Supplementary Materials

Supplement A: Paired-peptide approach for improving the perfor-

mance of any given MS/MS search tool

In the main text of this manuscript, we described how one can design a tool T that doubles the
number of peptide identifications by introducing spurious identifications in a particular fashion that
exploits TDA. T is clearly undesirable in practice, since we know that many of its identifications
are unacceptable.

Below we describe a more reasonable approach, the paired-peptide approach, for transforming
a given search tool T into a new tool T™ that, unlike 7", is well-intentioned and improves the
level of peptide identifications and biological discovery from a given spectral dataset. We indeed
designed this approach genuinely for improving peptide identifications from search tools, and only
later realized that it is not TDA-compatible. It is described here to illustrate that precaution is

needed when using TDA even with well-intentioned and biologically useful approaches.

Design of T

We first introduce the notion of paired peptides. Given a set X of peptide identifications (each
peptide in X forms a PSM) and a parameter Distance, we call a peptide P € X paired if there
is another peptide in X separated from P by less than Distance amino acids within the same
protein (i.e., the starting positions of these peptides are less than Distance amino acids apart).
We denote all peptides identified by a database search tool T' with scores above Score as T'(Score)
and the set of all paired peptides as T'(Score, Distance). Supplementary Table 1 shows how the
number of paired peptides InsPecT'(Score, Distance) in target and decoy databases (identified
by InsPecT) varies depending on Score and Distance. The table illustrates that for a fixed 1%
FDR, the number of identified peptides remains stable for various values of Distance (varying
from maximum =~ 42,000 peptides at Distance = 70 to = 40,000 peptides at Distance = 500 and
larger). It indicates that the method is robust with respect to parameter Distance (we use the
default value Distance = 100). Without the paired peptide concept (i.e., in the standard MS/MS
database search setup), the number of the identified peptides at 1% FDR is significantly lower
(=~ 35,000 peptides at 1% FDR).



Instead of fixing the parameter Distance, one can vary it for different proteins, for instance,
setting it equal to the protein length (equivalent to setting Distance = 0o). This would, however,
give an unfair advantage to long proteins and reduce the number of identified peptides (compared
to a fixed Distance = 100) by ~ 4% (Supplementary Table 1). Also, in proteogenomics studies
requiring search in the six-frame translation databases, the proteins are often not known in advance
making the paired-peptide approach the only feasible option.

Given any tool T, we can build a new tool 7™ that only reports paired-peptides, such that
T*(Score) = T(Score,100). Next, we compare the performance of T with T using various tools

and datasets and show that 7™ consistently performs better.

MS/MS datasets

The MS/MS datasets used in this study were obtained from Shewanella oneidensis MR-1 (generated
in Dick Smith’s lab at PNNL) and human (generated in Vivian Hook’s lab at UCSD) samples. The
Shewanella dataset has been previously studied in [1, 2], while the human dataset has been described
in [3]. The datasets were generated on Thermo LCQ mass-spectrometer for Shewanella and Agilent
XCT Ultra for human samples. The human dataset includes nearly 600 thousand spectra, while the
Shewanella dataset includes 14.5 million spectra. The Shewanella dataset was searched against the
Shewanella protein database (size ~ 1.5 Mb, containing 4,928 sequences), and the human dataset
was searched against the IPI database version 3.41 (size &~ 40 MB, containing 72,155 sequences).
Decoy databases were generated by randomly shuffling the sequence of each protein in the target
database (preserving the background amino acid frequencies for each protein).

Database searches were carried out using InsPecT [4]. InsPecT searches were run with the
default parameter settings (fragment ion tolerance of 0.5 Da and parent mass tolerance of 2.5
Da). MS-GF [5] was run on InsPecT results to evaluate the statistical significance of peptide
identifications (spectral probabilities). We treat the spectral probability as a score, and since MS-
GF was used to rescore all InsPecT identifications (including even the very low scoring ones that
are typically never reported), InsPecT' ® M S —GF can be viewed as a hybrid peptide identification

tool.

T* improves peptide identifications and enables biological discoveries

In both the human and the Shewanella datasets, we find that the reduction in the number of peptide
identifications by limiting attention to paired peptides is more pronounced in the decoy database
compared to the target database. This results in a better sensitivity-specificity trade-off for paired
peptides, as shown in Figure 1. The curves in the figure are plotted by computing the number of
identifications in the target and the decoy database for varying score thresholds. For example, for

the same number (14) of decoy database hits, InsPecT identifies 2,011 peptides in the target human



database using traditional approach, and 2,577 peptides using the paired-peptide approach, a 28%
increase. Similarly, the number of peptide identifications obtained from MS-GF [5] increases by
12%. These observations are replicated in the Shewanella dataset (Figure 1b), indicating that the
paired-peptide approach is widely applicable.

Next, we illustrate with some examples how the paired-peptide approach improves proteoge-

nomic analysis.

Improved detection of proteolytic cleavage sites

The increased number of peptide identifications is useful for various biological applications. For
example, signal peptides are difficult to confirm experimentally, and computational predictions
are used to fill the gap. There have been some concerns regarding the quality of signal peptide
predictions [6] since these tools make predictions based on a rather small database of experimen-
tally validated signal peptides. MS/MS serves as a high-throughput technique for identification of
cleavage sites of signal peptides and can thus be used to increase the confidence of signal peptide
predictions. Using the same approach as in [1] on the larger set of peptides identified by the paired-
peptide approach at 1% FDR in the Shewanella dataset, we identified 180 putative signal peptides,
significantly more than the previously reported number (117) [1].

In Gupta et al, 2008 [2], it was shown that comparative proteogenomic analysis can be used to
identify a reliable set of proteolytic cleavages that are conserved between multiple species [2]. We
find that the paired-peptide approach for Shewanella oneidensis MR-1 allows us to recover 41 con-
served proteolytic sites among the three Shewanella species (Supplementary Table 2), significantly

more than the previous study (31).

Identification of novel peptides in a six-frame translation database search

We further demonstrate that the paired-peptide approach allows improvements in the identification
of peptides in previously unannotated regions of the genome in a six-frame translation database
search, allowing for corrections in gene annotations and finding new genes. Six-frame translations
of the whole genome are commonly used as the sequence database in proteogenomic studies for
improving genome annotations such as correcting gene-start sites, identifying novel genes, pro-
grammed frameshifts, sequencing errors etc. [1]. These predictions are enabled by identification of
novel peptides that fall outside the annotated protein-coding regions of the genome. Gupta et al.,
2007 [1] used stringent FDR control to corroborate novel peptides (also validated using comparative
genomics and DNA sequencing trace analysis) and demonstrated that many of these novel peptides
reveal gene annotation errors. Therefore, increasing the number of novel peptides is helpful in
obtaining better genome annotations. Below we show that the paired-peptide approach increases

the number of novel Shewanella peptides by more than 50%.



Supplementary Table 3A provides the number of peptide identifications in the six-frame transla-
tion of Shewanella using InsPecT [4] with MS-GF scores [5]. The table shows that the paired-peptide
approach leads to a significant increase in the number of identified novel peptides as compared to
the traditional approach. For example, at a very stringent 0.1% FDR, 198 novel peptides are iden-
tified by the traditional approach, while 320 novel peptides are identified using the paired-peptide
approach, a 62% increase in the number of identifications. It must be noted that the gene correction
methods often limit attention to only those novel peptides that are located close to other peptides,
to have confidence in the corrections [1]. This implies that a large fraction of novel peptides iden-
tified in the traditional approach are not usable for gene corrections. On the other hand, all novel
peptides identified with the paired-peptide approach can be used for gene predictions/corrections.

At MS-GF score threshold of 12.3, the number of peptide hits in the decoy database becomes
0 with the paired-peptide approach, while 181 novel peptides are identified in the target database.
Supplementary Table 3B lists these 181 virtually “error-free” peptides and shows their distances
from the immediately downstream gene in the same frame (a small distance may indicate an
N-terminal extension of the gene), and from the immediately upstream gene in any frame on
the same strand (a small distance may reflect a programmed frameshift or a DNA sequencing
error). We indeed find that these distances are small for many peptides, suggesting that these
peptides can be very useful in correcting gene annotations. Moreover, many of these peptides either
start from Methionine (Start codon) or start immediately after Methionine (N-terminal Methionine
cleavage [1]) increasing the confidence that these novel peptides provide a solid basis for correcting
gene annotations. A large distance from neighboring genes, on the other hand, may indicate that
the peptides come from a novel gene that was missed in the original annotation. A detailed study

of these novel peptides to analyze their implied gene corrections is beyond the scope of this paper.

T* is not TDA-compliant

Even though using paired-peptide seems to be useful, the improvement in performance seen in
Figure 1 is controversial, since T* is not actually compatible with TDA as was the case with 7.
For example, if we insert a bogus peptide in the database, it will have a higher chance of getting
identified in the target database (because of the presence of a larger number of neighboring peptides)
as compared to the decoy database. Therefore, the score distribution of incorrect peptides in the
target database is not similar to the score distribution of peptides in the decoy database. Thus,

using TDA to establish the superiority of 7™ is illegitimate.



Supplement B: TDA with inconsistent scoring functions robs re-

searchers from statistically significant peptide identifications

For a spectrum o and peptide m we define FPR(o,7) as FPR(o,Score(o,m)). We call a scoring

function Score(o, ) consistent if
Score(oy,m) > Score(oa, m2)

implies

FPR(O‘l,?Tl) S FPR(O‘Q,ﬂ'Q).

The scoring functions of nearly all existing MS/MS database search tools (Sequest, Mascot,
X!Tandem, InsPecT, etc.) are inconsistent [5, 7].! However, any scoring function Score(o,7) can
be transformed into a new scoring function —F PR(o, 7). While this transformation can always be
accomplished in exponential time, efficient polynomial-time algorithms for converting scores into
FPRs remain unknown for most existing tools. One can show that a TDA with an inconsistent
scoring function Score(o, ) can be substituted by a TDA with a new scoring function (based on

-FPR(o, 7)) that improves on the results of the original approach.

Supplement C: Are tools using A-scores TDA-compliant?

While some database-dependent scoring function are clearly non-TDA-compliant, we are not claim-
ing that all database-dependent scoring functions (and particularly the ones utilizing §-scores) are
non-TDA-compliant. However, we are not aware of a study that proves that the specific scoring
functions employing d-scores are TDA-compliant. We further remark that computing J-scores is
an attempt to estimate expectation of a random variable maxpeptigecr Score(o, Peptide) defined
on all random databases of the same size as T'. If individual FPRs are available, this expectation

can be computed precisely.

Supplement D: Dot-product scoring functions

One can transform spectra and peptides into vectors and further use their dot-product for scoring
PSMs.
We represent each amino acid as an m-dimensional boolean string with m — 1 zeros and a

single one in the end (m represents the integer mass of amino acid). A peptide is represented as a

!The use of d-scores in some algorithms (e.g., Sequest) is merely an attempt to improve the consistency of their
scoring functions. Indeed, these approaches are based on the observation that better PSMs with FPR(o1,m1) <
FPR(o2,72) typically have larger §-scores: §(o1,71) > FPR(02,72). Thus, boosting original scores with d-scores

(e.g., adding them) results in a more consistent scoring function.



string (vector) obtained by concatenation of its amino acids. Many MS/MS tools use PRM (prefix
residue mass) representation of tandem mass spectra. PRM spectrum is a vector pj . ..p; where p;
represents the likelihood that the peptide (that generated this spectrum) has prefix mass i [4, 8, 5].

Since both peptides and PRM spectra represent vectors, one can use dot-product to score PSMs.

Supplement E: What is a random peptide and a random database?

The iid random databases used in TDA [9] assume that the probability of finding a peptide P
starting in an arbitrary position of the database equals to ﬁ, where |P| is the length of the
peptide.?2 Our notion of random peptides follows this model and assumes that the probability of

a peptide P is However, in this case, the probabilities of all peptides do not sum up to

.
1 suggesting that they should be all normalized. Below we describe a different (but equivalent)
approach to introducing the notion of random peptide that does not require normalization.

The notion of random peptide needs to be defined with caution since in mass spectrometry it is
usually assumed that a peptide can match a spectrum iff its mass equals to the precursor mass of the
spectrum (all other matches are scored as —oco). We will find it convenient to extend this definition
and to say that a (long) peptide LongPeptide fits a spectrum if a prefix of this peptide has a mass
equal to the precursor mass of the spectrum (such prefix is denoted as Peptide(LongPeptide, o).
We further consider a set of all 20" long peptides (for a large n) and assign each peptide in this
set a probability of 1/20™. The score between a spectrum o and a LongPeptide from this set is
defined as Score(o, Peptide(LongPeptide, o)) if LongPeptide fits c. When we refer to a random

peptide P, we mean all long peptides that have P as a prefix. The total probability of all such long

_1
20171

When we refer to a random database, we mean an iid amino acid sequence.

peptides is indeed

Supplement F: eTDA applied to separate databases

Note that eTDA can also be used in lieu of TDA applied to the separate databases rather than the

combined. Essentially, we only need to replace DD (X, T @ R,t) with DD(X, R,t) and TD(X,T &

R,t) with TD(X,T,t). Note that the latter no longer depends on R and is therefore a parameter

of the model rather than an RV. In this case eTDA would be modified from equation (6) to
2-FE[DD(X,R,t)]

TD(X,T,t)+ E[DD(%, R, t)]’

where instead of equation (4) we would use

FDRurpA =

E[DD(%,R,t)] = Y FPR(o, |R], t).
DY

2This approach to generating random databases can be easily generalized to account for various frequencies of

amino acids or Markovian dependencies between consecutive amino acids.



Supplement G: Transposed database

Given a target database p;...py, we define a transposed database that swaps different amino acids
pi # pi+1 for all i = 0 (modulo 7). If p; = p;11, amino acid p; is substituted by another randomly
chosen amino acid. It is easy to see that the transposed database does not share peptides longer
than 7 aa with the target databases (at the same positions) and thus satisfies the condition specified
in [9] (target and decoy databases do not share long peptides). Nevertheless, one can see that the
transposed database will result in a highly inflated estimate of FDR since it contains many peptides

that are homeometric to peptides in the target database.

Supplement H: How the intersection between the target and the

decoy databases affect FDR?

We can readily estimate the effect the intersection between the target and the decoy databases could
possibly have on the estimated number of false discoveries. Indeed, let SD(X,T @ R, t) denote the
number of discoveries that are shared between the target and decoy that are counted as decoy

discoveries:

SD(Zv T & R, t) = Z 1{EI7rETﬂR : Score(cr,ﬂ'):Score(o,TEBR)}ﬁ{Peptide(o,TEBR)ER}'3 (1)
oEX

If we follow the rationale of [9] then the number of decoy false discoveries is conservatively estimated
between DD (X, T @ R,t) and DD(X,T @ R,t) — SD(X,T @ R,t)*. Thus, examining the ratio of
SD(3, T®R,t)/DD(X,T®R,t) we can verify that the effect of shared peptides is indeed negligible
before accepting the analysis. Similarly, we can examine the effect of the non-empty intersection

on eTDA by comparing F [SD(X,T @ R,t)] with E[DD(X,T @ R, t)] where
1

E[SD(XE, T @ R,t)] = 3 Z P [Score(o,R) = Score(o,T)]
o€X:Score(o,T)>t
~ % . Z [FPR (o, |R|, Score(o,T) — ) — FPR (o, |R|, Score(o,T))],

o€X:Score(o,T)>t

and § is some small number, say, 1078, Note that here we obviously do not assume that

P [Score(o,R) = Score(o,T)] = 0.

3We assume the function Peptide(o, T @ R) randomly selects R or T in this case of a shared discovery.
4A more sophisticated estimation can be used here, for example, by replacing SD with (1= «) - SD where «a is

the initial conservative estimate of the FDR (equation 1 in main text)



Supplement I: Database-dependent scoring functions may output

unreliable identifications with excellent FDRs

We show that the use of database-dependent scoring functions opens a Pandora box that allows
one to design algorithms that output unreliable identifications with excellent FDRs (evaluated
by TDA). Indeed, given an arbitrary database-independent scoring function Score(o, ), one can
design a database-dependent-scoring function Score(o,m, DB) as follows. Let 7 and my be the
best scoring and the second-best scoring peptides in the database DB for a database-independent
scoring function Score(o, 7). As usual, the PSM (o, 71) is expected to be correct while PSM (o, m2)
is expected to be bogus. We construct a database-dependent scoring function Score(o, 7, DB) that
is equal to the database-independent Score(o, ) for all peptide except for w9 and define
Score(o,my, DB) = Score(o, 71, DB) + €, where € is a small constant. As a result, the second-best
scoring peptide for the database-independent scoring function Score(o, ) becomes the best-scoring
peptide for the database-dependent scoring function Score(o, 7w, DB).

Note that the constructed database-dependent scoring function produces bogus peptide identi-
fications (since PSMs (o, m2) are bogus) yet results in virtually the same FDR (presumably good)
as the database-independent scoring function. Moreover, it is easy to construct a (bogus) database-
dependent scoring function that greatly improves on the FDR (evaluated by TDA) of the original

database-independent scoring function!

Supplement J: Percolator

The Percolator algorithm introduced in Kall et al., 2007 [10], used the number of identified peptides
in a protein to score individual PSMs and thus was not TDA-compatible. Recently, Spivak et al.,
2009 [11]. released a new version of Percolator with an acknowledgment of this shortcoming and
wrote: “In this work, we removed three features that exploit protein-level information because of
the difficulty of accurately validating, via decoy database search, methods that use this type of

information.”
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Figure 1: (a) Identification of peptides in the human dataset using different approaches and scoring functions. For
the same number (14) of decoy database hits, InsPecT identifies 2,011 peptides in the target database using traditional

approach (T'), and 2,577 peptides using the paired-peptide approach (T ). The number of peptides identified by
MS-GF increases from 2,503 to 2,869. (b) Similar plot as in (a) for Shewanella dataset.
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