Supplemental Figures

Supplemental Figure 1. Generation of $Kras^{G12D}$ mice with targeted deletion of Ikk2 or Tnfa. (A) $Kras^{+/LSL-G12D}$ and Pdx1-cre mice were crossed

with the $Ikk2^{fl/fl}$ stain. The progeny was intercrossed to generate $Kras^{G12D}Ikk2^{\Delta Pdx}$. $Kras^{G12D}Ikk2^{\Delta Pdx}$ were developed by a similar strategy. (**B**) H&E stained sections of pancreases from the indicated strains at 5 months of age. No signs of major abnormalities were detected in the pancreases of the indicated strains. Magnification x20.

Supplemental Figure 2. Genetic inactivation of the Tnf-α/lkk2 axis in Kras induced pancreatic epithelial cells abrogates pancreas-specific infiltration of inflammatory cells. Relative mRNA expression of Cd2r, Cd8a, B220, Nk1.1, Cd208, F4/80 and Cxcr1 in whole pancreases of (A) 2- and (B) 5-month old mice. Gene expression was quantified by real-time PCR normalized to mRNA levels of β-Actin. Percentage of F4/80⁺CD11b⁺Gr1⁻ and F4/80⁻CD11b⁺Gr1⁺ cells in the pancreas measured by flow cytometry. Each data point represents an individual mouse. Mean values are depicted by a horizontal line. Means + SD (n=8), *p<0.05, **p<0.01. (C) Six weeks old Kras^{G12D} and Kras^{G12D}Tnfa^{ΔPdx} female mice were lethally irradiated and transplanted with bone marrow of female *Tnfa*^{fl/fl} or *Tnfa*^{fl/fl} *Mx-1-Cre* mice (n=10 each group). Mice were thrice injected with 5 μg/g body weight poly(I:C) to delete *Tnfa* in 2-month old mice. Deletion was examined by Tnf-α ELISA of blood leukocytes upon ex vivo LPS stimulation. (D) Quantification of the proportion of pancreas occupied by PanIN lesions. Frequency and grade of the lesions was quantified at 2, 5 and 8 months of age. Means + SD (n=10), p<0.01. nl, no lesion.

Supplemental Figure 3. Tnf-α-induced Notch and NF-κB target gene expression in PanIN cell lines. (**A**) Relative mRNA expression of *Hey1*, *Batf*, *Vegf*, *Igfr1*, *Myc* and *Tenascin c* in PanIN cell lines stimulated with 1 ng/ml rTnf-α for 6 h. Relative expression was calculated by setting expression of untreated $kras^{G12D}$ samples as 1. Data are shown as means + SD of triplicate determinants and one representative experiment out of three is shown. (**B**) Kinetic analysis of *Hey1* mRNA expression in $kras^{G12D}Tnfa^{\Delta Pdx}$ PanIN cell lines stimulated with 1 ng/ml rTnf-α. (**C**) Expression of *Hey1* in $Kras^{G12D}Tnfa^{\Delta Pdx}$ PanIN cells treated with 1 ng/ml rTnf-α in the presence or absence of 15 μg/ml CHX. Relative expression was calculated by setting expression of untreated $Kras^{G12D}$ samples as 1. Data are shown as means + SD of triplicate determinants and one representative experiment out of three is shown.

Supplemental Figure 4. Tnf- α induced NF- κ B target genes expression is not affected by pharmacological inhibition of Notch signaling. Expression of *II1b*, *Mmp13* and *Cox2* in Tnf- α -induced *Kras*^{G12D} *Tnfa*^{Δ Pdx} PanIN cells treated with the γ -secretase inhibitor L685458 (5 μ M). Cells were stimulated with 1 ng/ml rTnf- α . Relative expression was calculated by setting expression of untreated *Kras*^{G12D} samples as 1. Data are shown as means + SD of triplicate determinants and one representative experiment out of three is shown.

Supplemental Figure 5. siRNA knockdown of *Rbpj, Ikk2, Nemo* and *Ikk1* in $Kras^{G12D}Tnfa^{\Delta Pdx}$ cells. $Kras^{G12D}Tnfa^{\Delta Pdx}$ PanIN cell lines transfected with (A) *Rbpj,* (B) *Ikk2,* (C) *Nemo* and (D) *Ikk1* specific siRNAs. Gene expression was evaluated 48 h post transfection and upon stimulation with 1 ng/ml rTnf- α

for 6 h. Non-targeting siRNA and/or unstimulated controls were included. Results were normalized to uninfected and unstimulated $Kras^{G12D}Tnfa^{\Delta Pdx}$ cells. Data are shown as means + SD of triplicate determinants and are representative of three independent experiments.

Supplemental Figure 6. siRNA knockdown of *Hes1* results in upregulated *Pparg* and *Cebpa* expression. (A) Downregulation of *Hes1* in $Kras^{G12D}Tnfa^{\Delta Pdx}$ PanIN cell lines transfected with *Hes1* specific siRNAs. Results were normalized to uninfected $Kras^{G12D}Tnfa^{\Delta Pdx}$ cells. (B) *Pparg* and (C) *Cebpa* downregulation in cells transfected with *Hes1* siRNA2 and siRNA3. Data are shown as means + SD of triplicate determinants and are representative of three independent experiments.

ID	Age (days)	PDAC	Histology	Liver	Lung	PD	Ascites	во	Other
TH04-75	523	Υ	undifferentiated	Υ	N	N	N	Υ	
TH04-81	514	Υ	undifferentiated	Υ	N	Υ	N	N	LN
TH04-83	584	N		N	N	N	N	N	
TH04-111	408	N		N	N	N	N	N	
TH04-121	447	Υ	undifferentiated	Υ	N	Υ	N	N	LN
TH04-122	432	N		N	N	N	N	N	
TH04-128	522	Υ	undifferentiated	Υ	Υ	N	N	N	
TH04-175	167	N		N	N	Ζ	N	Ν	
TH04-177	185	N		N	N	Ν	N	N	
TH04-190	224	N		N	N	N	N	N	
TH04-195	364	Υ	glandular	N	N	N	Y	Υ	
TH04-198	361	Υ	glandular	N	N	N	Υ	Υ	
TH04-224	301	Υ	undifferentiated	Υ	Υ	N	N	N	
TH04-230	254	N		N	N	N	N	N	
TH04-234	485	N		N	N	N	N	N	
TH04-236	203	N		N	N	N	N	N	
TH04-248	308	N		N	N	N	N	N	
TH04-249	388	Υ	undifferentiated	Υ	N	Υ	N	Υ	
TH04-255	365	Υ	undifferentiated	Υ	Υ	N	N	N	
TH04-269	214	Υ	undifferentiated	Υ	N	N	Υ	N	
TH04-271	394	Υ	glandular	N	N	N	N	Υ	
TH04-274	575	Υ	undifferentiated	Υ	N	N	N	N	
TH04-277	564	N		N	N	N	N	N	
TH04-294	467	N		N	N	N	N	N	
TH04-312	481	Υ	undifferentiated	Υ	N	N	N	Υ	
TH04-318	348	N		N	N	N	N	N	
TH04-324	506	Υ	undifferentiated	Υ	Υ	N	N	N	
TH04-328	407	N		N	N	N	N	N	
TH04-351	519	N		N	N	N	N	N	
TH04-361	522	N		N	N	N	N	N	
TH04-366	413	Υ	glandular	N	N	N	Υ	Υ	
TH04-367	497	N		N	N	N	N	N	
TH04-372	463	Υ	undifferentiated	Υ	N	N	Υ	N	
TH04-373	482	Υ	undifferentiated	Υ	Υ	N	N	Υ	
TH04-385	506	Υ	undifferentiated	Υ	N	N	N	N	
TH04-386	322	N		N	N	N	N	N	
TH04-387	471	Υ	glandular	N	N	N	N	Υ	
TH04-402	449	Υ	undifferentiated	Υ	Υ	N	N	Υ	
TH04-406	367	N		N	N	N	N	N	
TH04-425	308	N		N	N	N	N	N	
	Median		75% undifferentiated						
	422.5	50%	25% glandular	37.5%	15%	7.5%	12.5%	25%	

Supplemental Table 1. Disease spectrum in $Kras^{G12D}$

PD, peritoneal disease; BO, biliary obstruction