Supporting Information

Computational Investigation of DNA Detection using Graphene Nanopores Chaitanya Sathe, Xueqing Zou, Jean-Pierre Leburton and Klaus Schulten

Supporting Tables

Pore	KCl	Temperature (K)	Average RMSD	Maximum RMSD
Diameter (nm)	Concentration (M)		fluctuation of	fluctuation of
			pore mouth (Å)	pore mouth (Å)
3	1	295	0.72	3.3
3	2	295	0.93	4.4
3	1	305	1.7	4.4

Table S1: Breathing fluctuations of graphene around the pore from simulations SimA2, SimA7 and SimA8.

Applied bias	Open pore	Average blockade	Reduction in	Translocation
Voltage (V)	current (nA)	current (nA)	current $(\%)$	time (ns)
0.8	7.2	3.20	56	27.0
2.5	16.0	10.56	34	3.7
4.3	25.4	22.30	12	1.6

Table S2: Details of voltage-dependent DNA translocation. This table complements Figure 3. The reduction in current is determined as $100-(Average blockade current/Open pore current) \times 100$.

Supporting Figures

Figure S1: Averaged potential maps along the (x, z)-plane for pore diameter (a) 2 nm, (b) 3 nm, (c) 4 nm, (d) 5 nm, (e) 6 nm and (f) 7 nm. The dashed line shows the potential change normal to the graphene membrane. This figure complements Figure 2.

Figure S2: Comparison of DNA center of mass (CoM) motions for various applied bias voltages. This figure complements Figure 2.

Figure S3: Profiles of K^+ (red line) and Cl^- (blue line) ion currents for (a) an n-charged pore and (b) a p-charged pore. This figure complements Figure 5a.

Figure S4: Number of base pairs near the pore mouth $(\pm 2 \text{ nm})$ for (a) 0.1 V, (b) 0.3 V, (c) 0.5 V and (d) 1.2 V. This figure complements Figure 6.

Figure S5: Graphene nanopores with diameters of (a) 2 nm and (b) 6 nm. This figure complements Figure 1.

Supporting Movies

- Movie S1 shows the DNA translocation trajectory of simulation SimB1 (see Table 1) at an applied bias voltage of 4.3 V.
- Movie S2 shows the DNA translocation trajectory of simulation SimB2 (see Table 1) at an applied bias voltage of 2.5 V.
- Movie S3 shows the DNA translocation trajectory of simulation SimB3 (see Table 1) at an applied bias voltage of 0.8 V.
- Movie S4 shows the DNA translocation trajectory of simulation SimC (see Table 1).
- Movie S5 shows the DNA translocation trajectories of simulation SimD1-D2 (see Table 1) through an n-charged (red colored DNA) and a p-charged pore (blue colored DNA).
- Movie S6 shows the DNA translocation of simulation SimE4 (see Table 1).
- Movie S7 shows the DNA translocation of simulation SimF4 (see Table 1).