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Supporting Information

Details on the application of the structural identifiability meth-
ods for Goodwin’s model

As commented in the main text, this example is used to illustrate how the structural identifiability
analysis may contribute to the design of experiments by providing information on what to be observed
so as to guarantee the structural identifiability. In this regard two different situations were considered:
first, the realistic case with one observable and second, a hypothetical case with full observation. Here
we present in more detail how the different methods were applied to each of both scenarios.

Taylor and Generating series approaches

As the Goodwin model is autonomous and uncontrolled, the Taylor and generating series approaches
generate the same result. Structural identifiability using Taylor series approach was verified using the
identifiability tableau.

In the realistic case of one measured state variable, MATHEMATICA could not achieve a full rank
Jacobian, because only 6 derivatives were generated, the computation of iterative derivatives being very
complex. Therefore, in this scenario no conclusions may be driven.

In the case when the model is fully observable, a rank 8 identifiability tableau is generated, so the
Goodwin model is at least structurally locally identifiable. The solution/solutions could not be computed
because of the complex algebraic equations, so we cannot say anything about the uniqueness of the solution
of the parameters. The corresponding identifiability tableau is presented in Figure 1 in the main text.

Similarity transformation approach

Similarity transformation approach is quite a restrictive method. First of all, the model should be
locally reduced, that means that observability and controllability rank conditions should be satisfied. For
Goodwin’s model, the controllability rank condition is not satisfied neither in the case with 3 outputs,
nor in the case with 1 output.

Direct test

This method relies on the truthfulness of the following relation f(p) = f(p∗) ⇒ p = p∗. For the
Goodwin’s model we consider the algebraic relations in the parameters given by:
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αx1 − βx2 = α∗x1 − β∗x2,
γx2 − δx3 = γ∗x2 − δ∗x3.
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The relations between the parameters a,A, σ, b, α, β, γ, δ and a∗, A∗, σ∗, b∗, α∗, β∗, γ∗, δ∗ are the fol-
lowing:
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b∗ = b∗, A∗ = A∗, σ∗ = σ∗, α∗ = α∗, δ∗ = δ∗.

From these relations it could be concluded that no parameter is identifiable. This method is concep-
tually simple and can be easily implemented in a typical symbolic manipulation package (for example
MAPLE). However, as for this example, it is often not conclusive and some other techniques should also
be used to complement the results.

Differential algebra approach

Goodwin’s model is characterised by a rational term. However, as stated in the main text the models
should be transformed to polynomial form so as the differential algebra approach to be applicable. We
now describe the procedure to apply the method with the two different software implementations we
used.

1. To use CharSets package and Epsilon in MAPLE, we have to manually transform the original model
into its polynomial form. In addition, we had to fix the value of σ since the program generates
the error “input must be differential polynomial” when using the general expression xσ

3 . The value
σ = 10 is selected [1].

2. DAISY performs the transformation to polynomial form automatically by means of specific functions
from REDUCE. However, it is unclear how σ is being treated.

For Goodwin’s model with 1 and 3 outputs and when all parameters are considered, MAPLE generates
an error and DAISY results in structural non-identifiability. If σ = 10, DAISY generated structural global
identifiability, without the use of initial conditions when all the state variables are measured, and could
not finish the computations if only the first state variable is observed.

Both tools required a relatively large computational effort to perform the analysis.

Implicit function theorem approach

The application of the method to the Goodwin oscillator with 3 state variables and one observable
results in the impossibility of finding the function Ψ, depending only on the measured variables.

For the case of full observation we get the following differential polynomials

f1 = ẏ1(A+ yσ3 )− a+ y1b(A+ yσ3 ),
f2 = ẏ2 − αy1 + βy2,
f3 = ẏ3 − γy2 + δy3.

(2)

In the first relation only 4 parameters are involved, so we have to consider up to the third derivative

of f1. The matrix constructed with the elements
∂f

(i)
1

∂p1
, i = 0, 1, 2, 3 and p1 ∈ {a,A, b, σ} may be defined

only for σ > 2 and that its determinant is non zero, thus p1 ∈ {a,A, b, σ} are structurally identifiable. f2
and f

′

2 are used to determine α and β. These parameters are structurally identifiable as the rank of the
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corresponding Jacobian is 2. The parameters γ and δ are also structurally identifiable as the Jacobian of
y3 and ẏ3 with respect to these parameters is 2. So, according to Theorem 2, the Goodwin’s model with
3 outputs is structurally locally identifiable. It should be noted at this point that the analysis had to be
performed by hand, since no symbolic package would compute derivatives for unknown σ and that the
model results structurally locally identifiable provided σ > 2.

Identifiability analysis for dynamic reaction networks

We apply this method, by considering σ = 10 and A = 1 [2], as the method is applicable only for
the models that are encoded in the chemical reaction network theory described by mass action kinetic
networks. For each component x1, x2, x3, we formulate the dynamic mass balance as given in Table 1,
representing the corresponding stoichiometric matrix.

Table 1. Stoichiometric matrix for Goodwin’s model

x1 x2 x3

r1 1 0 0
r2 0 1 0
r3 0 0 1
r4 -1 0 0
r5 0 -1 0
r6 0 0 -1

We first consider the case of full observation. The matrix corresponding to the measured reaction rate,
Nm, coincides with the stoichiometric matrix and the matrix corresponding to unmeasured species Num

is the null matrix. The matrix Nm has rank 3, and so only 3 reaction rates are considered for study each
time, the process being repeated until all parameters are incorporated. We consider 2 steps, including
the reaction rates r1, r2, r3, and r4, r5, r6. The matrix formed with the first group reaction rates, Nm1,
is the identity matrix, and the corresponding column of each reaction rate in the matrix [NmN+

m − I]
is zero, so they are structurally identifiable. The parameters included in r1, r2, r3 are a, α, γ, that are
determined from the first order Lie derivatives, the other parameters being considered fixed. The second
rates group has the matrix Nm2 = −I3. Also in this case the column corresponding to each reaction rate
r4, r5, r6 in [NmN+

m − I] is zero, ensuring the structural identifiability. The parameters involved in these
reaction rates are b, β, γ and were found identifiable from the first order Lie derivatives with respect to
the outputs.

If just one output is considered, the stoichiometric matrix is split into the matrix of measured species,
Nm, and the one of the unmeasured species, denoted by Num, given by:

Nm =


1
0
0
−1
0
0

 , Num =


0 0
1 0
0 1
0 0
−1 0
0 −1

 .

In this case the condition NmNT
m has zero determinant and the method can not be applied.

Analysis by transforming the model to pure polynomial form

To reduce the complexity of the calculus, we considered a simpler equivalent formulation of the
Goodwin’s model following the advice of Margaria et al. [3]. We show here that this may be helpful in
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some cases. However, this may not be generalised, since a pure polynomial form may become highly
non-linear leading to computational problems.

Let’s now consider the following transformations x4 := xσ
3 , x5 := 1

A+x4
, and x6 := 1

x3
. The model

becomes: 

ẋ1 = −bx1 + ax5,
ẋ2 = αx1 − βx2,
ẋ3 = γx2 − δx3,
ẋ4 = σx4x6(γx2 − δx3),
ẋ5 = −σx4x

2
5x6(γx2 − δx3),

ẋ6 = −x2
6(γx2 − δx3).

(3)

For this formulation parameters are a, b, σ, α, β, γ, δ and initial conditions correspond to x0(p) =
(0.3617, 0.9137, 1.3934, (1.3934)σ, 1

A+(1.3934)σ , 0.7176).

The scenario with one observable corresponds to the case of measuring x1 and x5. With the given
x0(p) the model is found structurally locally identifiable using the generating series approach. Using
differential algebra no results were obtained. When using initial conditions the “1\(A+(1.3934)σ) invalid
as kernel” error is displayed. The direct test concluded the identifiability of σ. The method based on the
implicit function theorem can not be applied due to the impossibility to compute Ψ.

For the full observation case (y1 = x1, y2 = x2, y3 = x3, y4 = x4, y5 = x5 y6 = x6) the same
results are obtained using differential algebra - structurally non-identifiable (without the use of initial
conditions) and invalid kernel error (when initial conditions are considered). Using power series methods
the model (3) generates complete identifiability tableaus of rank 8 (see Figure S1) ensuring structurally
global identifiability. Remark that the identifiability results differ from the ones obtained with DAISY.
This may be explained by noting that differential algebra methods do not automatically incorporate
initial conditions. The direct test concluded the identifiability of σ (note that the direct test results are
independent of the observation function). The method based on the implicit function theorem results in
the local structural identifiability of the model.

It should be remarked that different polynomial forms of originally rational models may lead to
different solutions, at least when using the differential algebra approach. It is also important to note the
critical role of the initial conditions in the analysis, since this may lead to wrong conclusions.

Figure S1. Goodwin model - polynomial form: (a) Identifiability tableau for (3) (one observ-
able) (b) Identifiability tableau for (3) (full observation)
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Figure S1. (a) Identifiability tableau for (3) (one observable)
(b) Identifiability tableau for (3) (full observation)
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