SUPPLEMENTARY MATERIAL

We model the amphiphiles as discrete Gaussian chains
having a solvophilic block and two solvophobic tails. For
each block, the harmonic potential for the chain connec-
tivity takes the form
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where b is the bond length and N is the number of
monomers in the chain. The particle-based Hamiltonian
for the system, accounting for the chain connectivity of
the n amphiphiles and the pairwise energetic interactions
among species, is

H= Zh ({r}) +

In this expression, the summation is over the instanta-
neous density (expressed as volume fraction) of solvent
(S), solvophilic (A) and solvophobic (B) monomers, de-
fined respectively, as

Z/drdr by (r)uyk (v, ) dr (r').
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We assume the pairwise interaction potential ujk (r,r’)
to be short-ranged, so that one may perform a gradient
expansion to quadratic order as
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The linear-order terms vanish by symmetry upon spatial
integration. The zeroth-order terms gives to rise to the
local terms and the second-order terms correspond to the
square-gradient terms in eq. 2, where for simplicity, we
ignore the cross terms.

The grand canonical partition function Z is obtained
by summing over all particle degrees of freedom, includ-

ing the position of each solvent monomer, as well as the
position and conformation of each lipid chain:
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The delta functional in the above expression accounts
for the incompressibility at all positions within the sys-
tem volume. The monomer volumes are used in place
of the usual cube of the thermal de Broglie wavelength.
This merely shifts the definition of the reference chemi-
cal potentials. In SCF theory, the first step is to replace
the above particle-based model with a field-theoretic
model, using a series of techniques related to Hubbard-
Stratonovich transformations [1]. The microscopic den-
sity operators are converted into scalar density fields by
inserting the identity
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and the delta function is in turn expressed using the
Fourier representation
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These operations decouple the interactions among par-
ticles and replace them with interactions between single
molecules and effective fluctuating fields &. The grand
canonical partition function can now be written as a func-
tional integral over fluctuating fields:
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Evaluation of the functional integral by the saddle-point
method leads to the self-consistent field equations with
the free energy F' given by eq. 2.
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