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Appendix 4. Proof of Theorem

It suffices to show that, with probability tending to one,

731j§ =0« 'Pljg() =0, (8.18)
Bi=0<= 3 =0 (8.19)
for j = 1,...,d. Without loss of generality, we focus on the case d = 2, i.e. g(x1,29) =

b+ Biki(z1) + Poki(x2) + g11(x1) + g12(x2), where g1j(2;) € Sper,j, in the proof. Note that in

2

this case the sample size n is m* since we assume n; = ne = m. We have three major steps in

the proof.
Step I: Formulation

Let ¥ = {Ri(;1, k1) }{},—; be the mxm marginal Gram matrix corresponding to the repro-
ducing kernel for Spe,. Let 1,, be a vector of m ones. Assuming the observations are permuted
appropriately, we can write the n x n Gram matrix Rj; = X © (1,,1/,) and Rj2 = (1,,1],) © X,
where ® stands for the Kronecker product between two matrices. Let {&; = 11, &5, ...,&,,}
be an orthonormal (with respect to the inner product < - >,, in R™) eigensystem of X with

corresponding eigenvalues mny, . .., mn, where n; = (720m*)~!. Thus, we have
1 m
1=

1 :
INSF >m:1:>EZfZ-2j:1 for j > 1.

=1
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From |Utreras| (1983)), we know that 7o > 13 > ... > n,, and 7; ~ i~* for i > 2.

Let T be the m x m matrix with {&;,...,&,,} as its columns. We then define a n X n
matrix O = T © Y. It is easy to verify that the columns of O, i.e. {EZ ci=1,2,...,n},
form an eigensystem for each of Ri; and Ri2. We next rearrange the columns of O to form
{€1j5--+>Cpj} so that their first m elements are those corresponding to nonzero eigenvalues for
R; and the rest (n—m) elements are given by the remaining €, for j = 1,2. The corresponding
eigenvalues are then 7;; = nn; for i = 1,...,m and zero otherwise. It is clear that {El, . ,En}
is also an orthonormal basis in R™ with respect to the inner product < u,v >,. Thus we have

0’0 = nI and OO’ = nl.

Recall that our estimate (,@',ﬁn,/g\lg) is obtained by minimizing

1

n

d d
(y = T8 — Ruw,,0¢) (¥ = TB — Ruy 6¢) +A1 Y wojlB;] + 10 Ry o + 11w,
=1 j=1

(8.20)

over (3,c,0), see (5.3)). For simplicity, we hold 79 = 1. By using the special construction of O,

i.,e. OO0’ = nl, we can rewrite (8.20) as
d d
(z— O'TB/n—Dys) (z — O'TB/n—Des) + A1 Y wo;|Bj| +Dys + 11 Y _wy0;,  (8.21)
j=1 j=1
where z = (1/n)0’y, s = O’c, Dy = 2?21 ijl_lej and D; = (1/n?)O'R4;0 is a diagonal
n X n matrix with diagonal elements 7;;. We further write O'T3/n = (b,0,0,...)'+O't1 81 /n+
O'ty35/n, where T = (1,,,t1,t2) and

t=(1/m—1/2,2/m—1/2,...,1—-1/2) @ 1,, (8.22)

ty=1,® (1/m—1/2,2/m—1/2,...,1—1/2)". (8.23)

Due to the orthogonality of basis {(y;,...,(,;} for any j, we can further write (8.21) as

1 d

m d
L(s,3,0) = (211 — b —t1.1101 — t21182 — O1mis11)? + Z Z +ZZ

i=2 j=1 i=1 j=2

m d d d
(21 — g1 — togiBa = Ogmigsig)” + > > migbjwiy sy + M D wos|B] + 71 ) wi;6;,(8.24)
i=1j=1 j=1 j=1

Where tlﬂ'j = C;jtl/n, t27ij = C;jtg/n, Z,‘j = C;jy/n and Sij = C;jc.

35



Note that our estimate (,5' g11, g12) are related to the minimizer of 1.} denoted by (,6' ,S, 0)
as shown in 1) Thus, we first analyze (,8,§, 9). Straightforward calculation shows that

511 =0and 211 —b—t1 1161 — t21152 = 0. Thus, we only need to consider minimizing

m d
2
Li(s, B1, F2,0) = Z Z + Z Z [(Zw — 11,501 — t2,i082 — ejwl_jlnijsij> + 771’]'91‘3@2]}
=2 j=1 =1 j=2
d d
+)\12w0j’ﬂj| +lew1j0j’ (825)
P =1

We minimize L1 (s, 31, (2,0) in two steps. Given fixed (1, 32,8), we first minimize L; over s.

Since L is a convex function in s, we can obtain the minimizer

— 11,501 — t2 Z_]/62
1+ (937713 /wlj

Plugging (8.26)) into (8.25)), we obtain Li(s(f1, 52,8), 51, B2, 0), denoted as La(31, B2, 0):

5561, 02, 0) =

(8.26)

m d 1 d
zij — 13501 — t2,i;2)
LB n0) = [ +3°% [ bl =ty }MlZwoﬂﬁj
i=2 j=1 =1 j=2 Jihig /g
d
+71 Z w150 (8.27)
=1

Step 2: Prove P =0 <= Pig0 =0

In this step we consider selection consistency for Py;g. We first verify that La(51, 52,0) in

(8.27)) is convex in @ for any fixed values of 3; and (33 by obtaining that

0L (B1, 2, 0) - N\ [0 (255 — traiB1 — t2,582)
T2 LEB T 0
ang ZZ+ZZ (1+ 9j77z'j/w1j)3 >0,

82L2(ﬁ17 ﬁ?a 0)
90,05

=0 forj #k.

By the above convexity, we know §] = 0 if and only if

0 ~ o~
(%’9j20> L2(18176279) Z 07

which is equivalent to

m

Ur=) malen — trabr — )’ < muwdy, (8.28)
i—2
n o ~

Uj = an‘j(zij —t14551 — ta;32)? < le%j for j > 2. (8.29)
i—1
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We define a;; = ¢;;G1/n, where G1 = (G1(x1),...,G1(xn))" and Gi(x;) = Z;'i:1 g?j(xij).

Combining the fact that z;; = C;jy /n, we have the following equation:

ij — trigBt — t2i3 = aij + eqj (8.30)
where e;; bk N(0,02/n) for 1 <i<mand 1< j <d. Thus, (8.28) and (8.29) become
n ~ ~ 2
U= na (tl,il(ﬁ? — B1) + t21 (05 — Ba) + e + ail) ; (8.31)
=2
m ~ ~ 2
Uj= Z Nij (tl,ij(ﬁ? — B1) + t2,i; (B9 — B2) + eij + aij) (8.32)
i=1
by considering (8.30)).
In the below, without loss of generality, we assume that 9?2($i2) =0fori=1,...,n. We

first show “Piago = 0 = P29 = 0”. To show P29 = 0, it suffices to show
P(Uy > miw?s) — 0. (8.33)

based on the above analysis and (5.2). Note that Pi2go = 0 implies a;o = 0 for all 1 < i < m.

Thus, we have

~ . 2
P(Uz > 1ywi2) (Z ;2 (751 (1 — P1) + tz,iz(ﬁg — f2) + 612) > 7‘1“@2)

<P (Zm [tl i2(Br = B))? +13 (B2 — B5)? ‘*‘6?2} > le%2/3>
i=1
2 m
Z (Z antk w2 (Br — 1) > le12/9> +P (Z Nio€hy > le12/9> .(8.34)
i=1

The first inequahty in the above follows from the Cauchy-Schwarz inequality. For k = 1,2, we

have

3

m m
> iati o < Zmz Ztk i | 2 )2\ | D (St /n)!
=1 =1

=1

<7 Y Il
=1
<n~' x O = O(n''*) (8.35)

by considering n; = (720m*)~!, n; ~ i~* for i = 2,...,m, and Holder’s inequality. By adapting

the arguments in Lemma we can show
18 = Boll = Op(n~"7%). (8.36)
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Now we focus on the first two probabilities in (8.34). Combining (8.35)), (8.36) and the

3/20, , 2

condition that n*/“*mwiy, — 0o, we can show that they converge to zero. Let V5 = 27;1 771'26122.

Since e follows N(0,02/n) as discussed above, we have
E(nVa) ~ 02 and Var(nVa) ~ o?. (8.37)
As for the third probability in , we have
P(Va > miw}y/9) < P (InVa — EnVa| > nriwi,/9 — EnVa)

< Var(nVs)
~ (nmwi, /9 — Enlh)?

— 0

where the second inequality follows from the Chebyshev’s inequality and the condition that

nTiw?, — 0o. This completes the proof of (8.33)), thus shows “Piagg = 0 = P29 = 0”.

Next we prove “P1og = 0 = P12g9 = 0” by showing the equivalent statement “Piogg #

0 = P12g # 0”. To show P19 # 0, it suffices to show
P(Us < myw?y) — 0 (8.38)
based on the previous discussions. We first establish the following inequalities:

P(Uy < myw?y) < P(|Uy — EWs| > EWy — 1yw?,)
< P(|Uy — Wa| > (EWa — miwiy)/2) + P(|Wy — EWs| > (EWs — myw?y)/2)

<I+1I,

where Wy = "7, mia(ei2 + ai2)?. By the Cauchy-Schwartz inequality, we have

2 m
Uz — Wa| < AW, + 32 Zmﬁ%,m(ﬂk - B
k=1 i=1

Thus, the term I can be further bounded by

2 m
I < P(Wa > (EW; — muwiy)/16) + Y P (Z Moty i (Be — BR)* = (EWs — nw%2>/24>
k=1 =1
<Ii+ L.

To analyze the order of I1, Is and I, we need to study the order of EW5 and VarWs. Note
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that Pi2go # 0 implies a;y2 # 0 for some 1 < iy < m. Thus, we have
E(Wa2) > E(miga2(eig2 + aip2)”) = Mig20;2, (8.39)
m m
Var(Ws) = Z % Var((em + aip)?) = Z n%(4n~taho? + 2n"20")
i=1 1=1

m

< 4n~lo? Z a2y + 20720t < 4n71o?||Pragoll2 + 207202 = O(n™Y)  (8.40)
i=1
By and Lemma we know (EW, — mwi,) is bounded away from zero. Then, by
Chebyshev’s inequality, we have
Var(Ws)
(EWy — miw?,)?
by . As for the term Iy, we can also show it converges to zero by considering and

(8.36)). For the term I, we have

Iy = P(16(Wy — EWy) > —mywiy — 15EW,) <

II 5 — 0

VaT(WQ)
(Tiw?y + 15EW,)?

since (EWs + Tyw?,) is bounded away from zero and Var(Ws) = O(n™1).

Step 3: Prove Bj :()<:>>ﬁjQ =0

In this step we consider selection consistency for §;. Without loss of generality, we assume
that 9 = 0. First, we rewrite as Q(pB1, P2, 0)+ A\ Z;.lzl woj;| B +71 Z;-lzl wi;0;. Applying
the Taylor expansion to , we have

OLs(51,2,8) _ 9Q(6:, B2, 6)

+ Awoasign(52)

032 B 0p2
_0Q(B,83,0) | 9*Q(8Y, 3,0 oy PQUAY.3.8) .
- 852 3/818,82 (51_51)—’_8—,6%(62 62)
+A1wozsign(B2). (8.41)

Recall that HB — Byl = Op(n1/%) by (8.36). Thus, in the below, we only consider 3 and 3,
satisfying |81 — 8] = Op(n1/%) and |32 — 39| = Op(n=1/%).

By (8.30)), the first term in (8.41]) can be written as
d 1 d\T
_9 i Y (aij + ez‘j)tm]

| 1+ 0;1ij /wn;

=2 ii+i d -Gllcijcéth—i_elcijC;'jtJ

=0 i==) L nP A Omi/wy)

= Op(n~1/?), (8.42)
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where the last equality follows from the orthogonality of the constructed {¢ ij} and Lindeberger-
Feller theorem. As for the second term of (8.41)), we have

93103 (Br—PB1) =2 ZZ+ZZ 1+5j77ij/w1j(ﬂl B7)

_9 f:zd:+zlzzd: t1¢;;¢ht2 (B — B
= 1—51)

Do it = | AL+ 0mi wy)

< O(n"Y)0p(n~15) = Op(n~/%),

where the last inequality follows from the orthogonality of the constructed {Cij} and the forms

of t; and to, i.e. (8.22)) and (8.23)). By applying similar analysis to the third term in (8.41)), we

know its order is also Op(n~/?). In summary, we have

8L2 (517 /627 /é)

2% = Op(n_l/S) + Alwogsign(ﬁQ). (8.43)

We first show “B) = 0 = Bg = 0". If 89 = 0, then the range of 32 in is
(—Cn_1/5,0n_1/5) for some C' > 0. By the assumed condition that n'/°X\jwge — oo, we
can conclude that 8L2(B1,52,5)/6ﬂ2 < 0 for 3o € (~Cn~1/5,0) and 8L2(51,ﬂ2,§)/8,62 > 0 for
B2 € (0,Cn~1/5). In other words, we have

Ly(64,0, 5) = min L0, P2, 5) with probability tending to one,
|B2|<Cn—1/5

which implies B\g = 0. We next show “32 =0 = 39 = 0” by showing the equivalent statement
that “4Y # 0 = Bg # 07. For simplicity, we assume 39 = 1 which means that £, € (1 —
Cn=1/5,1 4 Cn*1/5). Then, by considering the condition n'/5Ajwge — oo in , we have
0Ly (5, B2, 5) /0B2 > 0 which implies that 32 > 0. This completes the whole proof. O
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