Supplemental Information

Polyamines are traps for reactive intermediates in furan metabolism

Lisa A. Peterson, Martin B. Phillips, Ding Lu, and Mathilde M. Sullivan

Supplemental Table 1. Ion-suppression correction factors for LC/MS analyses.			
GSH-BDA-putrescine	0.92	0.82	0.86
GSH-BDA-cadaverine	0.67	0.59	0.63
GSH-BDA- N^{α} -ornithine	1.62	9.17	1.91
GSH-BDA- N^{δ} -ornithine	1.09	1.03	1.02
GSH-BDA-spermine	2.09	2.70	2.61
GSH-BDA-N ¹ -spermidine	0.83	0.85	0.87
GSH-BDA-N ⁸ -spermidine	0.93	0.83	0.92
GSH-BDA- N^{α} -lysine	1.09	1.06	1.04
GSH-BDA- <i>N</i> ^ε -lysine	0.83	0.76	0.86

Supplemental Table 1. sion correction factors for LC/MS analy

Supplemental Figure 1. A. Mass spectra of GSH-BDA- N^{α} -ornithine and GSH-BDA- N^{δ} -ornithine. B. LC/MS chromatograms demonstrating co-elution of the synthetic GSH-BDA-ornithine isomers with the hepatocyte metabolites of furan. The mixtures were eluted from the HPLC column with the following gradient: after ten minutes in 10 mM ammonium formate, pH 2.8, a 16 minute linear gradient was run to 10 mM ammonium formate, pH 2.8, containing 12.5% acetonitrile followed by a 10 minute linear gradient to 25% acetonitrile.

Supplemental Figure 2. COSY NMR spectra for A) GSH-BDA- N^{α} -ornithine and B) GSH-BDA- N^{δ} -ornithine. The C2 proton of the pyridine ring in both compounds exchanged rapidly with D₂O.

Supplemental Figure 3. A. Mass spectra of GSH-BDA- N^1 -spermidine and GSH-BDA- N^8 -spermidine. B. LC/MS chromatograms demonstrating co-elution of the synthetic GSH-BDA-spermidine isomers with the hepatocyte metabolites of furan. The mixtures were eluted from the HPLC column with the following gradient: after ten minutes in 10 mM ammonium formate, pH 2.8, a 16 minute linear gradient was run to 10 mM ammonium formate, pH 2.8, containing 12.5% acetonitrile followed by a 10 minute linear gradient to 25% acetonitrile.

Supplemental Figure 4. COSY NMR of A) GSH-BDA- N^1 -spermidine and B) GSH-BDA- N^8 -spermidine. The C2 proton of the pyridine ring in both compounds exchanged rapidly with D₂O.

Supplemental Figure 5. Mass spectrum of synthetic GSH-BDA-putrescine.

Α.

NAC-BDA-N¹-spermidine

Supplemental Figure 6. A. Mass spectrum for the NAC-BDA-spermidine standards and metabolites observed in urine from $[{}^{12}C_4]$ - and $[{}^{13}C_4]$ furan-treated rats. The fragment at *m/z* 338 in the mass spectrum for the urinary metabolite, $[{}^{12}C_4]$ NAC-BDA-*N*⁸-spermidine, is from a coeluting peak that also has a molecular ion at *m/z* 357. B. LC/MS chromatograms obtained with a mixture of urine from $[{}^{12}C_4]$ - and $[{}^{13}C_4]$ furan-treated rats demonstrating co-elution of these metabolites with the synthetic standards of the NAC-BDA-spermidine isomers. HPLC method 1 was employed using 10 mM ammonium formate, pH 2.8.