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Appendix 4. Proof of Theorem 2

It suffices to show that, with probability tending to one,

P1j ĝ = 0 ⇐⇒ P1jg0 = 0, (8.18)

β̂j = 0 ⇐⇒ β0
j = 0 (8.19)

for j = 1, . . . , d. Without loss of generality, we focus on the case d = 2, i.e. g(x1, x2) =

b + β1k1(x1) + β2k1(x2) + g11(x1) + g12(x2), where g1j(xj) ∈ Sper,j , in the proof. Note that in

this case the sample size n is m2 since we assume n1 = n2 = m. We have three major steps in

the proof.

Step I: Formulation

Let Σ = {R1(xi,1, xk,1)}m
i,k=1 be them×mmarginal Gram matrix corresponding to the repro-

ducing kernel for Sper. Let 1m be a vector of m ones. Assuming the observations are permuted

appropriately, we can write the n×n Gram matrix R11 = Σ� (1m1′m) and R12 = (1m1′m)�Σ,

where � stands for the Kronecker product between two matrices. Let {ξ1 = 1m, ξ2, . . . , ξm}

be an orthonormal (with respect to the inner product < · >m in Rm) eigensystem of Σ with

corresponding eigenvalues mη1, . . . ,mηm where η1 = (720m4)−1. Thus, we have

< ξ1, ξj >m= 0 =⇒ 1
m

m∑
i=1

ξij = 0 for j ≥ 2,

< ξj , ξj >m= 1 =⇒ 1
m

m∑
i=1

ξ2ij = 1 for j ≥ 1.
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From Utreras (1983), we know that η2 ≥ η3 ≥ . . . ≥ ηm and ηi ∼ i−4 for i ≥ 2.

Let Υ be the m × m matrix with {ξ1, . . . , ξm} as its columns. We then define a n × n

matrix O = Υ � Υ. It is easy to verify that the columns of O, i.e. {ξ̃i : i = 1, 2, . . . , n},

form an eigensystem for each of R11 and R12. We next rearrange the columns of O to form

{ζ1j , . . . , ζnj} so that their first m elements are those corresponding to nonzero eigenvalues for

R1j and the rest (n−m) elements are given by the remaining ξ̃i for j = 1, 2. The corresponding

eigenvalues are then ηij = nηi for i = 1, . . . ,m and zero otherwise. It is clear that {ξ̃1, . . . , ξ̃n}

is also an orthonormal basis in Rn with respect to the inner product < u,v >n. Thus we have

O′O = nI and OO′ = nI.

Recall that our estimate (β̂, ĝ11, ĝ12) is obtained by minimizing

1
n

(y −Tβ −Rw1,θc)
′ (y −Tβ −Rw1,θc) +λ1

d∑
j=1

w0j |βj |+ τ0c′Rw1,θc + τ1

d∑
j=1

w1jθj ,

(8.20)

over (β, c,θ), see (5.3). For simplicity, we hold τ0 = 1. By using the special construction of O,

i.e. OO′ = nI, we can rewrite (8.20) as

(
z−O′Tβ/n−Dθs

)′ (z−O′Tβ/n−Dθs
)

+ λ1

d∑
j=1

w0j |βj |+ s′Dθs + τ1

d∑
j=1

w1jθj , (8.21)

where z = (1/n)O′y, s = O′c, Dθ =
∑d

j=1 θjw
−1
1j Dj and Dj = (1/n2)O′R1jO is a diagonal

n×n matrix with diagonal elements ηij . We further write O′Tβ/n = (b, 0, 0, . . .)′+O′t1β1/n+

O′t2β2/n, where T = (1n, t1, t2) and

t1 = (1/m− 1/2, 2/m− 1/2, . . . , 1− 1/2)′ ⊗ 1m, (8.22)

t2 = 1m ⊗ (1/m− 1/2, 2/m− 1/2, . . . , 1− 1/2)′. (8.23)

Due to the orthogonality of basis {ζ1j , . . . , ζnj} for any j, we can further write (8.21) as

L(s,β,θ) = (z11 − b− t1,11β1 − t2,11β2 − θ1η11s11)2 +

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2


(zij − t1,ijβ1 − t2,ijβ2 − θjηijsij)

2 +
m∑

i=1

d∑
j=1

ηijθjw
−1
1j s

2
ij + λ1

d∑
j=1

w0j |βj |+ τ1

d∑
j=1

w1jθj ,(8.24)

where t1,ij = ζ′ijt1/n, t2,ij = ζ′ijt2/n, zij = ζ′ijy/n and sij = ζ′ijc.
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Note that our estimate (β̂, ĝ11, ĝ12) are related to the minimizer of (8.24), denoted by (β̂, ŝ, θ̂),

as shown in (5.2). Thus, we first analyze (β̂, ŝ, θ̂). Straightforward calculation shows that

ŝ11 = 0 and z11 − b̂− t1,11β̂1 − t2,11β̂2 = 0. Thus, we only need to consider minimizing

L1(s, β1, β2,θ) =

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2

[(zij − t1,ijβ1 − t2,ijβ2 − θjw
−1
1j ηijsij

)2
+ ηijθjs

2
ij

]

+λ1

d∑
j=1

w0j |βj |+ τ1

d∑
j=1

w1jθj , (8.25)

We minimize L1(s, β1, β2,θ) in two steps. Given fixed (β1, β2,θ), we first minimize L1 over s.

Since L1 is a convex function in s, we can obtain the minimizer

ŝij(β1, β2,θ) =
zij − t1,ijβ1 − t2,ijβ2

1 + θjηij/w1j
. (8.26)

Plugging (8.26) into (8.25), we obtain L1(ŝ(β1, β2,θ), β1, β2,θ), denoted as L2(β1, β2,θ):

L2(β1, β2,θ) =

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2

[(zij − t1,ijβ1 − t2,ijβ2)2

(1 + θjηij/w1j)

]
+ λ1

d∑
j=1

w0j |βj |

+τ1
d∑

j=1

w1jθj (8.27)

Step 2: Prove P1j ĝ = 0 ⇐⇒ P1jg0 = 0

In this step we consider selection consistency for P1jg. We first verify that L2(β1, β2,θ) in

(8.27) is convex in θ for any fixed values of β1 and β2 by obtaining that

∂2L2(β1, β2,θ)
∂θ2

j

= 2

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2

[η2
ij(zij − t1,ijβ1 − t2,ijβ2)2

(1 + θjηij/w1j)3

]
> 0,

∂2L2(β1, β2,θ)
∂θjθk

= 0 for j 6= k.

By the above convexity, we know θ̂j = 0 if and only if(
∂

∂θj
|θj=0

)
L2(β̂1, β̂2,θ) ≥ 0,

which is equivalent to

U1 ≡
m∑

i=2

ηi1(zi1 − t1,i1β̂1 − t2,i1β̂2)2 ≤ τ1w
2
11, (8.28)

Uj ≡
m∑

i=1

ηij(zij − t1,ij β̂1 − t2,ij β̂2)2 ≤ τ1w
2
1j for j ≥ 2. (8.29)
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We define aij = ζ′ijG1/n, where G1 = (G1(x1), . . . , G1(xn))′ and G1(xi) =
∑d

j=1 g
0
1j(xij).

Combining the fact that zij = ζ′ijy/n, we have the following equation:

zij − t1,ijβ
0
1 − t2,ijβ

0
2 = aij + eij , (8.30)

where eij
i.i.d.∼ N(0, σ2/n) for 1 ≤ i ≤ m and 1 ≤ j ≤ d. Thus, (8.28) and (8.29) become

U1 =
m∑

i=2

ηi1

(
t1,i1(β0

1 − β̂1) + t2,i1(β0
2 − β̂2) + ei1 + ai1

)2
, (8.31)

Uj =
m∑

i=1

ηij

(
t1,ij(β0

1 − β̂1) + t2,ij(β0
2 − β̂2) + eij + aij

)2
(8.32)

by considering (8.30).

In the below, without loss of generality, we assume that g0
12(xi2) = 0 for i = 1, . . . , n. We

first show “P12g0 = 0 =⇒ P12ĝ = 0”. To show P12ĝ = 0, it suffices to show

P (U2 > τ1w
2
12) → 0. (8.33)

based on the above analysis and (5.2). Note that P12g0 = 0 implies ai2 = 0 for all 1 ≤ i ≤ m.

Thus, we have

P (U2 > τ1w12) = P

(
m∑

i=1

ηi2

(
t1,i2(β0

1 − β̂1) + t2,i2(β0
2 − β̂2) + ei2

)2
> τ1w

2
12

)

≤ P

(
m∑

i=1

ηi2

[
t21,i2(β̂1 − β0

1)2 + t22,i2(β̂2 − β0
2)2 + e2i2

]
> τ1w

2
12/3

)

≤
2∑

k=1

P

(
m∑

i=1

ηi2t
2
k,i2(β̂k − β0

k)2 > τ1w
2
12/9

)
+ P

(
m∑

i=1

ηi2e
2
i2 > τ1w

2
12/9

)
.(8.34)

The first inequality in the above follows from the Cauchy-Schwarz inequality. For k = 1, 2, we

have
m∑

i=1

ηi2t
2
k,i2 ≤

√√√√ m∑
i=1

η2
i2

√√√√ m∑
i=1

t4k,i2 ≤

√√√√ m∑
i=1

(nηi)2

√√√√ m∑
i=1

(ζ′i2tk/n)4

≤ n−1 ×

√√√√ m∑
i=1

‖ζi2‖4‖tk‖4

≤ n−1 ×O(n5/4) = O(n1/4) (8.35)

by considering η1 = (720m4)−1, ηi ∼ i−4 for i = 2, . . . ,m, and Holder’s inequality. By adapting

the arguments in Lemma 8.1, we can show

‖β̂ − β0‖ = OP (n−1/5). (8.36)
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Now we focus on the first two probabilities in (8.34). Combining (8.35), (8.36) and the

condition that n3/20τ1w
2
12 →∞, we can show that they converge to zero. Let V2 =

∑m
i=1 ηi2e

2
i2.

Since ei2 follows N(0, σ2/n) as discussed above, we have

E(nV2) ∼ σ2 and V ar(nV2) ∼ σ4. (8.37)

As for the third probability in (8.34), we have

P (V2 > τ1w
2
12/9) ≤ P

(
|nV2 − EnV2| > nτ1w

2
12/9− EnV2

)
≤ V ar(nV2)

(nτ1w2
12/9− EnV2)2

→ 0

where the second inequality follows from the Chebyshev’s inequality and the condition that

nτ1w
2
12 →∞. This completes the proof of (8.33), thus shows “P12g0 = 0 =⇒ P12ĝ = 0”.

Next we prove “P12ĝ = 0 =⇒ P12g0 = 0” by showing the equivalent statement “P12g0 6=

0 =⇒ P12ĝ 6= 0”. To show P12ĝ 6= 0, it suffices to show

P (U2 ≤ τ1w
2
12) → 0 (8.38)

based on the previous discussions. We first establish the following inequalities:

P (U2 ≤ τ1w
2
12) ≤ P (|U2 − EW2| ≥ EW2 − τ1w

2
12)

≤ P (|U2 −W2| ≥ (EW2 − τ1w
2
12)/2) + P (|W2 − EW2| ≥ (EW2 − τ1w

2
12)/2)

≤ I + II,

where W2 =
∑m

i=1 ηi2(ei2 + ai2)2. By the Cauchy-Schwartz inequality, we have

|U2 −W2| ≤ 4W2 + 3
2∑

k=1

m∑
i=1

ηi2t
2
k,i2(β̂k − β0

k)2.

Thus, the term I can be further bounded by

I ≤ P (W2 ≥ (EW2 − τ1w
2
12)/16) +

2∑
k=1

P

(
m∑

i=1

ηi2t
2
k,i2(β̂k − β0

k)2 ≥ (EW2 − τ1w
2
12)/24

)
≤ I1 + I2.

To analyze the order of I1, I2 and II, we need to study the order of EW2 and V arW2. Note
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that P12g0 6= 0 implies ai02 6= 0 for some 1 ≤ i0 ≤ m. Thus, we have

E(W2) ≥ E(ηi02(ei02 + ai02)2) ≥ ηi02a
2
i02, (8.39)

V ar(W2) =
m∑

i=1

η2
i2V ar((ei2 + ai2)2) =

m∑
i=1

η2
i2(4n

−1a2
i2σ

2 + 2n−2σ4)

≤ 4n−1σ2
m∑

i=1

a2
i2 + 2n−2σ4 ≤ 4n−1σ2‖P12g0‖2 + 2n−2σ2 = O(n−1) (8.40)

By (8.39) and Lemma 8.1, we know (EW2 − τ1w
2
12) is bounded away from zero. Then, by

Chebyshev’s inequality, we have

II <∼
V ar(W2)

(EW2 − τ1w2
12)2

→ 0

by (8.40). As for the term I2, we can also show it converges to zero by considering (8.35) and

(8.36). For the term I1, we have

I2 = P (16(W2 − EW2) ≥ −τ1w2
12 − 15EW2) <∼

V ar(W2)
(τ1w2

12 + 15EW2)2
→ 0

since (EW2 + τ1w
2
12) is bounded away from zero and V ar(W2) = O(n−1).

Step 3: Prove β̂j = 0 ⇐⇒ β0
j = 0

In this step we consider selection consistency for βj . Without loss of generality, we assume

that β0
2 = 0. First, we rewrite (8.27) as Q(β1, β2,θ)+λ1

∑d
j=1w0j |βj |+τ1

∑d
j=1w1jθj . Applying

the Taylor expansion to (8.27), we have

∂L2(β1, β2, θ̂)
∂β2

=
∂Q(β1, β2, θ̂)

∂β2
+ λ1w02sign(β2)

=
∂Q(β0

1 , β
0
2 , θ̂)

∂β2
+
∂2Q(β0

1 , β
0
2 , θ̂)

∂β1∂β2
(β1 − β0

1) +
∂2Q(β0

1 , β
0
2 , θ̂)

∂β2
2

(β2 − β0
2)

+λ1w02sign(β2). (8.41)

Recall that ‖β̂ − β0‖ = OP (n−1/5) by (8.36). Thus, in the below, we only consider β1 and β2

satisfying |β1 − β0
1 | = OP (n−1/5) and |β2 − β0

2 | = OP (n−1/5).

By (8.30), the first term in (8.41) can be written as

−2

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2

[(aij + eij)t2,ij

1 + θ̂jηij/w1j

]

= −2

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2

[G′
1ζijζ

′
ijt2 + ε′ζijζ

′
ijt2

n2(1 + θ̂jηij/w1j)

]
= OP (n−1/2), (8.42)
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where the last equality follows from the orthogonality of the constructed {ζij} and Lindeberger-

Feller theorem. As for the second term of (8.41), we have

∂2Q(β0
1 , β

0
2 , θ̂)

∂β1∂β2
(β1 − β0

1) = 2

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2

 t1,ijt2,ij

1 + θ̂jηij/w1j

(β1 − β0
1)


= 2

 m∑
i=2

d∑
j=1

+
1∑

i=1

d∑
j=2

 t′1ζijζ
′
ijt2

n2(1 + θ̂jηij/w1j)
(β1 − β0

1)


≤ O(n−1)OP (n−1/5) = OP (n−6/5),

where the last inequality follows from the orthogonality of the constructed {ζij} and the forms

of t1 and t2, i.e. (8.22) and (8.23). By applying similar analysis to the third term in (8.41), we

know its order is also OP (n−1/5). In summary, we have

∂L2(β1, β2, θ̂)
∂β2

= OP (n−1/5) + λ1w02sign(β2). (8.43)

We first show “β0
2 = 0 =⇒ β̂2 = 0”. If β0

2 = 0, then the range of β2 in (8.43) is

(−Cn−1/5, Cn−1/5) for some C > 0. By the assumed condition that n1/5λ1w02 → ∞, we

can conclude that ∂L2(β1, β2, θ̂)/∂β2 < 0 for β2 ∈ (−Cn−1/5, 0) and ∂L2(β1, β2, θ̂)/∂β2 > 0 for

β2 ∈ (0, Cn−1/5). In other words, we have

L2(β1, 0, θ̂) = min
|β2|≤Cn−1/5

L2(β1, β2, θ̂) with probability tending to one,

which implies β̂2 = 0. We next show “β̂2 = 0 =⇒ β0
2 = 0” by showing the equivalent statement

that “β0
2 6= 0 =⇒ β̂2 6= 0”. For simplicity, we assume β0

2 = 1 which means that β2 ∈ (1 −

Cn−1/5, 1 + Cn−1/5). Then, by considering the condition n1/5λ1w02 → ∞ in (8.43), we have

∂L2(β1, β2, θ̂)/∂β2 > 0 which implies that β̂2 > 0. This completes the whole proof. 2
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