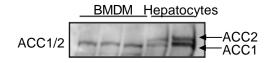
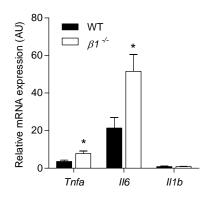
SUPPLEMENTAL TABLES

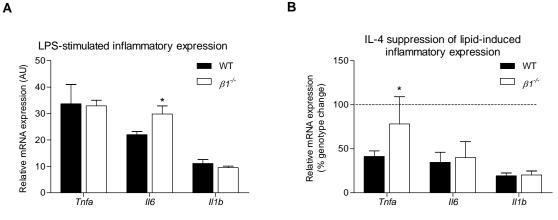
Supplemental Table 1. Cytokine secretion into the media from WT and $\beta I^{-/-}$ BMDM treated with 0.5 mM palmitate for 12 h.

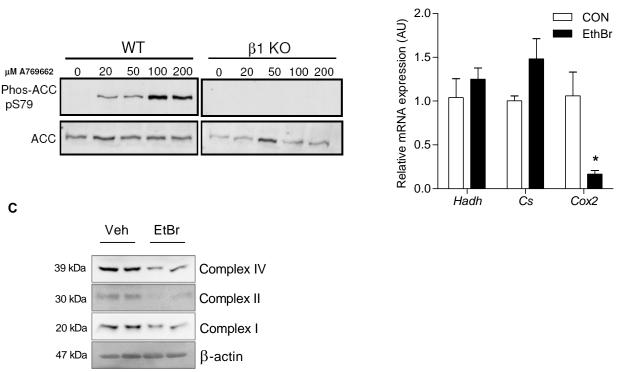

	WT	β1-/-
IL-10 (pg/ml)	93.1 ± 19	$53 \pm 12*$
TNFα (pg/ml)	18.2 ± 2.6	$26.7 \pm 0.39*$
IL-6 (pg/ml)	11.9 ± 2.2	$19.2 \pm 2.1*$

Data are presented as mean \pm SEM of n=3 independent experiments *p<0.05

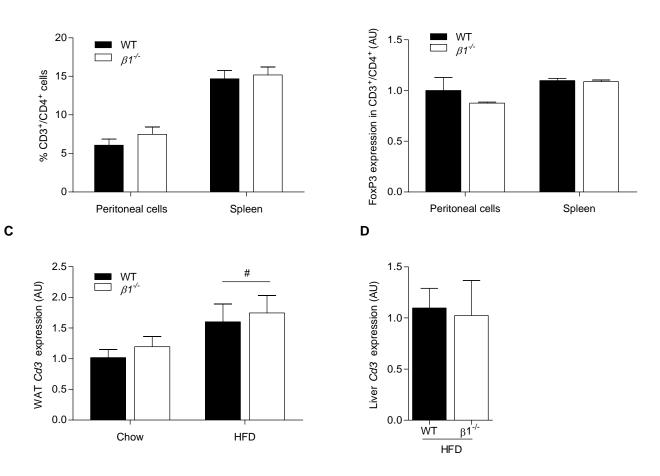

Supplemental Table 2. IL-1 β is elevated in obese but not lean $\beta I^{-/-BMT}$ livers

IL-1 β (ng/mg tissue)	WT BMT	β1-⁄- BMT
Chow	2.43 ± 0.1	2.28 ± 0.1
HFD	$5.21 \pm 0.32^{\#}$	$6.52 \pm 0.2^{*^{\#}}$

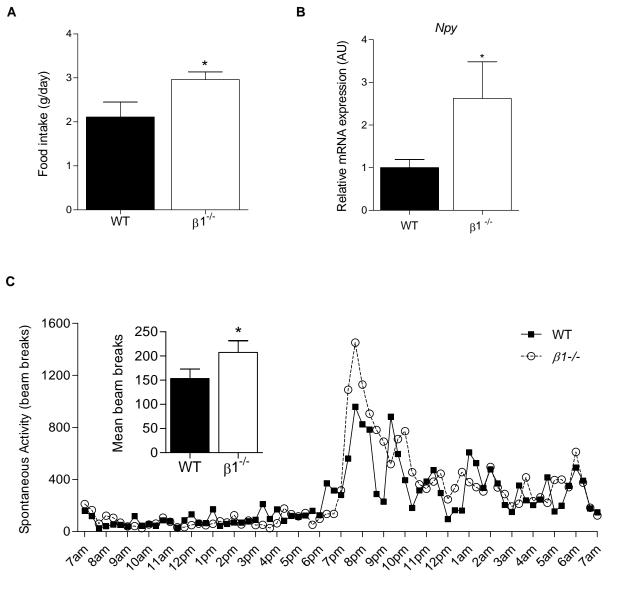

Data are presented as mean \pm SEM of n=6. * represents p<0.05 compared to WT ^{BMT} controls and [#] represents p<0.01 compared to chow.


Supplementary figure S1. BMDM express exclusively ACC1. BMDM and hepatocytes isolated from WT mice were lysed and ACC1 and ACC2 isoforms detected using streptavidin-horseradish peroxidase.

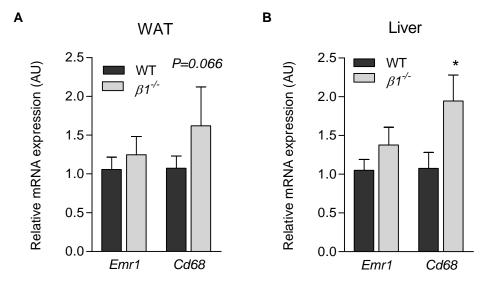
Supplementary figure S2. Inflammatory response of WT and $\beta I^{-/-}$ BMDM to stearic acid. mRNA expression of *Tnfa*, *Il6* and *Il1b* from WT and $\beta I^{-/-}$ BMDM treated with stearate (0.5 mM) for 24 h. Data are expressed as means ± SEM, n=3, from at least two independent experiments, * p<0.05 compared to WT. Relative expression was normalized to *Actb*.



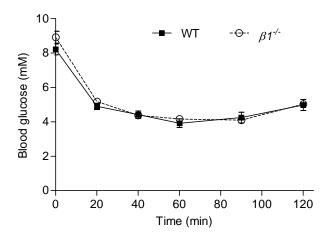
Supplementary figure S3. $\beta 1^{-/-}$ BMDM response to canonical inflammatory and antiinflammatory stimuli. WT and $\beta l^{-/-}$ BMDM were incubated with 100 ng/ml LPS for 6 h, and mRNA expression of *Tnfa*, *Il6* and *Il1b* was determined. (B) Cells were treated with palmit ate (0.5 mM) to induce inflammation for 4 h. Media was then supplemented with IL-4 (50 ng/ml) for a further 4 h and mRNA expression of *Tnfa*, *Il6*, and *Il1b* was determined. Data are expressed as means \pm SEM, n=3, from at least two independent experiments, * p<0.05 compared to WT. Relative expression was normalized to Actb.


В

Supplementary figure S4. Activation of β 1 specific complexes and mitochondrial depletion with ethidium bromide. (A) A769662 dose dependently increases ACC phosphorylation in WT, but not $\beta l^{-/-}$ BMDM. WT BMDM were treated with ethidium bromide (EthBr-0.4 µg/ml) for 48 h and (B) mRNA for *Cs*, *Bhad* (nuclear encoded mitochondrial enzymes) or *Cox2* (mitochondrial encoded) were analyzed using RT-qPCR relative to *Actb* or (C) mitochondrial protein expression of Complex I, II and IV were determined using immunoblot.



Supplementary figure S5. T-cell activation and T-cell infiltration into adipose and liver is not affected by AMPK β 1 deletion. Peritoneal cells and splenocytes from $\beta l^{-/-}$ and WT littermates were stained with antibodies for CD3, CD4 and Foxp3 and analyzed by flow cytometry. (A) The percentage of CD3+/CD4+ cells in the peritoneal cell and splenocyte population and (B) Foxp3 expression in the CD3+/CD4+ population were not different between genotypes. (C) Adipose tissue of chow and HFD-fed WT ^{BMT} and $\beta l^{-/- BMT}$ mice or (D) livers of HFD-fed WT ^{BMT} and $\beta l^{-/- BMT}$ mice was analyzed for *Cd3* mRNA expression by qRT-PCR as a marker of T-cell infiltration, where the expression of genes was normalized to *Actb*. Data shown are mean ± SEM.


Α

Supplementary figure S6. $\beta I^{-/-}$ BMT mice have increased food intake and activity. Metabolic parameters were measured with the Columbus Laboratory Animals Monitoring System. $\beta I^{-/-BMT}$ mice had (A) increased food intake and (B) elevated hypothalamic *Npy* mRNA when normalized to *18s*, but did not have higher body mass potentially due an increase in (C) physical activity levels. Data are expressed as mean ± SEM, n=8-10, * p<0.05 compared to WT BMT.

Supplementary figure S7. Adipose and liver markers of macrophage infiltration in mice fed a chow diet. (A) Adipose tissue and (B) liver from WT ^{BMT} and $\beta I^{-/-BMT}$ mice on a chow diet were analyzed for mRNA expression of *Emr1* (F4/80) and *Cd68* by qRT-PCR. Relative expression was normalized to *Actb*, * p<0.05 compared to WT ^{BMT}. Data shown are, mean \pm SEM, n=8-10.

Supplementary figure S8. Insulin sensitivity is maintained in $\beta 1^{-/-BMT}$ mice fed a chow diet. WT ^{BMT} and $\beta 1^{-/-BMT}$ mice fed a chow diet were fasted for 6 h and an insulin tolerance test was performed after an intraperitoneal injection of 0.5 U/kg of insulin. Data shown are mean ± SEM, n=8-10.