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SUPPLEMENTARY METHODS 
 
ProfileChaser indexes and searches GEO DataSets using a 
combination of previously developed techniques for dimen-
sion reduction, data representation, and similarity measure 
(Engreitz et al. 2010a, Engreitz et al. 2010b).  The following 
section describes our analytical pipeline for processing mi-
croarray experiments from GEO. 
 
Data processing.  For GEO DataSets, we matched probe 
identifiers to NCBI identifiers using AILUN (Chen et al. 
2007).  For species other than H. sapiens, we mapped genes 
to their unique human homologs with Homologene, discard-
ing genes with multiple matches. To normalize expression 
values across datasets and platforms, we examined GEO 
annotations and value ranges for each dataset, and converted 
to log space as needed.  We aggregated probes to genes us-
ing the fixed-effects meta-estimate, weighting the contribu-
tion of each probe by its variance.  
 
Dimension reduction. Previously we applied independent 
component analysis to a compendium of 10,000 microarrays 
to identify fundamental components of human gene expres-
sion (Engreitz et al. 2010a).  These 423 fundamental com-
ponents represented coherent, functionally-relevant tran-
scriptional programs that together spanned the space of hu-
man gene expression sampled in our compendium.  To im-
prove the speed and robustness of ProfileChaser, we pro-
jected each GEO microarray into this reduced feature-space 
using: 
 
 A = STX , 
 
where A is the reduced representation of the microarray ex-
periment (423 features × thousands of profiles), S is the 
component matrix (thousands of genes × 423 features), and 
X is the original data in gene-space (thousands of genes × 
thousands of profiles). We found that this method, resulting 
in an approximately 50-fold reduction in the dimensionality 
of the data, yielded superior performance for comparing 
differential expression profiles, even across species and 
platforms (Engreitz et al. 2010b). 

 
 
 
 
Data representation.  ProfileChaser aims to index differen-
tial expression comparisons in GEO.  To generate these pro-
files, we used the manually curated experimental variables 
defined in GEO DataSets to compare sets of microarrays.  
For each comparison, we created a differential expression 
(DE) profile by calculating the fold-change for each of the 
423 fundamental components or features.  In addition to 
fold-change, we calculated the probability that each funda-
mental component was differentially expressed using the 
empirical Bayes moderated t-statistic, implemented in the 
limma R package (Smyth 2004).  P-values were corrected 
for multiple hypothesis testing using the Benjamini-
Hochberg method. 
 
Similarity measure.  To compare DE profiles (vectors con-
taining 423 elements), we use a weighted Pearson’s correla-
tion coefficient that considers the correct empirical Bayes p-
value.  Weights for the correlation are calculated by 
 
 wi = ! log(pi1pi2 )[ ]1/2 , 
 
where pij is the corrected p-value for feature i in experiment 
j.  Intuitively, features that are consistently differentially 
expressed in both DE profiles are given higher weights.  
When querying ProfileChaser, we calculate false discovery 
rate (FDR) for each retrieved result based on a null distribu-
tion of correlation coefficients between all 14,875 experi-
mental comparisons.  This FDR is likely an underestimate, 
since many of these experiments are in fact related to one 
another. 
 
Identifying significant genes.  To aid in identifying individ-
ual genes that contribute to this comparison, we also created 
DE profiles in gene-space for all GEO DataSet comparisons.  
We create scatterplots to show the global similarities and 
differences in expression between two DE profiles.  The 
axes of these scatterplots represent the log2 difference in 
expression between two conditions.   The size of the point 
for gene i is directly proportional to the gene’s contribution 
to the weighted correlation coefficient: 
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 Area !wi (xi1 "m1)(x j2 "m2 ) , 
 
where xij is the differential expression of gene i in profile j 
and mj is the weighted mean of genes in profile j.  Thus the 
largest points in the scatterplot represent genes that add pos-
itive contributions to the correlation coefficient (i.e., genes 
that are differentially expressed in the same direction in both 
DE profiles). 
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SUPPLEMENTARY FIGURES 
 
 

 
Supplementary Figure S1.  Top thirty search results for GDS3315 (control vs. estradiol).  
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Supplementary Figure S2.  Comparison of differential expression profiles from GDS3315 (Profile 1: control vs. estradiol) and GDS2562 
(Profile 2: 3 days castrated vs. 14 days castradated, 3 days on testosterone).  Scatterplot displays the log2 fold-change for genes in each 
comparison.  The area of each point is proportional to each gene’s contribution to the final correlation coefficient (see Supplementary 
Methods).  Top genes include many proliferation markers, including MKI67, the locus that codes for Ki-67.   
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Supplementary Figure S3.  Top thirty search results for GDS2618 (tumorigenic cancer cells vs. non-tumorigenic cancer cells).  GDS2617, 
which represents the same samples run on a companion platform (HG-U133B), is identified as the top hit, despite the fact that HG-U133A 
and HG-U133B measure only 4431 of the same genes (out of 13,780 and 10,044 genes, respectively).  This search identifies dasatinib as a 
potential inhibitor of breast cancer stem cells (see Result 29).   
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Supplementary Figure S4.  Example of a GEO Dataset with a multifactorial experimental design (GDS799, http:// 
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS799).  ProfileChaser compares all arrays annotated in each subset; for example, 
we generate a differential expression profile for all arrays labeled with “no selection” compared to all arrays labeled with “puromycin re-
sistance.”  However, this comparison is partially confounded in that the “no selection” subset includes samples generated at multiple time 
points and with differing application of retinoic acid.  The results page of the web server indicates the additional factors in each experi-
mental design, but all results should be interpreted carefully through inspection of the experimental design defined by GEO and the original 
study references.  For more information, see the tutorial on the ProfileChaser web site. 
 


