Symmetry breaking and the establishment of cell polarity in budding yeast: Supplementary Information

Jayme M. Johnson ^a, Meng Jin^b, and Daniel J. Lew^{a*}

Simulations were performed using MATLAB, on a model cell with 2D plasma membrane corresponding to a 5 μ m diameter sphere (Figures 1 & 2) or 1D cell perimeter corresponding to a 5 μ m diameter circle (Figure 3). All membrane-bound species have the same slow diffusion coefficient D_m and all cytosolic species have the same fast diffusion coefficient D_c. The cell dimensions, total Cdc42, total Bem1 complex, and (for Figures 2 & 3) total GDI are all constant. The ratio of membrane volume to cytoplasmic volume is indicated by η .

Model with Cdc42 and Bem1 complex:

For Figure 1, we model how the concentrations of the following five molecular species vary with time, as a result of reactions and diffusion:

GTP-Cdc42 (Cdc42T), GDP-Cdc42 (Cdc42D), Bem1 complex (Bem1GEF_m on the membrane, Bem1GEF_c in the cytoplasm), and Bem1 complex bound to GTP-Cdc42 (Bem1GEF_mCdc42T).

Model parameters are listed in Table S1. This model is described by the following equations (as in Goryachev and Pokhilko 2008 but without the GDI):

$$\frac{\partial Cdc42D}{\partial t} = D_m \nabla^2 Cdc42D - Cdc42D(k_2Bem1GEF_m + k_{2p}Bem1GEF_mCdc42T) + k_{2r}Cdc42T$$

$$\frac{\partial Cdc42T}{\partial t} = D_m \nabla^2 Cdc42T + Cdc42D(k_2Bem1GEF_m + k_{2p}Bem1GEF_mCdc42T) - k_{2r}Cdc42T$$

$$- (k_4Bem1GEF_c + k_5Bem1GEF_m)Cdc42T + k_{5r}Bem1GEF_mCdc42T$$

$$\frac{\partial Bem1GEF_mCdc42T}{\partial t} = D_m \nabla^2 Bem1GEF_mCdc42T$$

$$+ (k_4Bem1GEF_c + k_5Bem1GEF_m)Cdc42T - k_{5r}Bem1GEF_mCdc42T$$

$$\frac{\partial Bem1GEF_c}{\partial t} = D_c \nabla^2 Bem1GEF_c + \eta(-k_3Bem1GEF_c + k_{3r}Bem1GEF_m - k_4Bem1GEF_c)Cdc42T$$

$$\frac{\partial Bem1GEF_m}{\partial t} = D_m \nabla^2 Bem1GEF_m + k_3Bem1GEF_c - k_{3r}Bem1GEF_m$$

This model includes the following assumptions:

(i) Cdc42 is always on the membrane.

(ii) The Bem1 complex exchanges between membrane and cytoplasm. Both forms can bind GTP-Cdc42, and while bound the full complex stays on the membrane. Cdc42 does not undergo GTP hydrolysis while the Bem1 complex is bound.

(iii) Cdc42 GDP/GTP exchange is catalyzed by the Bem1 complex at the membrane. GEF-catalyzed exchange occurs by mass action (i.e. GEF activity never approaches saturation).

(iv) GAP activity is spatially uniform, and is incorporated in the first-order hydrolysis rate constant $k_{2r}\!.$

To successfully cluster GTP-Cdc42 by this mechanism, it is critical that total Bem1 complex abundance is low and membrane diffusion is slow. We modeled a scenario in which the GEF activity of the Bem1 complex is stimulated 20-fold upon binding to GTP-Cdc42, but this is not essential (increasing the basal GEF simply makes the cluster of GTP-Cdc42 larger).

Model with GDI as well as Cdc42 and Bem1 complex:

For Figures 2 & 3, we add the following three molecular species:

Free GDI in the cytoplasm (Ic), GDI bound to GDP-Cdc42 in the cytoplasm (Cdc42I_c), and GDI bound to GDP-Cdc42 on the membrane (Cdc42I_m).

Model parameters are listed in Table S1. This model is described by the following equations:

$$\begin{split} &\frac{\partial Cdc42I_{c}}{\partial t} = D_{c}\nabla^{2}Cdc42I_{c} + \eta(-k_{1}Cdc42I_{c} + k_{1r}Cdc42I_{m}) \\ &\frac{\partial Cdc42I_{m}}{\partial t} = D_{m}\nabla^{2}Cdc42I_{m} + k_{1}Cdc42I_{c} - k_{1r}Cdc42I_{m} + k_{6}Cdc42D \cdot I_{c} - k_{6r}Cdc42I_{m} \\ &\frac{\partial I_{c}}{\partial t} = D_{c}\nabla^{2}I_{c} + \eta(-k_{6}Cdc42 \cdot I_{c} + k_{6r}Cdc42I_{m}) \\ &\frac{\partial Cdc42D}{\partial t} = D_{m}\nabla^{2}Cdc42D - k_{6}Cdc42D \cdot I_{c} + k_{6r}Cdc42I_{m} \\ & - Cdc42D(k_{2}Bem1GEF_{m} + k_{2p}Bem1GEF_{m}Cdc42T) + k_{2r}Cdc42T \\ &\frac{\partial Cdc42T}{\partial t} = D_{m}\nabla^{2}Cdc42T + Cdc42D(k_{2}Bem1GEF_{m} + k_{2p}Bem1GEF_{m}Cdc42T) - k_{2r}Cdc42T \\ &- (k_{4}Bem1GEF_{c} + k_{5}Bem1GEF_{m})Cdc42T + k_{5r}Bem1GEF_{m}Cdc42T \\ &\frac{\partial Bem1GEF_{m}Cdc42T}{\partial t} = D_{m}\nabla^{2}Bem1GEF_{m}Cdc42T \\ &+ (k_{4}Bem1GEF_{c} + k_{5}Bem1GEF_{m})Cdc42T - k_{5r}Bem1GEF_{m}Cdc42T \\ &\frac{\partial Bem1GEF_{c}}{\partial t} = D_{c}\nabla^{2}Bem1GEF_{c} + \eta(-k_{3}Bem1GEF_{c} - k_{3r}Bem1GEF_{m} - k_{4}Bem1GEF_{c})Cdc42T \\ &\frac{\partial Bem1GEF_{m}}{\partial t} = D_{m}\nabla^{2}Bem1GEF_{m} + k_{3}Bem1GEF_{c} - k_{3r}Bem1GEF_{m} \\ &- k_{5}Bem1GEF_{m} \cdot Cdc42T + k_{5r}Bem1GEF_{m} \\ &- k_{5}Bem1GEF_{m} \cdot Cdc42T \\ &- k_{5}Bem1GEF_{m} \\ &- k_{5}Bem1GEF_{m} \cdot Cdc42T \\ &- k_{5}Bem1GEF_{m} \\ &- k_{5}Bem1GEF_{$$

This model, which is identical to that of Goryachev and Pokhilko (2008) but with parameters adjusted according to Howell et al. (2009), includes the following additional assumptions:

(i) Cytoplasmic GDI can bind GDP-Cdc42 but not GTP-Cdc42, to generate an initially membrane-bound Cdc42-GDI complex that can then exchange between membrane and cytoplasm.

(ii) Cdc42 cannot exchange GDP for GTP while bound to GDI.

(iii) Membrane-bound Cdc42-GDI complex can dissociate to yield GDP-Cdc42p on the membrane and GDI in the cytoplasm.

The 1D simulations in Figure 3 are conducted on a line with periodic boundary condition, starting with Gaussian peaks of GTP-Cdc42. For competition, two peaks containing GTP-Cdc42 at a ratio of 55:45 were initiated at opposite ends of the cell (0.25L and 0.75L). For merging, two identical peaks were initiated at 0.25L and 0.625L.

Parameter	Figure 1	Figures 2 & 3
k ₁ (Cdc42-GDI complex: cytosol to membrane)	-	0.9 s ⁻¹
k_{1r} (Cdc42-GDI complex: membrane to cytosol)	-	0.13 s ⁻¹
k ₆ (Cdc42-GDI association)	-	$1.5 \ \mu M^{-1} s^{-1}$
k _{6r} (Cdc42-GDI dissociation)	-	0.5 s ⁻¹
k ₂ (GEF activity of Bem1 complex)	$0.2 \ \mu M^{-1} s^{-1}$	$0.16 \mu M^{-1} s^{-1}$
k_{2p} (GEF activity of Bem1 complex bound to Cdc42)	10 μM ⁻¹ s ⁻¹	$0.35 \ \mu M^{-1} s^{-1}$
k_{2r} (constitutive GAP activity)	5 s^{-1}	0.32 s^{-1}
k ₃ (Bem1 complex: cytosol to membrane)	1 s ⁻¹	10 s ⁻¹
k _{3r} (Bem1 complex: membrane to cytosol)	1 s ⁻¹	10 s ⁻¹
k ₄ and k ₅ (Bem1 complex-Cdc42 association)	$1 \ \mu M^{-1} s^{-1}$	$10 \ \mu M^{-1} s^{-1}$
k _{5r} (Bem1 complex-Cdc42 dissociation)	2 s^{-1}	10 s ⁻¹
η (ratio of membrane volume to cytoplasmic volume)	0.01	0.01
D _c (cytoplasmic diffusion)	$10 \ \mu m^2 s^{-1}$	$10 \ \mu m^2 s^{-1}$
D _m (membrane diffusion)	$0.01 \ \mu m^2 s^{-1}$	$0.036 \mu m^2 s^{-1}$
Total Cdc42 on membrane (Fig1)/ in a cell (Fig 2, 3)	25 μΜ	5 μΜ
Total Bem1 complex in a cell	0.0075 µM	0.017 µM
Total GDI in a cell	-	5 μΜ

Table S1: parameter values used in simulation	ns
---	----