D170, D221, 
H331, H340, H414, and E419. The enzyme was minimized for 1,000 steps using steepest descent 
minization followed by 1,000 steps of conjugate gradient minimization. The enzyme was solvated, and 
sodium ions were added for electrostatic neutrality. The solvated system was minimized for 1,000 steps 
with steepest descent minimization holding all but the water and ions fixed, followed by another 1,000 
steps of steepest descent minimization holding only the ligand fixed (when present). A final minimization 
of the entire system was run for 1,000 steps of steepest descent minimization followed by 1,000 steps of 
Adopted Basis Newton-Raphson minimization.  
 
The resulting minimized systems were equilibrated in the NVE ensemble at 300 K for 20 ps followed by 
another 20 ps in the NPT ensemble at 300 K for density equilibration. The parameters given here were 
used in all the MD simulations. Temperature control was performed using the Nosé-Hoover thermostat at 
300 K (3,4). SHAKE was used to fix the distances to hydrogen atoms (5). Non-bonded interactions were 
truncated with a 10 Å cutoff, and the Particle Mesh Ewald method (6) with a 6th order b-spline, a 
Gaussian distribution width of 0.320 Å, and a mesh size 80 x 80 x 80 was used to describe the 
electrostatics. All equilibration simulations used a 2 fs time step. The CHARMM27 force field with the 
CMAP correction (1,7,8) was used to describe the protein, while glycans and cellulose used the 
CHARMM35 carbohydrate force field (9-11). Water was modeled using the TIP3P force field (12,13). 
 
The production MD simulations were performed using NAMD (14). The production simulations were 
performed in the NVT ensemble at 300 K for 250 ns using a 1 fs time step for stability in the SHAKE 
algorithm. Excepting the time step and the use of the Langevin thermostat (15), all simulation parameters 
described above for the CHARMM equilibration were maintained for the production simulations. 
 

The system size evaluated was approximately 80 Å x 80 Å x 80 Å yielding a system of about 52,000 
atoms, of which roughly 46,000 atoms are water. The system dimensions were chosen to ensure that the 
enzyme, including the glycans, were sufficiently solvated so as not to interact with the periodic image. 
The catalytically-active systems, referred to here as “bound” systems, included a cellohexaose oligomer 
in the active site of the enzyme, positioned so as the two product sites were occupied. Systems referred to 
as “free” contain the enzyme excluding the cellooligomer. O-glycosylation of the enzyme was taken from 
the 1QK2 structure (2), while the N-glycosylation was constructed as described by Hui et al. (16). 
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Thermodynamic Integration. 
Using a snapshot from the production simulations at 18 ns, TI calculations were performed using NAMD 
with the dual-topology methodology (17-19). The choice of 18 ns as a snapshot was a function of the 
completion point of the first run of the MD simulation trajectory. Any point at which the simulation is 
fully equilibrated may be used as the starting point. This methodology entails the equilibration of a single 
system containing a “hybrid” residue at the mutation site in which the derivative of the potential energy, 
U, is calculated over the range of a coupling parameter, λ. This hybrid residue contains atoms from both 
the wild type residue and the mutant, wherein the wild type and mutant atoms do not interact with one 
another, and interact with the rest of the system via standard bonded and nonbonded interactions scaled 
by λ from the reactant (wild type) to the product state (mutant) in windows over λ. Electrostatic and van 
der Waals calculations were decoupled into two separate processes, and soft-core potentials were used to 
overcome endpoint singularities (20).  
 
The electrostatic and van der Waals calculations included 15 windows ranging from λ values of 0 to 1 for 
a total of 30 simulations per mutation. The windows were divided as follows: 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, using more closely coupled windows near the endpoints to 
improve accuracy. The electrostatics and van der Waals calculations were equilibrated for 0.5 ns prior to 
collection of 14.5 ns of TI data.  
 
The change in free energy, ΔG, for each set of simulations was determined using Simpson’s Rule with 
Brun’s extension for non-equidistant nodes to integrate dU/dλ over λ = 0 to 1 (21). The electrostatic and 
van der Waals terms were combined to obtain ΔG for the bound and free states of each point mutation as 
described in Equation S1, where Mut refers to the mutant and WT refers to the wild type. This scheme is 
illustrated in the thermodynamic cycle shown in Figure S1.  
 

€ 

ΔΔG = GMut−bound −GMut− free( ) − GWT −bound −GWT − free( ) = GMut−bound −GWT −bound( ) − GMut− free −GWT − free( )      (S1) 
 

 
 
Figure S1. Alchemical cycle for measuring ΔΔG with thermodynamic integration. Free and bound refer 
to the absence and presence of the ligand, respectively. 
 
Error analysis was performed following the methods of Steinbrecher et al. (22) in which the standard 
deviation, σ, for each window is related to the total window length, tMD, and the autocorrelation time, τ, of 
dU/dλ as given in Equation S2. 
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The total error from λ = 0 to 1 is weighted by the width of each window as in Equation S3.  
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Convergence Analysis. 
Simulation analysis included the confirmation of appropriate window overlap and simulation convergence 
as described by Pohorille et al. (20). Figure S2A shows an example of a probability distribution analysis 
wherein histograms for each simulated window are plotted on the same x-axis, visually confirming 
acceptable overlap of the windows. Figure S2B shows an example plot of autocorrelation function (ACF) 
versus time. The autocorrelation time for each window was used in the error analysis. The trends seen in 
this example data set are representative of the thermodynamic data collected for all mutations in this study. 
 

 
Figure S2. An example data set for window overlap and autocorrelation function analysis. These data are 
taken from the reactant state in the van der Waals simulation set from the free W272A calculation 
illustrating (A) window overlap and (B) calculation of the autocorrelation time. 
 
Normal Mode Analysis. 
Normal mode analysis was conducted with the molecular mechanics program package NAB (23,24) (now 
part of AmberTools 1.5) (25,26), using the parameter set parm99SB (27,28), and the pairwise approach of 
Hawkins et al. for the Generalized Born model (29,30). The monomeric Cel6A structure was minimized 
using the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno Truncated Newton Conjugate 
minimization technique to obtain an RMS gradient below 1×10−8 kcal/mol-Å. This level of convergence 
is necessary to avoid contamination from translational and rotational modes into true internal modes. 
Diagonalization of the Hessian matrix was performed using ARPACK routines (31) in combination with 
Cholesky decomposition and inversion of the Hessian matrix, providing better separation of eigenvalues 
to enhance convergence. The cross-correlation map in Figure 5 was generated with a modified version of 
the analysis module PTRAJ. 
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ADDITIONAL RESULTS 
Detailed Thermodynamic Integration Results.  
The results shown in Table 1 in the main text are a summary of the information found below in Table S1. 
Electrostatic and van der Waals interaction energies are combined to obtain the ΔG for a given state of an 
alchemical mutation (i.e. bound or free). Taking the difference of the bound and free ΔG values gives 
ΔΔG.  
 
Table S1: Detailed ligand binding free energies and associated binding affinities calculated from TI.  

    Bound Free 
    Energy [kcal/mol] Error [kcal/mol] Energy [kcal/mol] Error [kcal/mol] 

Electrostatics 8.89 0.00 7.24 0.07 
VDW 13.72 0.09 6.01 0.34 
ΔG 22.60 0.09 13.25 0.35 

ΔΔG [kcal/mol] 9.36 +/-0.36 W
13

5A
 

Kwt/Kmut 6.5E+06 
Electrostatics 5.16 0.06 4.34 0.09 

VDW 0.22 0.48 2.33 0.30 
ΔG 5.38 0.48 6.68 0.32 

ΔΔG [kcal/mol] -1.30 +/- 0.58 W
26

9A
 

Kwt/Kmut 1.1E-01 
Electrostatics 5.63 0.06 4.42 0.10 

VDW 3.63 0.30 1.08 0.26 
ΔG 9.26 0.31 5.50 0.27 

ΔΔG [kcal/mol] 3.76 +/- 0.41 W
27

2A
 

Kwt/Kmut 5.5E+02 
Electrostatics 6.73 0.05 5.90 0.05 

VDW 3.91 0.30 3.14 0.27 
ΔG 10.64 0.30 9.04 0.28 

ΔΔG [kcal/mol] 1.61 +/- 0.41 W
36

7A
 

Kwt/Kmut 1.5E+01 
 
 
Molecular Dynamics – Interaction Energies and Hydrogen Bonding. 
From the five separate 250 ns MD simulations of the individual mutants and the wild type enzyme, we 
calculated the interaction energies of the protein with the ligand (Figure S3A) and the hydrogen bonds 
between the ligand and protein (Figure S3B). Hydrogen bond cutoffs were defined as within 3.4 Å of the 
donor and acceptor and 60° from linear. Error bars in Figures S3A and S3B represent one standard 
deviation. 
 
The results in Figure S3A and in Figure S3B, within the confines of standard deviation, show there is no 
significant change in either interaction energy or average number of hydrogen bonds at a given binding 
site as a result of mutating a tryptophan to an alanine making conclusions difficult to draw as to the 
relationship of these dynamical properties in relative ligand binding free energy. It should be noted, 
however, that the interaction energy shown in Figure S3A is that of the entire protein with the glucose of 
a particular active site.  
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Figure S3. Results from the 250 ns MD simulations of the Cel6A wild type (WT) and the 4 mutants. 
Labels below the x-axis indicate position of the tryptophan to alanine mutations relative to the binding site 
designation. (A) Interaction energy of the protein with the cello-oligomer per glucose binding site.  
(B) Average number of hydrogen bonds per glucose binding site. 
 
Molecular Dynamics – Site Interaction Energies.  
In addition to calculating the overall interaction energy of the enzyme with the ligand as shown in Figure 
S3A, we have calculated the interaction energies of a given enzymatic residue interacting with the ligand. 
Figure S4 shows, for all four mutation locations, the total, electrostatic, and van der Waals interaction 
energies of the residue with the ligand at a given binding site. For the wild type, this residue is a 
tryptophan. For all four mutants, this residue is an alanine. Error bars represent 1 standard deviation. For 
each of the mutants, there is a marked decrease in the total interaction energy, which is expected given the 
reduced steric hindrance of the alanine residues in comparison to tryptophan. Interestingly, W269 and 
W367 seem to interact with glucose units in neighboring binding sites to a greater extent than either 
W135 or W272. Additionally, the W269A and W367A interaction energies with these same binding sites, 
while reduced in comparison to wild type, remain large in comparison to the reductions observed for 
W135A and W272A.  
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Figure S4. Interaction energies of tryptophan (wild type) and alanine (mutants) with the glucose unit in a 
given binding site for residues (A) W135/W135A, (B) W269/W269A, (C) W272/W272A, and (D) 
W367/W367A. 
 
Molecular Dynamics – Root-mean-square deviation (RMSD).  
Dynamical properties of the ligand were also evaluated from the five MD simulations including RMSD of 
the ligand, shown in Figure S5A, and the RMSD of the active site loop residues 172 through 182, Figure 
S5B. The RMSD values are calculated as compared to the starting crystal structure configuration. While 
RMSD values are shown starting at 0 ns, this time excludes the minimization steps as discussed above in 
the methods section, thus the initial deviation from a single starting point at 0 ns.  
 
In the case of the ligand RMSD, Figure S5A, all four mutant RMSD trajectories do not appear to 
substantially deviate from wild type, most likely due to the inherent confinement within the active site 
tunnel. The active site loop 172-182 RMSD, Figure S5B, shows some conformational change in the 
W135A and W272A mutants.  
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Figure S5. (A) RMSD values of the ligand from MD simulations of the wild type and mutants.  
(B) RMSD values of the active site loop residues 172 through 182 from MD simulations of the wild type 
and mutants. 
 
The RMSD of all the residues lining the active site tunnel of Cel6A was also calculated from the wild 
type MD simulation, as shown below in Figure S6.  The intent of this evaluation was to observe any 
residue conformational changes associated with the -1 glucose ring conformation changes; however, aside 
from the catalytic acid, D221, the active site residues appear to maintain constant positions or alternate 
between two positions apparently unrelated to the glucose ring conformation change.   
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Figure S6. RMSD values of the active site residues from the wild type MD simulation.  For clarity, the 
figure has been divided into four sections – (A), (B), (C), and (D).  
 
Molecular Dynamics – Active Site Residue Dynamics. Additional analysis of the MD simulations 
included evaluation of key active site residue dynamics through hydrogen bonding and variation in 
distance from ligand features. Hydrogen bond cutoffs were defined as within 3.4 Å of the donor and 
acceptor and 60° from linear. 
 
For all four mutants and the wild type enzyme, Figure S7 shows both the distance of the catalytic residue, 
D221, from the glycosidic oxygen, as measured from the OD2 atom of D221, and the distance of the 
center of mass of D221 from the center of mass of neighboring residue D175. Figure S7 also shows the 
hydrogen bonding of D221 to D175 as a function of time, which is primarily between the D221/D175 
sidechain atoms. Interesting observations include the virtual lack of hydrogen bonding between D221 and 
D175 in mutant enzymes W135A, W269A, and W272A, which is related to the proximity of the D221 
side chain to the glycosidic oxygen.  
 
Figure S8 illustrates the distance of the center of mass of both Y169 and D221 from the primary alcohol 
group oxygen of the -1 glucose unit as well as the associated hydrogen-bonding pattern. Hydrogen 
bonding to the OH group has been shown for D221 as sticks, while Y169 is shown as a marker, so that 
overlap hydrogen bonding may be observed. Hydrogen bonding of D221 to the primary alcohol group is 
associated with a conformation change in the -1 glucose ring, from skew to chair as shown in Figure 3 of 
the main text. Hydrogen bonding of Y169 to the primary alcohol group appears to be independent of the 
glucose ring conformation. 
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Hydrogen bonding of residues Y169 and R174 for all four mutants and the wild type is shown in Figure 
S9. The wild type hydrogen bonding shows a stable pattern of approximately 1 hydrogen bond over the 
course of the entire simulation. Each of the tryptophan to alanine mutations interrupts this interaction to 
varying extents. The breaking of this interaction has been said to correspond to a conformational change 
in active site loop 172-182 residue region (32). While comparison of the hydrogen bonding patterns in 
Figure S9 to the RMSD of this active site loop in Figure S5B is not conclusive, it does appear that some 
of the more dramatic fluctuations in this loop result in a breaking of the Y169/R174 interaction. 
 
Figure S10 shows the hydrogen bonding of residues D175 and R174 for the wild type and mutant 
enzymes as a function of time. Hydrogen bonding of these two residues in the W272A mutant appears to 
be related to the conformational change in the active site loop 172-182 residue region. However, similar 
correlation for the W135A mutant is not observed. Rather, the W135A mutant exhibits increased 
hydrogen bonding of D175 and R174 over wild type.  
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Figure S7. Distance of the catalytic residue, D221, from neighboring D175 and the glycosidic oxygen 
and the hydrogen bonding pattern of D221 and D175 for (A) WT, (B) W135A, (C) W269A, (D) W272A, 
and (E) W367A.  
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Figure S8. Distance of the catalytic residue, D221, and Y169 primary alcohol oxygen of the -1 glucose 
unit and the associated hydrogen bonding pattern for (A) WT, (B) W135A, (C) W269A, (D) W272A, and 
(E) W367A.  
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Figure S9. Hydrogen bonding pattern of Y169 and R174 for (A) WT, (B) W135A, (C) W269A, (D) 
W272A, and (E) W367A.  
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Figure S10. Hydrogen bonding pattern of R174 and D175 for (A) WT, (B) W135A, (C) W269A, (D) 
W272A, and (E) W367A.  
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THE EFFECT OF GLYCOSYLATION ON ENZYME DYNAMICS FROM SIMULATION 
Prior to building the MD simulations discussed in this work, we set out to determine if native 
glycosylation patterns, as described by Hui et al.,(16) impacted the dynamical and energetic properties 
typically observed from MD simulations. Simulations set up exactly as described in the methods section 
were performed for both glycosylated and non-glycosylated Cel6A. The only difference between the two 
systems was the presence or absence of N and O-glycans at the surface of the enzyme. Additionally, these 
simulations were performed in the absence of a ligand, referred to in the Figures as “free”, and with a 
ligand, referred to as “bound”, totaling four simulations of 100 ns each. 
 
The RMSF values as a function of residue number for each of these four simulations are shown in Figure 
S11. Comparing only the glycosylated and non-glycosylated values to each other in both the free and 
bound states, indicates there is very little difference in fluctuation of individual residues as a result of 
glycosylation. Similarly, the RMSD values shown in Figure S12 for glycosylated and non-glycosylated 
Cel6A do not differ enough to conclude any dynamical effects.  
 

 
Figure S11. RMSF versus residue number for glycosylated and non-glycosylated Cel6A for both the (A) 
free enzyme and the (B) bound enzyme. 
 

 
Figure S12. RMSD versus time for glycosylated and non-glycosylated Cel6A for both the (A) free 
enzyme and the (B) bound enzyme. 
 
Two final comparisons of glycosylated and non-glycosylated properties were calculated including the 
hydrogen bonding pattern of the protein to the ligand, Figure S13A, and the interaction energy of the 
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protein with the ligand, Figure S13B. As with the hydrogen bonding evaluation discussed in the main text, 
hydrogen bond cutoffs were defined as within 3.4 Å of the donor and acceptor and 60° from linear. Error 
bars shown in Figure S13A and S13B represent 1 standard deviation. Each of these figures show little 
difference in the protein interaction with the ligand as a result of glycosylation or lack thereof.  
 

 
Figure S13. (A) Average number of hydrogen bonds on a per binding site basis for the glycosylated and 
non-glycosylated bound enzyme. (B) The interaction energy of the protein with the ligand on a binding 
site basis for the glycosylated and non-glycosylated enzyme. 
 
This evaluation of properties as a function of glycosylation is not intended to be an overarching statement 
on the effects of native glycosylation on all enzymes, but rather to determine the effects on simulation 
observables for a very specific case. Despite the apparent conclusion that glycosylation appears to have 
little effect on the interaction of the enzyme with its ligand, all simulations from which we draw 
conclusions regarding binding affinity or ligand binding free energy were performed with glycosylation 
patterns as the enzyme might be found in nature as expressed by T. reesei.  
 
REFERENCES 
1. Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., Won, 

Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, 
M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, 
V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M., 
Woodcock, H. L., Wu, X., Yang, W., York, D. M., and Karplus, M. (2009) J. Comput. Chem. 30, 
1545-1614 

2. Zou, J.-y., Kleywegt, G. J., Stahlberg, J., Driguez, H., Nerinckx, W., Claeyssens, M., Koivula, A., 
Teeri, T. T., and Jones, T. A. (1999) Structure 7, 1035-1045 

3. Nosé, S., and Klein, M. L. (1983) Mol. Phys. 50, 1055-1076 
4. Hoover, W. G. (1985) Phys. Rev. A 31, 1695-1697 
5. Ryckaert, J., Ciccotti, G., and Berendsen, H. (1977) J. Comput. Phys. 23 
6. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G. (1995) J. 

Chem. Phys. 103, 8857 
7. MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., 

Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. 
K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., 
Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, 
D., and Karplus, M. (1998) J. Phys. Chem. B 102, 3586-3616 

8. Mackerell, A. D., Feig, M., and Brooks, C. L. (2004) J. Comput. Chem. 25, 1400-1415 
9. Guvench, O., Hatcher, E., Venable, R. M., Pastor, R. W., and MacKerell, A. D. (2009) J. Chem. 

Theor. Comp. 5, 2353-2370 



 S16	
  

10. Guvench, O., Greene, S. N., Kamath, G., Brady, J. W., Venable, R. M., Pastor, R. W., and 
Mackerell, A. D. (2008) J. Comput. Chem. 29, 2543-2564 

11. Guvench, O., Mallajosyula, S. S., Raman, E. P., Hatcher, E. R., Vanommeslaeghe, K., Foster, T. 
J., Jamison, F. W., and MacKerell, A. D. (2011) J. Chem. Theory Comput., ASAP 

12. Jorgensen, W. L., Chandrasekhar, J., and Madura, J. D. (1983) J. Chem. Phys. 79, 926-935 
13. Durell, S. R., Brooks, B. R., and Ben-Naim, A. (1994) J. Phys. Chem. 98, 2198-2202 
14. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. 

D., Kale, L., and Schulten, K. (2005) J. Comp. Chem. 26, 1781-1802 
15. Schneider, T., and Stoll, E. (1978) Phys. Rev. B: Condens. Matter Mater. Phys. 17, 1302 
16. Hui, J. P. M., White, T. C., and Thibault, P. (2002) Glycobiology 12, 837-849 
17. Kirkwood, J. G. (1935) J. Chem. Phys. 3, 300-313 
18. Straatsma, T. P., and McCammon, J. A. (1991) J. Chem. Phys. 95, 1175-1188 
19. Frenkel, D., and Smit, B. (2002) Understanding Molecular Simulations: From Algorithms to 

Applications, 2nd ed.,  
20. Pohorille, A., Jarzynski, C., and Chipot, C. (2010) J. Phys. Chem. B 114, 10235-10253  
21. Bruckner, S., and Boresch, S. (2011) J. Comput. Chem. 32, 1320-1333 
22. Steinbrecher, T., Mobley, D. L., and Case, D. A. (2007) J. Chem. Phys. 127 
23. Macke, T., Svrcek-Seiler, W. A., Brown, R. A., Kolossvary, I., Y.J., B., and Case, D. A. (2011) 

NAB Ver. 6  
24. Macke, T. J., and Case, D. A. (1998) Modeling unusual nucleic acid structures. in Molecular 

Modeling of Nucleic Acids (Leontis, N. B., and SantaLucia, J. eds.), Amer Chemical Soc, 
Washington. pp 379-393 

25. Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., 
Simmerling, C., Wang, B., and Woods, R. J. (2005) J. Comp. Chem. 26, 1668-1688 

26. Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. A., Wang, J., Duke, R. E., et al. 
(2008) Amber Ver. 10 

27. Junmei, W., Cieplak, P., and Kollman, P. A. (2000) J. Comput. Chem. 21, 1049-10741074 
28. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) 

Proteins: Struct., Funct., Bioinf. 65, 712-725 
29. Hawkins, G. D., Cramer, C. J., and Truhlar, D. G. (1995) Chem. Phys. Lett. 246, 122-129 
30. Hawkins, G. D., Cramer, C. J., and Truhlar, D. G. (1996) J. Phys. Chem. 100, 19824-19839 
31. Lehoucq, R., Sorensen, D. C., and Yang, C. (1998) Arpack User's Guide: Solution of Large-Scale 

Eigenvalue Problems with Implicitly Restored Aroldi Methods. in SIAM, Philadelphia, PA 
32. Koivula, A., Ruohonen, L., Wohlfahrt, G., Reinikainen, T., Teeri, T. T., Piens, K., Claeyssens, M., 

Weber, M., Vasella, A., Becker, D., Sinnott, M. L., Zou, J. Y., Kleywegt, G. J., Szardenings, M., 
Stahlberg, J., and Jones, T. A. (2002) J. Amer. Chem. Soc. 124, 10015-10024 

 
 


