## QM/MM STUDIES OF HAIRPIN RIBOZYME SELF-CLEAVAGE SUGGEST THE FEASIBILITY OF MULTIPLE COMPETING REACTION MECHANISMS

Vojtěch Mlýnský, Pavel Banáš, Nils G. Walter, Jiří Šponer, and Michal Otyepka

#### 1) Parameters of reaction intermediates

Two pentahedral phosphorane intermediates (IN-pro-S<sub>P</sub>H, IN-pro-R<sub>P</sub>H) were used as nonstandard residues in molecular dynamics (MD) simulations. The partial atomic charges for adenine/guanine (A/G) pentahedral intermediates protonated on pro-S<sub>P</sub> or pro-R<sub>P</sub> nonbridging oxygens were obtained by the restrained electrostatic potential (RESP) fit procedure at HF/6-31G(d) level of theory according to the scheme of Cornell et al.<sup>1,2</sup> The model compound contained A/G pentahedral intermediate capped by 5'-methylphosphate and 3'methylphosphate termini (Figure S1). The geometry of the A/G RNA strand carrying the pentahedral phosphorane was taken from our preliminary QM/MM calculations. This model was protonated on pro-S<sub>P</sub> and pro-R<sub>P</sub> nonbridging oxygens, respectively, and all hydrogen atoms were geometrically optimized at HF/6-31G(d) level of theory using the Gaussian03 program.<sup>3</sup> All heavy atoms were fixed in their original positions. Subsequently, the partial atomic charges were determined using RESP procedure at HF/6-31G(d) level of theory. New residue was defined for A-1 and G+1 connected by pentahedral phosphorane. The obtained partial charges were used for atoms of sugar-phosphate backbone between A(C2', C3') and G(C4') carrying the pentahedral phosphorane, while the parm99 charges were used for the remaining atoms. The residual fractional charge was spread equally to all atoms of A/G intermediate residue. Non-zero van der Waals parameters ( $r_0=0.6$  Å,  $\sigma=0.0157$  kcal/mol) of hydrogen atom (HX) bound to non-bridging oxygen of the scissile phosphate together with P-OH-HX angle parameters ( $k_{\theta} = 100 \text{ kcal/mol}\text{Å}^2$ ,  $\theta_0 = 108.5^\circ$ ) were used to retain a reasonable conformational behavior of protonated nonbridging oxygen in phosphorane intermediates. The other missing bonding parameters were derived by analogy from parm99 force field.



**Figure S1:** Left panel shows the structure of the non-standard residue and right panel the model, used for calculation of RESP charges. Whereas the green inset on the left panel illustrates atoms with default parm99 charges, the red inset shows atoms, which partial charges were derived from the RESP procedure.

a) AMBER prep file for phosphorane intermediate with protonated pro- $S_P$  (O1P) oxygen (IN-pro- $S_PH$ )

| 0     | 0      | 2     |       |     |           |           |           |          |
|-------|--------|-------|-------|-----|-----------|-----------|-----------|----------|
| This  | isaı   | remar | k lin | е   |           |           |           |          |
| molec | ule.re | es    |       |     |           |           |           |          |
| IN1   | XYZ    | 0     |       |     |           |           |           |          |
| CHANG | Е      | OMIT  | DU    | BEG |           |           |           |          |
| 0.0   | 000    |       |       |     |           |           |           |          |
| 1     | DUMM   | DU    | М     |     | 999.000   | 999.0     | -999.0    | .00000   |
| 2     | DUMM   | DU    | М     |     | 999.000   | -999.0    | 999.0     | .00000   |
| 3     | DUMM   | DU    | М     |     | -999.000  | 999.0     | 999.0     | .00000   |
| 4     | P1     | P     | М     |     | 12.609000 | 1.116000  | 1.757000  | 1.15830  |
| 5     | 01P    | 02    | Ε     |     | 12.953000 | 2.380000  | 2.497000  | -0.78390 |
| б     | O2P    | 02    | E     |     | 11.729000 | 0.078000  | 2.381000  | -0.78390 |
| 7     | 05 '   | OS    | М     |     | 14.020000 | 0.387000  | 1.294000  | -0.50680 |
| 8     | C5 '   | СТ    | М     |     | 14.082000 | -0.919000 | -0.052000 | 0.04790  |
| 9     | H5'1   | Hl    | Е     |     | 1.129000  | -2.609000 | -1.006000 | 0.06000  |
| 10    | Н5 ' 2 | Hl    | E     |     | 2.668000  | -2.564000 | -1.854000 | 0.06000  |
| 11    | C4 '   | СТ    | М     |     | 2.766000  | -1.848000 | 0.163000  | 0.09860  |
| 12    | H4 '   | Hl    | E     |     | 2.549000  | -2.226000 | 1.153000  | 0.10950  |
| 13    | 04 '   | OS    | S     |     | 4.209000  | -1.769000 | 0.007000  | -0.36270 |
| 14    | C1'    | СТ    | В     |     | 17.346000 | -0.004000 | -0.468000 | 0.03150  |
| 15    | H1'    | H2    | E     |     | 17.904000 | -0.122000 | -1.397000 | 0.19280  |
| 16    | N9     | N*    | S     |     | 17.639000 | 1.363000  | 0.062000  | -0.03300 |
| 17    | C8     | CK    | В     |     | 16.831000 | 2.254000  | 0.786000  | 0.19270  |
| 18    | Н8     | Н5    | E     |     | 15.778000 | 2.054000  | 0.918000  | 0.14740  |
| 19    | N7     | NB    | S     |     | 17.499000 | 3.303000  | 1.171000  | -0.61520 |
| 20    | C5     | CB    | S     |     | 18.779000 | 3.188000  | 0.605000  | 0.04360  |
| 21    | CG     | CA    | В     |     | 20.023000 | 3.874000  | 0.619000  | 0.69300  |

| 22 | Nб           | N2         | В       | 20.319000              | 5.031000  | 1.153000  | -0.90980 |
|----|--------------|------------|---------|------------------------|-----------|-----------|----------|
| 23 | H61          | Η          | Е       | 21.182000              | 5.472000  | 0.869000  | 0.40360  |
| 24 | Н62          | Η          | Е       | 19.663000              | 5.604000  | 1.665000  | 0.40360  |
| 25 | Nl           | NC         | S       | 21.098000              | 3.367000  | -0.036000 | -0.76940 |
| 26 | C2           | CQ         | В       | 21.019000              | 2.136000  | -0.589000 | 0.57960  |
| 27 | Н2           | H5         | Е       | 21.933000              | 1.880000  | -1.103000 | 0.03940  |
| 28 | N3           | NC         | S       | 19.855000              | 1.490000  | -0.817000 | -0.70760 |
| 29 | C4           | СВ         | Е       | 18.818000              | 2.063000  | -0.172000 | 0.29740  |
| 30 | C3 '         | СТ         | М       | 2.237000               | -0.397000 | 0.038000  | 0.01573  |
| 31 | НЗ'          | H1         | Е       | 1.932000               | -0.180000 | -0.976000 | 0.04001  |
| 32 | C2 '         | СТ         | В       | 3.424000               | 0.490000  | 0.527000  | 0.30115  |
| 33 | Н2'1         | H1         | Е       | 3.586000               | 1.355000  | -0.106000 | 0.03906  |
| 34 | 02 '         | OX         | Е       | 3.104000               | 0.896000  | 1.844000  | -0.61791 |
| 35 | 03'          | OS         | М       | 1.075000               | -0.183000 | 0.856000  | -0.24735 |
| 36 | P2           | Ρ          | М       | 1.298000               | 0.403000  | 2.441000  | 0.94910  |
| 37 | 01P2         | OH         | S       | 1.941000               | -0.613000 | 3.508000  | -0.59197 |
| 38 | H1P2         | HX         | E       | 1.215000               | -0.919000 | 4.043000  | 0.43897  |
| 39 | 02P2         | 02         | E       | 0.903000               | 1.853000  | 2.824000  | -0.67713 |
| 40 | 05x          | OX         | М       | -0.540000              | -0.205000 | 2.776000  | -0.57352 |
| 41 | C5x          | СТ         | M       | -1.068000              | -1.504000 | 2.449000  | -0.09649 |
| 42 | H5x1         | н1         | E       | -0.965000              | -2.166000 | 3.310000  | 0.06973  |
| 43 | H5x2         | н1         | Ē       | -0.548000              | -1.964000 | 1.617000  | 0.06973  |
| 44 | C4x          | СТ         | M       | -2.587000              | -1.429000 | 2.075000  | 0.41309  |
| 45 | н4х          | н1         | E.      | -3 084000              | -2 285000 | 2 519000  | 0 10950  |
| 46 | 04x          | 05         | S       | -3 261000              | -0 264000 | 2 559000  | -0 36270 |
| 47 | C1x          | СТ         | B       | -3 993000              | 0 354000  | 1 501000  | 0 01120  |
| 48 | H1x          | н2         | E       | -4 958000              | 0 648000  | 1 885000  | 0 19270  |
| 49 | N9h          | N*         | S       | -3 293000              | 1 576000  | 1 010000  | 0 04130  |
| 50 | C8b          | CK         | B       | -2 203000              | 2 213000  | 1 550000  | 0 12950  |
| 51 | н8р          | н5         | E       | -1 662000              | 1 780000  | 2 366000  | 0.15610  |
| 52 | N7b          | NB         | S       | -1 760000              | 3 217000  | 0 837000  | -0 57880 |
| 53 | C5b          | CB         | d<br>Q  | -2 745000              | 3 381000  | -0 143000 | 0 16650  |
| 54 | C6b          | C          | B       | -2 899000              | 4 363000  | -1 188000 | 0 46910  |
| 55 | 06b          | 0          | E       | -2.155000              | 5 293000  | -1 522000 | -0 56760 |
| 56 | N1b          | NΔ         | B       | -4 077000              | 4 224000  | -1 888000 | -0 48660 |
| 57 | нıр<br>H1р   | H          | E       | -4 237000              | 4 929000  | -2 574000 | 0.33450  |
| 58 | C2h          | CA         | B       | -5 001000              | 3 270000  | -1 637000 | 0.55150  |
| 59 | N2h          | N2         | B       | -6 074000              | 3 300000  | -2 377000 | -0 97510 |
| 60 | н21b         | 112<br>법   | г<br>Г  |                        | 3 653000  | -3 305000 | 0.42850  |
| 61 | н22b         | н          | E       | -6 653000              | 2 494000  | -2 287000 | 0 42850  |
| 62 | N3h          | NC         | g       | -4 884000              | 2 321000  | -0 711000 | -0 64020 |
| 63 | C4b          | CB         | с<br>г  | -3 732000              | 2.321000  | 0.018000  | 0.01020  |
| 64 | Clo          | Ст         | M       | -2 823000              | -1 502000 | 0.010000  | 0.19430  |
| 65 | н3х<br>Н3х   | сı<br>ц1   | F<br>F  | -2 028000              | -1 007000 | 0.003000  | 0.15150  |
| 66 | C2v          | CTL<br>CTL | R       | -4 130000              |           | 0 419000  | 0 05910  |
| 67 | С2л<br>H2v1  | ст<br>н1   | г<br>Г  | -4 252000              | -0 287000 | -0 562000 | 0 08030  |
| 68 | 112A⊥<br>02√ | <u>О</u> П | c<br>L  | -5 264000              | _1 520000 | 0.302000  | -0 62190 |
| 60 | U⊿⊼<br>⊔∩∵?  | Un<br>UO   | ्र<br>म | -J.204000<br>_A QQ2000 | _2 422000 | 0.717000  | 0.02100  |
| 70 | 03~          | 00         | M       | -2 022000              | -2 853000 | 0.001000  | -0 53250 |
| 10 | UJX          | 05         | 1*1     | -2.932000              | -2.033000 | 0.110000  | -0.03230 |

LOOP

C1' C2' C5 C4 C4 N9 O2' P2 C1x C2x C4b C5b

C4b N9b

IMPROPER

C8 C4 N9 C1'

| C6   | H61  | Nб  | H62  |
|------|------|-----|------|
| N7   | N9   | C8  | Н8   |
| Nl   | N3   | C2  | Н2   |
| C5   | Nl   | CG  | Νб   |
| C8b  | C4b  | N9b | Clx  |
| C5b  | N1b  | C6b | 06b  |
| C6b  | C2b  | N1b | H1b  |
| C2b  | H21b | N2b | H22b |
| N7b  | N9b  | C8b | H8b  |
| N1b  | N3b  | C2b | N2b  |
|      |      |     |      |
| DONE |      |     |      |

STOP

b) AMBER prep file for phosphorane intermediate with protonated pro- $R_P$  (O2P) oxygen (IN-pro- $R_PH$ )

0 0 2

This is a remark line

molecule.res

IN2 XYZ 0 CHANGE OMIT DU BEG

| 0.0 | 000  |    |   |           |           |           |          |
|-----|------|----|---|-----------|-----------|-----------|----------|
| 1   | DUMM | DU | М | 999.000   | 999.0     | -999.0    | .00000   |
| 2   | DUMM | DU | М | 999.000   | -999.0    | 999.0     | .00000   |
| 3   | DUMM | DU | М | -999.000  | 999.0     | 999.0     | .00000   |
| 4   | P1   | Ρ  | М | 12.609000 | 1.116000  | 1.757000  | 1.15809  |
| 5   | 01P  | 02 | Е | 12.953000 | 2.380000  | 2.497000  | -0.78411 |
| 6   | 02P  | 02 | E | 11.729000 | 0.078000  | 2.381000  | -0.78411 |
| 7   | 05 ' | OS | М | 14.020000 | 0.387000  | 1.294000  | -0.50701 |
| 8   | C5 ' | СТ | М | 14.082000 | -0.919000 | -0.052000 | 0.04769  |
| 9   | Н5'1 | Hl | E | 1.129000  | -2.609000 | -1.006000 | 0.05979  |
| 10  | Н5'2 | Hl | E | 2.668000  | -2.564000 | -1.854000 | 0.05979  |
| 11  | C4'  | СТ | М | 2.766000  | -1.848000 | 0.163000  | 0.09839  |
| 12  | H4'  | Hl | Е | 2.549000  | -2.226000 | 1.153000  | 0.10929  |
| 13  | 04 ' | OS | S | 4.209000  | -1.769000 | 0.007000  | -0.36291 |
| 14  | C1'  | СТ | В | 17.346000 | -0.004000 | -0.468000 | 0.03129  |
| 15  | H1'  | H2 | Е | 17.904000 | -0.122000 | -1.397000 | 0.19259  |
| 16  | N9   | N* | S | 17.639000 | 1.363000  | 0.062000  | -0.03321 |
| 17  | C8   | CK | В | 16.831000 | 2.254000  | 0.786000  | 0.19249  |
| 18  | Н8   | Н5 | Е | 15.778000 | 2.054000  | 0.918000  | 0.14719  |
| 19  | N7   | NB | S | 17.499000 | 3.303000  | 1.171000  | -0.61541 |
| 20  | C5   | СВ | S | 18.779000 | 3.188000  | 0.605000  | 0.04339  |
| 21  | C6   | CA | В | 20.023000 | 3.874000  | 0.619000  | 0.69279  |
| 22  | NG   | N2 | В | 20.319000 | 5.031000  | 1.153000  | -0.91001 |
| 23  | H61  | Η  | Е | 21.182000 | 5.472000  | 0.869000  | 0.40339  |
| 24  | H62  | Η  | Е | 19.663000 | 5.604000  | 1.665000  | 0.40339  |
| 25  | Nl   | NC | S | 21.098000 | 3.367000  | -0.036000 | -0.76961 |
| 26  | C2   | CQ | В | 21.019000 | 2.136000  | -0.589000 | 0.57939  |
| 27  | Н2   | Н5 | E | 21.933000 | 1.880000  | -1.103000 | 0.03919  |
| 28  | N3   | NC | S | 19.855000 | 1.490000  | -0.817000 | -0.70781 |
| 29  | C4   | СВ | Е | 18.818000 | 2.063000  | -0.172000 | 0.29719  |
| 30  | C3 ' | СТ | М | 2.240000  | -0.405000 | 0.047000  | 0.02332  |
| 31  | НЗ'  | Hl | E | 1.938000  | -0.196000 | -0.971000 | 0.02685  |
| 32  | C2 ' | СТ | В | 3.426000  | 0.487000  | 0.527000  | 0.32830  |
| 33  | H2'1 | Н1 | Е | 3.593000  | 1.339000  | -0.126000 | 0.01660  |
| 34  | 02 ' | OX | Е | 3.106000  | 0.906000  | 1.839000  | -0.62827 |
| 35  | 03 ' | OS | М | 1.077000  | -0.182000 | 0.861000  | -0.26326 |
| 36  | P2   | Ρ  | М | 1.299000  | 0.420000  | 2.440000  | 1.00501  |

| 37    | 01P2         | 02       | Е         | 1.941000  | C        | -0.585000 | 3.518000  | -0.74579 |
|-------|--------------|----------|-----------|-----------|----------|-----------|-----------|----------|
| 38    | 02P2         | OH       | S         | 0.904000  | 3        | 1.875000  | 2.807000  | -0.56120 |
| 39    | H2P2         | нх       | ू<br>स    | 0 086000  | 7        | 1 827000  | 3 292000  | 0 45277  |
| 40    | 05x          | 0X       | M         | -0 540000 | _<br>л   | -0 184000 | 2 779000  | -0 62624 |
| 41    | C5v          | CT       | M         | -1 068000 | л        | -1 486000 | 2 465000  | -0 10012 |
| 4.2   | С5л<br>Ц5у1  | сı<br>u1 | ייו<br>די | -0 947000 | י.<br>ק  | -2 120000 | 3 337000  | 0.10012  |
| 43    | н5х1<br>н5х2 | и1       | ы<br>Т    | -0 541000 | 2        | -1 945000 | 1 640000  | 0.10200  |
| 44    | C4v          |          | M         | -2 586000 | Л        | -1 415000 | 2 089000  | 0.10200  |
| 15    |              | С1<br>11 | 1.1<br>17 | 2.300000  | יי<br>ק  | 2 265000  | 2.000000  | 0.10020  |
| 45    | 04x          |          | Е<br>С    | -3.084000 | <u>م</u> | -2.203000 | 2.543000  | 0.10929  |
| 40    | 04X          | 05       | с<br>П    | -3.200000 |          | -0.244000 | 2.301000  | -0.30291 |
| 4/    | UIX<br>II1   |          | B         | -3.991000 | 5<br>7   | 0.363000  | 1.495000  | 0.01099  |
| 40    | MOD          | н∠<br>N* | ь<br>с    | -4.955000 | 5<br>7   | 1 570000  | 1.0/4000  | 0.19249  |
| 49    | devi         | N "      | 2         | -3.290000 |          | 1.579000  | 1 507000  | 0.04109  |
| 50    |              | CK<br>TT | В         | -2.201000 | 3        | 2.221000  | 1.52/000  | 0.12929  |
| 51    | H8D          | H5       | E         | -1.703000 | <u>.</u> | 1.766000  | 2.350000  | 0.15589  |
| 5Z    |              | NB       | S         | -1./56000 |          | 3.218000  | 0.804000  | -0.5/901 |
| 53    | C5D          | Св       | S         | -2.741000 | 5        | 3.3/2000  | -0.178000 | 0.16629  |
| 54    | C6D          | C        | В         | -2.894000 | 3        | 4.343000  | -1.234000 | 0.46889  |
| 55    | 06b          | 0        | E         | -2.149000 | 5        | 5.270000  | -1.577000 | -0.56781 |
| 56    | NID          | NA       | В         | -4.071000 | 3        | 4.198000  | -1.933000 | -0.48681 |
| 57    | Hlb          | H        | E         | -4.226000 | 6        | 4.892000  | -2.631000 | 0.33429  |
| 58    | C2b          | CA       | В         | -4.995000 | 3        | 3.246000  | -1.673000 | 0.75759  |
| 59    | N2b          | N2       | В         | -6.068000 | 3        | 3.269000  | -2.415000 | -0.97531 |
| 60    | H21b         | Η        | E         | -6.011000 | C        | 3.636000  | -3.338000 | 0.42829  |
| 61    | H22b         | H        | E         | -6.651000 | C        | 2.466000  | -2.321000 | 0.42829  |
| 62    | N3b          | NC       | S         | -4.879000 | 3        | 2.306000  | -0.738000 | -0.64041 |
| 63    | C4b          | CB       | Ε         | -3.729000 | 3        | 2.422000  | -0.009000 | 0.11409  |
| 64    | C3x          | СТ       | М         | -2.820000 | 1        | -1.503000 | 0.578000  | 0.19409  |
| 65    | H3x          | Hl       | Ε         | -2.024000 | 3        | -1.016000 | 0.034000  | 0.05339  |
| 66    | C2x          | СТ       | В         | -4.127000 | 3        | -0.720000 | 0.424000  | 0.05889  |
| 67    | H2x1         | Hl       | Ε         | -4.250000 | 3        | -0.299000 | -0.562000 | 0.08909  |
| 68    | 02x          | OH       | S         | -5.261000 | 3        | -1.519000 | 0.730000  | -0.62201 |
| 69    | HOx2         | HO       | Ε         | -4.985000 | 2        | -2.424000 | 0.634000  | 0.41049  |
| 70    | 03x          | OS       | М         | -2.930000 | 4        | -2.859000 | 0.145000  | -0.53271 |
| LOOP  |              |          |           |           |          |           |           |          |
| C1'   | C2 '         |          |           |           |          |           |           |          |
| C5    | C4           |          |           |           |          |           |           |          |
| C4    | N9           |          |           |           |          |           |           |          |
| 02 '  | P2           |          |           |           |          |           |           |          |
| Clx   | C2x          |          |           |           |          |           |           |          |
| C4b   | C5b          |          |           |           |          |           |           |          |
| C4b   | N9b          |          |           |           |          |           |           |          |
| IMPRO | PER          |          |           |           |          |           |           |          |
| C8    | C4           | N9       | C1'       |           | 1        |           |           |          |
| C6    | H61          | Nб       | H62       |           | 2        |           |           |          |
| N7    | N9           | C8       | Н8        |           |          |           |           |          |
| Nl    | N3           | C2       | Н2        |           |          |           |           |          |

| NL  | N3   | C2  | H2   |
|-----|------|-----|------|
| C5  | Nl   | C6  | Νб   |
| C8b | C4b  | N9b | Clx  |
| C5b | N1b  | C6b | 06b  |
| C6b | C2b  | N1b | H1b  |
| C2b | H21b | N2b | H22b |
| N7b | N9b  | C8b | H8b  |
| N1b | N3b  | C2b | N2b  |
|     |      |     |      |

DONE

STOP

#### c) AMBER parm file with non-standard parameters

| # force f                       | ield mod     | ification | n for RMA, RGN | RGT, RAP, IN-p            | $ro-R_{p}H$ , IN-pro-S <sub>P</sub> H, and L25 residues                                                 |
|---------------------------------|--------------|-----------|----------------|---------------------------|---------------------------------------------------------------------------------------------------------|
| OX                              | 16 00        | 0 465     | based on OS    | her and ester o           | waan                                                                                                    |
| HX                              | 1 008        | 0.405     | based on HO l  | droxyl group              | худен                                                                                                   |
| 1125                            | 1.000        | 0.135     | basea on no i  | Jarokyr group             |                                                                                                         |
| BOND                            |              |           |                |                           |                                                                                                         |
| CT-OX                           | 320.0        | 1.410     | based on CT-0  | 5 JCC,7,(1986),2          | 30; NUCLEIC ACIDS                                                                                       |
| OX-P                            | 230.0        | 1.965     | based on P-O   | JCC,7,(1986),23           | 0; NA PHOSPHATES with changed distance                                                                  |
| нх-он                           | 553.0        | 0.960     | based on HO-0  | JCC,7,(1986),2            | 30; SUGARS, SER, TYR                                                                                    |
| CQ-NA                           | 502.0        | 1.324     | based on CQ-1  | C JCC,7,(1986),2          | 30; ADE                                                                                                 |
| ANGUE                           |              |           |                |                           |                                                                                                         |
| H1-CT-OX                        | 50 0         | 109 50    | based on H1-(  | -OS changed bas           | ed on NMA nmodes                                                                                        |
| CT-CT-OX                        | 50.0         | 109.50    | based on CT-(  | r-OS                      | ed on why hillodeb                                                                                      |
| CT-OX-P                         | 100 0        | 120 50    | based on CT-(  | 2-D                       |                                                                                                         |
| OX - P = OX                     | 45 0         | 180 00    | based on OS-1  | -09 with 180 de           | aree instead of 45                                                                                      |
| OS-D -OX                        | 45 0         | 90.00     | based on OS-1  | -OS with 90 dec           | ree instead of 45                                                                                       |
| $O_2 - P = O_X$                 | 45.0         | 90.00     | based on 02-1  | -OS with 90 deg           | ree instead of 45                                                                                       |
| $O_{\rm L}^{\rm P} = O_{\rm X}$ | 45.0         | 90.00     | based on OU-1  | -OS with 90 deg           | ree instead of 45                                                                                       |
| UN-P -OX                        | 100 0        | 109 50    | based on UO-   | -05 with force            | constant 100kgal/molA2                                                                                  |
| CR-CA-NA                        | 70.0         | 117 20    | based on CP-(  | N-NC                      | constant rookcar/moraz                                                                                  |
| NC-CO-NA                        | 70.0         | 120 10    | based on NC-(  |                           |                                                                                                         |
| NC-CQ-NA                        | 70.0         | 115 45    | based on NC-   | 2-INC                     |                                                                                                         |
| H5-CQ-NA                        | 50.0         | 110.45    | based on H5-0  |                           |                                                                                                         |
| CA-NA-CQ                        | 70.0         | 110.00    | based on CA-I  | L-CV<br>N II abargod baga | d on NMA nmodod                                                                                         |
| CQ-NA-H                         | 50.0         | 110.00    | based on CA-I  | A-H Changed base          | a on MMA ninodes                                                                                        |
| DIHEDRAL                        |              |           |                |                           |                                                                                                         |
| H1-CT-OX-                       | P 3          | 1.15      | 0.0            | 3. based                  | l on X-CT-OS-X JCC,7,(1986),230                                                                         |
| CT-CT-OX-                       | P 3          | 1.15      | 0.0            | 3. based                  | l on X-CT-OS-X JCC, 7, (1986), 230                                                                      |
| 02-P -OX-                       | CT 1         | 0.25      | 0.0            | -3. based                 | l on OS-P-OS-CT JCC, 7, (1986), 230                                                                     |
| 02-P -0X-                       | CT 1         | 1.20      | 0.0            | 2. based                  | l on OS-P-OS-CT gg> ene.631g*/mp2                                                                       |
| OH-P -OX-                       | CT 1         | 0.25      | 0.0            | -3. based                 | l on OS-P-OS-CT JCC,7,(1986),230                                                                        |
| OH-P -OX-                       | CT 1         | 1.20      | 0.0            | 2. based                  | l on OS-P-OS-CT gg> ene.631g*/mp2                                                                       |
| OS-P -OX-                       | CT 1         | 0.25      | 0.0            | -3. based                 | on OS-P-OS-CT JCC.7.(1986).230                                                                          |
| 0S-P -0X-                       | ст 1         | 1.20      | 0.0            | 2. based                  | on OS-P-OS-CT gg> ene.631g*/mp2                                                                         |
| 0X-P -0X-                       | ст 1         | 0.00      | 0.0            | 1. this                   | torsion should be zero in sp3d                                                                          |
| 0X-P -0S-                       | ст 1         | 0.25      | 0.0            | -3. based                 | n = 0S - P - 0S - CT + 1CC + 7 + (1986) + 230                                                           |
| 0X-P -0S-                       | ст 1         | 1,20      | 0.0            | 2. based                  | $1 \text{ on } 0\text{S}-\text{P}-0\text{S}-\text{CT} \text{ gg>} \text{ ene}.631\text{g}^*/\text{mp}2$ |
| OX-CT-CT-                       | 05 1         | 0 144     | 0.0            | -3 based                  | 1  on  OS = CT = CT = OS  parm98 TC PC PAK                                                              |
| OX-CT-CT-                       | 05 1         | 1 175     | 0.0            | 2 hased                   | on OS-CT-CT-OS Pictr et al                                                                              |
| UN CI CI                        | OY 1         | 0 25      | 0.0            | 1 based                   | on H1_CT_CT_OS Junmei et al 1999                                                                        |
| OX-CT-CT-                       | 이지 1<br>이내 1 | 0.23      | 0.0            | -3 based                  | on OS-CT-CT-OH parm98 TC DC DAK                                                                         |
| OX-CT-CT-                       | 이미 I<br>이미 1 | 1 175     | 0.0            | 2 based                   | on OS-CT-CT-OH parm98 TC DC DAK                                                                         |
| X -NA-CO-                       | v 4          | 9 60      | 80.0           | 2. Dasec                  | ton os-er-er-on parmos, re,re,rak                                                                       |
| 77 - IVA - CQ -                 | 23 T         | 2.00      | 00.0           | 4.                        |                                                                                                         |
| NONBON                          |              |           |                |                           |                                                                                                         |
| OX                              | 1.68         | 37 0.1    | 700            | based on OS OP            | LS ether                                                                                                |
| HX                              | 0.60         | 00 0.0    | 157            | based on HS W.            | Cornell CH3SH> CH3OH FEP                                                                                |

#### 2) Behavior of Reaction Intermediates

We performed four 50 ns-long MD simulations of all possible combinations of protonation state of the reaction intermediate and A38 adenine (protonated *pro*- $R_PH$  or *pro*- $S_PH$  nonbridging oxygen of phosphorane group with either canonical A38 or protonated A38H<sup>+</sup> form). We used the same protocol for setting up MD's as in our previous MD study.<sup>4</sup> MD simulations containing the canonical A38 are not further described as the A38 left the active site within the first ~4 ns of each MD simulation and exhibited the same behavior as reported recently in our MD paper.<sup>4</sup> As a consequence, only two simulations with protonated A38H<sup>+</sup> form are discussed below and were further used for preparation of the starting geometries for the following hybrid quantum mechanical/ molecular mechanical QM/MM study. We would like to note, that the bonding force field parameters for pentahedral phosphorane intermediate

residues were not thoroughly tested and therefore the results should be interpreted with care considering potential limitation of the force field used.

## $G+1(pro-S_PH)$ intermediate with $A38H^+$ (IN-pro-S\_PH/G8/A38H<sup>+</sup>)

The G8 nucleobase established the 4BPh (base-phosphate) contact with G+1 pentahedral phosphorane within first part of MD simulation (Figure S2C). This contact was weakened just for a limited time (for ~6 ns in overall) by reorientation of G8 within the active site and formation of transient G+1(*pro*-S<sub>P</sub>H)...G8(O6) H-bond around ~33 and ~46 ns. The A9 nucleobase formed bifurcated A9(N6H)...A-1(O2')/G+1(*pro*-R<sub>P</sub>) H-bond, temporary substituted (from ~38 to 46 ns) by the formation of the A10(N6H)...A-1(O2') H-bond by the neighboring A10 nucleobase (Figures S2A, S2C). The protonated A38H<sup>+</sup> nucleobase established two stable A38H<sup>+</sup>(N6H)...G+1(*pro*-R<sub>P</sub>) and A38H<sup>+</sup>(N1H)...G+1(O5') H-bonds to the pentahedral phosphorane (Figure S2C).

### $G+1(pro-R_PH)$ intermediate with $A38H^+$ (IN-pro- $R_PH/G8/A38H^+$ )

The A-1(O2') oxygen lost immediately its interaction with G8 and established a new A10(N6H)...A-1(O2') H-bond within the first ns of MD simulation (Figure S2C). Thereby, G8 formed temporary bifurcated G8(N1H/N2H)...G+1(*pro*-S<sub>P</sub>) H-bond. The protonated G+1(*pro*-R<sub>P</sub>H) group established also bifurcated A38H<sup>+</sup>(N6H)...G+1(*pro*-R<sub>P</sub>)/A9(N6H)...G+1(*pro*-R<sub>P</sub>) H-bond (Figure S2C). Interestingly, we observed significant H-bond reorientation and a renewal of G8(N1H)...A-1(O2') and G8(N2H)...G+1(*pro*-R<sub>P</sub>) H-bonds in the second part of MD simulation (Figures S2B, S2C).

The hydrogen on protonated G+1(*pro*-R<sub>P</sub>H) group was not involved as a proton donor in any H-bond with surrounding bases and pointed either in the direction to the A-1 sugar (~75%), or the G+1 sugar (~25%). We did not observe any water mediated H-bond between G+1(O5') and G+1(*pro*-R<sub>P</sub>H). In contrast to the previous IN-*pro*-R<sub>P</sub>H/G8/A38H<sup>+</sup> MD simulation, the A38H<sup>+</sup>(N6H)...G+1(*pro*-R<sub>P</sub>) H-bond was significantly weakened (after ~25 ns) due to the reorientation of non-bridging oxygens of the pentahedral phosphorane and subsequent formation of the G8(N1H)...A-1(O2') and G8(N2H)...G+1(*pro*-R<sub>P</sub>) H-bonds. Nevertheless, an average structure taken at the end of this simulation showed the best agreement with the X-ray structures (Figure S2B) of vanadate transition states analogs of the hairpin ribozyme (PDB code 1M5O, 2P7E).<sup>5,6</sup>



**Figure S2:** Last one ns average structures of the active site of IN-pro- $R_PH/G8/A38H^+$  (A) and IN-pro- $S_PH/G8/A38H^+$  (B) MD simulations (in sticks) of the hairpin ribozyme are superimposed with two crystal structures of vanadate TS analogs (1M5O in cyan, 2P7E in magenta lines). (A) The protonated pro- $S_P$  oxygen (pro- $S_PH$ ) causes reorientation of G8 (black arrow), A9 and A10 nucleobases in IN-pro- $R_PH/G8/A38H^+$  MD simulation. (B) On the other hand, the MD simulation of IN-pro- $S_PH/G8/A38H^+$  phosphorane intermediate shows the best agreement with the X-ray structures of vanadate TS analogs. (C) Time evolution of interactions of the G+1(O2') oxygen and protonated pro- $R_P/pro-S_P$  oxygens with groups of neighboring nucleobases (IN1 and IN2 denote IN-pro- $S_PH$  and IN-pro- $R_PH$ , respectively).

#### 3) Starting structures for QM/MM calculations

Snapshots from both IN-*pro*-R<sub>P</sub>H/G8/A38H<sup>+</sup> and IN-*pro*-S<sub>P</sub>H/G8/A38H<sup>+</sup> MD simulations were chosen based on geometrical arrangement of the protonated phosphorane with maximalized base-phosphate interaction (BPh)<sup>7</sup> towards canonical G8 and protonated A38H<sup>+</sup> residues. Further we reselected only those snapshots, where the protonated G+1(*pro*-R<sub>P</sub>H) or G+1(*pro*-S<sub>P</sub>H) non-bridging oxygen achieved the best orientation in the direction either of the A-1(O2') or the G+1(O5') oxygen. Finally, we considered 4 different MD snapshots (two with protonated G+1(*pro*-R<sub>P</sub>) and other two with protonated G+1(*pro*-S<sub>P</sub>) oxygen) that were subsequently used to prepare four starting structures for QM/MM calculations (Figure S3).



**Figure S3:** (A) Starting structure for QM/MM calculations taken from IN-pro- $S_PH/G8/A38H^+$ MD simulation of the hairpin ribozyme. The protonated pentahedral phosphorane and key nucleobases within the active site are highlighted in sticks. Water molecules and counter ions are not shown for clarity. (**B**,**C**,**D**) Detailed view into the active site shows additional conformations of the pentahedral phosphorane and neighboring nucleobases, which were also considered as starting points for the subsequent QM/MM study.

### **Supporting tables:**

**Table S1:** Summarized extrapolated  $CBS(T)^a$  energies (in kcal/mol, related to the reactant state), MPW1K/6-31+G(d,p) solvation energies, Gibbs Energy corrections and total Gibbs energies at the extrapolated CBS(T) level of the endo/exo-3'-(1'-amino-4'-methylribose)-5'-methylphosphodiester cleavage model. All geometries were optimized at CPCM ( $\varepsilon_r = 78.4$ )/MPW1K/6-31+G(d,p) level (see Methods in main text for details). The solvation term was calculated as the difference between  $CPCM(\varepsilon_r = 78.4)/MPW1K/6-31+G(d,p)$  and gas phase MPW1K/6-31+G(d,p) SCF energies. The corrections to Gibbs energies were calculated at the  $CPCM(\varepsilon_r = 78.4)/MPW1K/6-31+G(d,p)$  level.

| endo ( <i>pro</i> -R <sub>P</sub> )                                                            | R                      | $TS_1$                                | IN <sub>1</sub>                        | $TS_2$                                 | IN <sub>2</sub>                        | $TS_3$                                  | Р                        | P'                          |
|------------------------------------------------------------------------------------------------|------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|--------------------------|-----------------------------|
| CBS(T)                                                                                         | 0.0                    | 28.9                                  | 27.1                                   | 36.8                                   | 30.0                                   | 37.4                                    | 4.1                      | 19.0                        |
| MPW1K solvation energy                                                                         | 0.0                    | -1.2                                  | -4.5                                   | -4.6                                   | -5.2                                   | -0.6                                    | -1.4                     | -9.4                        |
| MPW1K Gibbs Energy correction                                                                  | 0.0                    | 0.3                                   | 1.2                                    | 0.4                                    | 0.5                                    | -2.2                                    | -4.1                     | -12.9                       |
| CBS(T) Gibbs Energy in water                                                                   | 0.0                    | 28.0                                  | 23.8                                   | 32.5                                   | 25.3                                   | 34.6                                    | -1.4                     | -3.2                        |
| ( 0 )                                                                                          |                        | =                                     |                                        | -                                      |                                        |                                         |                          |                             |
| $exo (pro-S_P)$                                                                                | R                      | $TS_1$                                | $IN_1$                                 | $TS_2$                                 | $IN_2$                                 | $TS_3$                                  | Р                        | P'                          |
| cbs(T)                                                                                         | R<br>0.0               | TS <sub>1</sub><br>27.1               | IN <sub>1</sub><br>21.7                | TS <sub>2</sub><br>32.4                | IN <sub>2</sub><br>26.6                | TS <sub>3</sub><br>37.9                 | P<br>4.1                 | P'<br>19.0                  |
| CBS(T)<br>MPW1K solvation energy                                                               | R<br>0.0<br>0.0        | TS <sub>1</sub><br>27.1<br>0.1        | IN <sub>1</sub><br>21.7<br>-1.6        | TS <sub>2</sub><br>32.4<br>-4.1        | IN <sub>2</sub><br>26.6<br>-3.4        | TS <sub>3</sub><br>37.9<br>-1.0         | P<br>4.1<br>-1.4         | P'<br>19.0<br>-9.4          |
| exo (pro-S <sub>P</sub> )<br>CBS(T)<br>MPW1K solvation energy<br>MPW1K Gibbs Energy correction | R<br>0.0<br>0.0<br>0.0 | TS <sub>1</sub><br>27.1<br>0.1<br>0.3 | IN <sub>1</sub><br>21.7<br>-1.6<br>1.9 | TS <sub>2</sub><br>32.4<br>-4.1<br>0.2 | IN <sub>2</sub><br>26.6<br>-3.4<br>0.9 | TS <sub>3</sub><br>37.9<br>-1.0<br>-2.2 | P<br>4.1<br>-1.4<br>-4.1 | P'<br>19.0<br>-9.4<br>-12.9 |

<sup>a</sup> MP2/CBS energies corrected to higher-order correlation effects using CCSD(T) energies (see Methods section).

**Table S2:** List of the specific reaction mechanisms studied here and protonation states of key reaction participants G8, A38 and phosphate/phosphorane/cyclic phosphate, along respective reaction pathways (for names see Table 2 in main text). G8t stands for G8 enol tautomer, Ph for phosphate, Phr for phosphorane, cPh for cyclic phosphate.

| Nama                                                                   | Concrel base    | Conoral agid   | R               |                   |     |     | IN/TS    |                   |     | Р        |      |  |
|------------------------------------------------------------------------|-----------------|----------------|-----------------|-------------------|-----|-----|----------|-------------------|-----|----------|------|--|
| Name                                                                   | General base    | General acid   | G8              | A38               | Ph  | G8  | A38      | Phr               | G8  | A38      | cPh  |  |
| G <sup>-</sup> /A <sup>+</sup> /G8 <sup>-</sup> /A38H <sup>+</sup>     | G8 <sup>-</sup> | $A38H^+$       | G8 <sup>-</sup> | A38H <sup>+</sup> | Ph⁻ | G8  | $A38H^+$ | Phr <sup>2-</sup> | G8  | A38      | cPh⁻ |  |
| $pro-R_P/pro-R_P/G8/A38H^+$                                            | $G+1(pro-R_P)$  | $G+1(pro-R_P)$ | G8              | $A38H^+$          | Ph⁻ | G8  | $A38H^+$ | Phr               | G8  | $A38H^+$ | cPh  |  |
| $\textit{pro-R}_{P}/\textit{pro-R}_{P}/\textit{G8t}/\textit{A38H}^{+}$ | $G+1(pro-R_P)$  | $G+1(pro-R_P)$ | G8t             | $A38H^{+}$        | Ph⁻ | G8t | $A38H^+$ | Phr⁻              | G8t | $A38H^+$ | cPh⁻ |  |
| pro-R <sub>P</sub> /pro-R <sub>P</sub> /G8/A38                         | $G+1(pro-R_P)$  | $G+1(pro-R_P)$ | G8              | A38               | Ph  | G8  | A38      | Phr               | G8  | A38      | cPh⁻ |  |
| $pro-R_P/A^+/G8/A38H^+$                                                | $G+1(pro-R_P)$  | $A38H^{+}$     | G8              | $A38H^{+}$        | Ph⁻ | G8  | $A38H^+$ | Phr               | G8  | A38      | cPh  |  |
| $\textit{pro-S}_{P}/\textit{pro-S}_{P}/G8/A38H^{+}$                    | $G+1(pro-S_P)$  | $G+1(pro-S_P)$ | G8              | $A38H^+$          | Ph⁻ | G8  | $A38H^+$ | Phr               | G8  | $A38H^+$ | cPh⁻ |  |
| $\textit{pro-S}_{P}/\textit{pro-S}_{P}/\textit{G8t}/\textit{A38H}^{+}$ | $G+1(pro-S_P)$  | $G+1(pro-S_P)$ | G8t             | $A38H^+$          | Ph⁻ | G8t | $A38H^+$ | Phr               | G8t | $A38H^+$ | cPh⁻ |  |
| pro-S <sub>P</sub> /pro-S <sub>P</sub> /G8/A38                         | $G+1(pro-S_P)$  | $G+1(pro-S_P)$ | G8              | A38               | Ph⁻ | G8  | A38      | Phr               | G8  | A38      | cPh⁻ |  |

**Table S3a:** The MPW1K/6-31+G(d,p) gas phase energies, solvation and Gibbs Energy corrections (calculated at CPCM( $\varepsilon_r$ =78.4)/MPW1K/6-31+G(d,p) level), and total Gibbs Energy profiles of the self-cleavage reaction of the endo/exo-3'-(1'-amino-4'-methylribose)-5'-methylphosphodiester sugar-phosphate backbone model extended by N9-methyl guanine and protonated N9-methyladenine. The proton of 2'-OH hydroxyl was shuttled via pro-R<sub>P</sub> (endo path) or pro-S<sub>P</sub> (exo path) non-bridging oxygen. All energies and energy corrections are in kcal/mol and are related to reactant state. No pK<sub>a</sub> correction (see Methods section) for N1-protonated-N9-methyladenine was included in total Gibbs energies.

| endo ( <i>pro</i> -R <sub>P</sub> )                                                                                                  | R                             | $TS_1$                                          | IN <sub>1</sub>                              | $TS_2$                                        | IN <sub>2</sub>                               | TS <sub>3</sub>                                | Р                                |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------|----------------------------------|
| MPW1K/6-31+G(d,p)                                                                                                                    | 0.0                           | 25.6                                            | 14.4                                         | 26.8                                          | 19.4                                          | 24.3                                           | -9.1                             |
| Solvation energy                                                                                                                     | 0.0                           | -2.2                                            | 2.1                                          | -1.2                                          | 0.6                                           | 5.0                                            | 5.6                              |
| Gibbs Energy correction                                                                                                              | 0.0                           | 0.0                                             | -0.8                                         | -1.5                                          | -0.7                                          | -1.9                                           | -4.2                             |
| MPW1K Gibbs Energy in water                                                                                                          | 0.0                           | 23.4                                            | 15.7                                         | 24.1                                          | 19.3                                          | 27.3                                           | -7.7                             |
|                                                                                                                                      |                               |                                                 |                                              |                                               |                                               |                                                |                                  |
| exo ( <i>pro-S</i> <sub>P</sub> )                                                                                                    | R                             | $TS_1$                                          | IN <sub>1</sub>                              | $TS_2$                                        | IN <sub>2</sub>                               | $TS_3$                                         | Р                                |
| exo ( <i>pro</i> -S <sub>P</sub> )<br>MPW1K/6-31+G(d,p)                                                                              | R<br>0.0                      | TS <sub>1</sub><br>23.7                         | IN <sub>1</sub><br>3.4                       | TS <sub>2</sub><br>13.5                       | IN <sub>2</sub><br>10.5                       | TS <sub>3</sub><br>16.4                        | P<br>-9.1                        |
| exo ( <i>pro-S</i> <sub>P</sub> )<br>MPW1K/6-31+G(d,p)<br>Solvation energy                                                           | R<br>0.0<br>0.0               | TS <sub>1</sub><br>23.7<br>-3.8                 | IN <sub>1</sub><br>3.4<br>6.6                | TS <sub>2</sub><br>13.5<br>3.2                | IN <sub>2</sub><br>10.5<br>1.8                | TS <sub>3</sub><br>16.4<br>6.7                 | P<br>-9.1<br>3.7                 |
| exo ( <i>pro-S</i> <sub>P</sub> )<br>MPW1K/6-31+G(d,p)<br>Solvation energy<br>Gibbs Energy correction                                | R<br>0.0<br>0.0<br>0.0        | TS <sub>1</sub><br>23.7<br>-3.8<br>-0.8         | IN <sub>1</sub><br>3.4<br>6.6<br>1.2         | TS <sub>2</sub><br>13.5<br>3.2<br>0.0         | IN <sub>2</sub><br>10.5<br>1.8<br>0.5         | TS <sub>3</sub><br>16.4<br>6.7<br>-2.4         | P<br>-9.1<br>3.7<br>-3.0         |
| exo ( <i>pro-S</i> <sub>P</sub> )<br>MPW1K/6-31+G(d,p)<br>Solvation energy<br>Gibbs Energy correction<br>MPW1K Gibbs Energy in water | R<br>0.0<br>0.0<br>0.0<br>0.0 | TS <sub>1</sub><br>23.7<br>-3.8<br>-0.8<br>19.1 | IN <sub>1</sub><br>3.4<br>6.6<br>1.2<br>11.2 | TS <sub>2</sub><br>13.5<br>3.2<br>0.0<br>16.7 | IN <sub>2</sub><br>10.5<br>1.8<br>0.5<br>12.8 | TS <sub>3</sub><br>16.4<br>6.7<br>-2.4<br>20.7 | P<br>-9.1<br>3.7<br>-3.0<br>-8.4 |

**Table S3b:** The MPW1K/6-31+G(d,p) gas phase energies, solvation and Gibbs Energy corrections (calculated at CPCM( $\varepsilon_r$ =78.4)/MPW1K/6-31+G(d,p) level), and total Gibbs Energy profiles of the self-cleavage reaction of the endo/exo-3'-(1'-amino-4'-methylribose)-5'-methylphosphodiester sugar-phosphate backbone model extended by N1-deprotonated-N9-methyl guanine and N1-protonated-N9-methyladenine. The deprotonated guanine acts as a general base, while the protonated adenine acts as a general acid. All energies and energy corrections are in kcal/mol and are related to reactant state. No  $pK_a$  corrections for N1-deprotonated-N9-methyl guanine and N1-protonated-N9-methyladenine were included in total Gibbs energies.

|                             | R   | TS   | Р     |
|-----------------------------|-----|------|-------|
| MPW1K/6-31+G(d,p)           | 0.0 | 0.2  | -41.4 |
| Solvation energy            | 0.0 | 13.5 | 33.8  |
| Gibbs Energy correction     | 0.0 | -0.1 | -4.0  |
| MPW1K Gibbs Energy in water | 0.0 | 13.6 | -11.6 |

**Table S4a:** The MPW1K/6-31+G(d,p) reaction barriers (in kcal/mol, related to the reactant state) obtained for geometries along various paths representing the proton shuttling and  $G8^{-}$  general base reaction mechanisms (for names see Table 2 in main text). No pK<sub>a</sub> corrections (for deprotonated  $G8^{-}$  and protonated A38H<sup>+</sup>) and Gibbs energy corrections (see Methods section) were applied in this Table.

|                                                                    | R   | $TS_1$ | $IN_1$ | $TS_2$ | IN <sub>2</sub> | $TS_3$ | Р     |
|--------------------------------------------------------------------|-----|--------|--------|--------|-----------------|--------|-------|
| $pro-R_P/pro-R_P/G8/A38H^+$                                        | 0.0 | 18.9   | 2.0    | 9.0    | 3.3             | 4.3    | -14.8 |
| $pro-R_P/A^+/G8/A38H^+$                                            | 0.0 | 18.9   | 2.0    | 9.0    | 3.3             | 3.6    | -5.3  |
| $pro-R_P/pro-R_P/G8t/A38H^+$                                       | 0.0 | 23.6   | 2.6    | 10.2   | 4.3             | 5.9    | -11.1 |
| pro-R <sub>P</sub> /pro-R <sub>P</sub> /G8/A38                     | 0.0 | 20.5   | 4.8    | 14.4   | 5.2             | 14.1   | -8.6  |
| $pro-S_P/pro-S_P/G8/A38H^+$                                        | 0.0 | 21.7   | 8.0    | 12.8   | 3.0             | 6.6    | -10.7 |
| $pro-S_P/pro-S_P/G8t/A38H^+$                                       | 0.0 | 29.0   | 11.1   | 14.4   | 5.6             | 5.6    | -7.6  |
| pro-S <sub>P</sub> /pro-S <sub>P</sub> /G8/A38                     | 0.0 | 24.0   | 14.9   | 18.1   | 8.3             | 13.9   | -5.1  |
| G <sup>-</sup> /A <sup>+</sup> /G8 <sup>-</sup> /A38H <sup>+</sup> | 0.0 | 15.0   |        |        |                 |        | -15.4 |

**Table S4b:** The BLYP/6-31G(d) energies (in kcal/mol, related to the reactant state) obtained from QM/MM calculations representing the proton shuttling and  $G8^{-}$  general base reaction mechanisms (for names see Table 2 in main text). No pK<sub>a</sub> corrections (for deprotonated bG8<sup>-</sup> and protonated A38H<sup>+</sup>) and Gibbs energy corrections (see Methods section) were applied in this Table.

|                                                                    | R   | $TS_1$ | IN <sub>1</sub> | $TS_2$ | IN <sub>2</sub> | TS <sub>3</sub> | Р     |
|--------------------------------------------------------------------|-----|--------|-----------------|--------|-----------------|-----------------|-------|
| $pro-R_P/pro-R_P/G8/A38H^+$                                        | 0.0 | 15.9   | 1.8             | 8.2    | 2.5             | 3.1             | -12.8 |
| $pro-R_P/A^+/G8/A38H^+$                                            | 0.0 | 15.9   | 1.8             | 8.2    | 2.5             | 2.6             | -4.9  |
| $pro-R_P/pro-R_P/G8t/A38H^+$                                       | 0.0 | 20.7   | 1.9             | 9.0    | 3.6             | 3.7             | -10.4 |
| pro-R <sub>P</sub> /pro-R <sub>P</sub> /G8/A38                     | 0.0 | 17.8   | 4.2             | 11.7   | 4.6             | 10.2            | -8.0  |
| $pro-S_P/pro-S_P/G8/A38H^+$                                        | 0.0 | 18.3   | 7.4             | 11.2   | 2.4             | 4.1             | -10.4 |
| $pro-S_P/pro-S_P/G8t/A38H^+$                                       | 0.0 | 25.7   | 10.3            | 12.9   | 4.7             | 4.9             | -7.3  |
| pro-S <sub>P</sub> /pro-S <sub>P</sub> /G8/A38                     | 0.0 | 20.1   | 12.0            | 15.6   | 7.9             | 10.6            | -4.1  |
| G <sup>-</sup> /A <sup>+</sup> /G8 <sup>-</sup> /A38H <sup>+</sup> | 0.0 | 9.7    |                 |        |                 |                 | -15.2 |

**Table S5a:** The MPW1K/6-31+G(d,p) gas phase and extrapolated CBS(T) energies, MPW1K/6-31+G(d,p) solvation energies, Gibbs Energy corrections and total Gibbs energies at the extrapolated CBS(T) level of the endo/exo-3'-(1'-amino-4'-methylribose)-5'methylphosphodiester cleavage model, where the endo (pro- $R_P$ ) non-bridging oxygen was thio-substituted. The proton of 2'-OH hydroxyl was shuttled via pro- $R_P$  sulphur atom (endo path) or pro- $S_P$  non-bridging oxygen (exo path). All energies and energy corrections are in kcal/mol and are related to reactant state. The solvation term was calculated as the difference between CPCM( $\varepsilon_r$ =78.4)/MPW1K/6-31+G(d,p) and gas phase MPW1K/6-31+G(d,p) SCF energies. The corrections to Gibbs energies were calculated at the CPCM ( $\varepsilon_r$ = 78.4)/MPW1K/6-31+G(d,p) level.

| endo (pro-R <sub>P</sub> )                                                 | R                        | $TS_1$                      | IN <sub>1</sub>             | $TS_2$                      | IN <sub>2</sub>             | TS <sub>3</sub>              | Р                          | P'                            |
|----------------------------------------------------------------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|----------------------------|-------------------------------|
| MPW1K/6-31+G(d,p)                                                          | 0.0                      | 43.6                        | 33.1                        | 41.1                        | 32.7                        | 44.6                         | 1.3                        | 15.0                          |
| CBS(T)                                                                     | 0.0                      | 40.7                        | 30.4                        | 38.2                        | 30.2                        | 44.1                         | 3.5                        | 17.6                          |
| Solvation energy                                                           | 0.0                      | -2.7                        | -4.5                        | -4.0                        | -4.2                        | -1.0                         | -1.5                       | -9.0                          |
| Gibbs Energy correction                                                    | 0.0                      | -2.6                        | -0.1                        | -1.1                        | -0.6                        | -3.3                         | -4.1                       | -12.5                         |
| CBS(T) Gibbs Energy in water                                               | 0.0                      | 35.4                        | 25.8                        | 33.2                        | 25.4                        | 39.8                         | -2.1                       | -3.8                          |
| $exo (pro-S_P)$                                                            | R                        | $TS_1$                      | $IN_1$                      | $TS_2$                      | $IN_2$                      | $TS_3$                       | Р                          | P'                            |
|                                                                            |                          |                             |                             |                             |                             |                              |                            |                               |
| MPW1K/6-31+G(d,p)                                                          | 0.0                      | 27.5                        | 19.2                        | 29.4                        | 23.9                        | 36.8                         | 1.3                        | 15.0                          |
| MPW1K/6-31+G(d,p)<br>CBS(T)                                                | 0.0<br>0.0               | 27.5<br>27.5                | 19.2<br>20.0                | 29.4<br>30.2                | 23.9<br>24.8                | 36.8<br>38.2                 | 1.3<br>3.5                 | 15.0<br>17.6                  |
| MPW1K/6-31+G(d,p)<br>CBS(T)<br>Solvation energy                            | 0.0<br>0.0<br>0.0        | 27.5<br>27.5<br>-0.1        | 19.2<br>20.0<br>-2.6        | 29.4<br>30.2<br>-5.1        | 23.9<br>24.8<br>-4.7        | 36.8<br>38.2<br>-0.8         | 1.3<br>3.5<br>-1.5         | 15.0<br>17.6<br>-9.0          |
| MPW1K/6-31+G(d,p)<br>CBS(T)<br>Solvation energy<br>Gibbs Energy correction | 0.0<br>0.0<br>0.0<br>0.0 | 27.5<br>27.5<br>-0.1<br>0.6 | 19.2<br>20.0<br>-2.6<br>1.8 | 29.4<br>30.2<br>-5.1<br>1.4 | 23.9<br>24.8<br>-4.7<br>2.1 | 36.8<br>38.2<br>-0.8<br>-1.9 | 1.3<br>3.5<br>-1.5<br>-4.1 | 15.0<br>17.6<br>-9.0<br>-12.5 |

**Table S5b:** The computed energies and corrections of the endo/exo-3'-(1'-amino-4'methylribose)-5'-methylphosphodiester cleavage model, where the pro- $S_P$  non-bridging oxygen was thio-substituted. The proton of 2'-OH hydroxyl was shuttled via pro- $R_P$  nonbridging oxygen (exo path) or pro- $S_P$  sulphur atom (exo path). The energies and corrections were computed by the same methodology as in Table S5a.

| endo ( <i>pro</i> -R <sub>P</sub> ) | R   | $TS_1$ | IN <sub>1</sub> | $TS_2$ | IN <sub>2</sub> | TS <sub>3</sub> | Р    | P'    |
|-------------------------------------|-----|--------|-----------------|--------|-----------------|-----------------|------|-------|
| MPW1K/6-31+G(d,p)                   | 0.0 | 31.8   | 25.5            | 33.9   | 28.7            | 38.3            | 5.7  | 15.4  |
| CBS(T)                              | 0.0 | 31.5   | 26.3            | 33.6   | 29.2            | 39.4            | 6.9  | 17.6  |
| Solvation energy                    | 0.0 | -1.8   | -5.5            | -4.9   | -6.2            | -0.8            | -2.3 | -8.5  |
| Gibbs Energy correction             | 0.0 | -0.5   | 1.4             | 0.2    | 0.8             | -2.9            | -5.7 | -13.3 |

| CBS(T) Gibbs Energy in water      | 0.0 | 29.2   | 22.2            | 28.9   | 23.8            | 35.8            | -1.1 | -4.2  |
|-----------------------------------|-----|--------|-----------------|--------|-----------------|-----------------|------|-------|
| exo ( <i>pro-S</i> <sub>P</sub> ) | R   | $TS_1$ | IN <sub>1</sub> | $TS_2$ | IN <sub>2</sub> | TS <sub>3</sub> | Р    | P'    |
| MPW1K/6-31+G(d,p)                 | 0.0 | 42.0   | 28.2            | 37.9   | 32.8            | 46.0            | 5.7  | 15.4  |
| CBS(T)                            | 0.0 | 39.2   | 25.6            | 34.6   | 30.3            | 44.8            | 6.9  | 17.6  |
| Solvation energy                  | 0.0 | -1.2   | -1.4            | -4.6   | -3.5            | -1.0            | -2.3 | -8.5  |
| Gibbs Energy correction           | 0.0 | -3.3   | -0.8            | -2.7   | -1.7            | -4.0            | -5.7 | -13.3 |
| CBS(T) Gibbs Energy in water      | 0.0 | 34.7   | 23.4            | 27.3   | 25.1            | 39.8            | -1.1 | -4.2  |

**Table S5c:** The computed energies and corrections of the endo/exo-3'-(1'-amino-4'methylribose)-5'-methylphosphodiester cleavage model, where both pro- $R_P$  and pro- $S_P$  nonbridging oxygens were thio-substituted. The proton of 2'-OH hydroxyl was thereby shuttled via pro- $R_P$  (exo path) or pro- $S_P$  (exo path) sulphur atoms. The energies and corrections were computed by the same methodology as in Table S5a.

| endo (pro-R <sub>P</sub> )                                                 | R                        | $TS_1$                       | IN <sub>1</sub>              | $TS_2$                       | IN <sub>2</sub>              | TS <sub>3</sub>              | Р                          | P'                         |
|----------------------------------------------------------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|----------------------------|
| MPW1K/6-31+G(d,p)                                                          | 0.0                      | 45.0                         | 31.4                         | 39.3                         | 31.3                         | 43.7                         | 4.3                        | 13.3                       |
| CBS(T)                                                                     | 0.0                      | 43.0                         | 29.4                         | 37.0                         | 29.3                         | 43.6                         | 5.9                        | 16.3                       |
| Solvation energy                                                           | 0.0                      | -4.6                         | -5.3                         | -4.6                         | -5.2                         | -1.8                         | -1.9                       | -7.7                       |
| Gibbs Energy correction                                                    | 0.0                      | -2.3                         | 0.0                          | -0.9                         | -0.7                         | -2.8                         | -4.5                       | -13.0                      |
| CBS(T) Gibbs Energy in water                                               | 0.0                      | 36.1                         | 24.0                         | 31.6                         | 23.5                         | 39.1                         | -0.5                       | -4.4                       |
| $exo (pro-S_p)$                                                            | R                        | ЪЪ                           | IN                           | тς                           | IN                           | тς                           | D                          | р,                         |
|                                                                            | ĸ                        | 151                          | 1111                         | 132                          | 11 <b>N</b> <sub>2</sub>     | 133                          | Г                          | r                          |
| MPW1K/6-31+G(d,p)                                                          | 0.0                      | 41.4                         | 25.1                         | 34.4                         | 30.1                         | 46.8                         | г<br>4.3                   | r<br>13.3                  |
| MPW1K/6-31+G(d,p)<br>CBS(T)                                                | 0.0<br>0.0               | 41.4<br>39.4                 | 25.1<br>23.5                 | 34.4<br>31.6                 | 30.1<br>28.3                 | 46.8<br>46.2                 | 4.3<br>5.9                 | r<br>13.3<br>16.3          |
| MPW1K/6-31+G(d,p)<br>CBS(T)<br>Solvation energy                            | 0.0<br>0.0<br>0.0        | 41.4<br>39.4<br>-2.5         | 25.1<br>23.5<br>-2.1         | 34.4<br>31.6<br>-3.8         | 30.1<br>28.3<br>-4.4         | 46.8<br>46.2<br>-3.5         | 4.3<br>5.9<br>-1.9         | 13.3<br>16.3<br>-7.7       |
| MPW1K/6-31+G(d,p)<br>CBS(T)<br>Solvation energy<br>Gibbs Energy correction | 0.0<br>0.0<br>0.0<br>0.0 | 41.4<br>39.4<br>-2.5<br>-2.4 | 25.1<br>23.5<br>-2.1<br>-0.1 | 34.4<br>31.6<br>-3.8<br>-1.3 | 30.1<br>28.3<br>-4.4<br>-1.1 | 46.8<br>46.2<br>-3.5<br>-2.9 | 4.3<br>5.9<br>-1.9<br>-4.5 | 13.3   16.3   -7.7   -13.0 |



**Figure S4:** The structures along the reaction path of the endo/exo-3'-(1'-amino-4'-methylribose)-5'-methylphosphodiester self-cleavage reaction.

# Supporting figures:



**Figure S5:** The Gibbs Energy profile of the  $\text{pro-}R_P/A^+/G8/A38H^+$  mechanism with  $A38H^+$  acting as a general acid. Structures in boxes show detailed view into the active site (QM core is highlighted in sticks) of the reactant, transition and product states (R, TS<sub>3</sub> and P) along the reaction pathway. All energies are relative to the R' state that represents the reactant with the dominant protonation states of G8 and A38 at pH ~7, i.e. both nucleobases in canonical forms.

## **References:**

(1) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Kollman, P. A. J. Am. Chem. Soc. **1993**, *115*, 9620-9631.

(2) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. *J. Am. Chem. Soc.* **1995**, *117*, 5179-5197.

(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C. et al. Gaussian 03; Gaussian, Inc.: Pittsburgh, 2003.

(4) Mlynsky, V.; Banas, P.; Hollas, D.; Reblova, K.; Walter, N. G.; Sponer, J.; Otyepka, M. J. Phys. Chem. B **2010**, 114, 6642-6652.

(5) Rupert, P. B.; Massey, A. P.; Sigurdsson, S. T.; Ferre-D'Amare, A. R. *Science* **2002**, *298*, 1421-1424.

(6) Torelli, A. T.; Krucinska, J.; Wedekind, J. E. *RNA* **2007**, *13*, 1052-1070.

(7) Zirbel, C. L.; Sponer, J. E.; Sponer, J.; Stombaugh, J.; Leontis, N. B. *Nucleic Acids Res.* **2009**, *37*, 4898-4918.