SUPPLEMENTARY MATERIAL FOR “GENERAL MECHANISM OF
ACTOMYOSIN CONTRACTILITY”

DERIVATION OF THEORETICAL WALL STRESS oy,

Here we obtain an approximate expression for the stress on the fixed boundary of a two-
dimensional actin network due to an active myosin minifilament, as shown in Fig.la. We
treat the minifilament as a force dipole. To simplify our calculations we consider a circular
region and assume that the effect of the force dipole is equivalent to that of a uniform inward
pressure P along a boundary at a radius a that is half the size of the force dipole (see Fig.
1b).. For generality, we first consider a layered system having two different elastic moduli
inside and outside r = a: kK, G from r = 0 to r = a and k° and G° from r = a to r = b;

later we will treat the myosin-actin system as a special case.

(a) (b)
FIG. 1: (a) An actin network with a myosin minifilament (dumbbell) represented as a force dipole

acting on the network. (b) Circularly layered system with different material properties in two

regions. (Here a and b in (b) correspond to d/2 and L/2 in (a) respectively ).

The boundary conditions for the displacement U and the stress o are as follows. Because
of the assumption of a fixed boundary, U,(r = b) = 0, and because there is no singularity

at the origin, U,(r = 0) is finite. Furthermore, because there are no gaps in the material,



TABLE I: Notation Used

Kk, k° Bulk modulus of the material

G, G° Shear modulus of the material.

U(7) Displacement vector at position 7

U, Radial component of the displacement vector

Nij 1 4t component of the strain tensor

oij 1 4t component of the stress tensor

Ur = a*) = U.(r = a7). Finally, the application the pressure at r = a leads to a
discontinuity in o, so that o,.(r =a®) — o, (r =a~) = P.

To obtain the functional form of the solution, we note that circular symmetry and
the absence of body forces imply that U(7) = U,(r)7 and V(V - U) = 0 in both regions.
Thus the solution has the form U,.(r) = Ar + B/r for r < a and U,(r) = Cr + D/r
for a < r < b, where A, B,C, and D are constants to be determined. The boundary
condition that U, (r = 0) is finite implies that B = 0, and the condition that U,.(r =b) =0
implies that D = —Cb?. Then the condition that U.(r = a*) = U.(r = a~) implies that
Aa = C(a—b*/a) so that A = —C(b*/a® — 1), and the solution becomes

—Cr(b*/a* —1) forr<a

U(r) =
—Crb?*/r*—=1) fora<r<b

To impose the boundary condition that o,,.(r = a™) —o,,.(r = a~) = P, we first calculate

the strains, using the general result 7., = %= nys = % and 7,4 = 0 (Ref. [1]), Eq. (1.7):

Nrr = _C(bz/QQ - 1)7774545 = _C(b2/a2 - 1) (7” < a)
e = CO /12 +1),n59 = —-C(O*/1* =1) (a <7 < D) (1)

The stress is given in terms of the strain as follows (Ref. [1], Eq. 4.6)):

Thus for r < a



Opr = _QC(K + %;)(% - 1)
005 = ~20(5 + (o5~ 1) ()

and fora<r <b

— o0 + (4 Dy
T = " 3 r?
1 b2

Oppr = 20[’%0 + (5 - ﬁ)GO] (4)

Then the stress boundary condition, o,..(r = a*) — 0,.(r = a~) = P, implies that

2C[K° + (% + Z—Z)GO] +2C(k + %)(Z—Z —-1)=P (5)

so that

P
“= 20k + (3 + 5)Go + (k+ §) (5 — 1)] ©)

Finally, for a < r < b we have

[+ (3 + 5)G)P
[+ (3 4+ 5)Go+ (5 + §)(5 — 1)]

Opp =

(7)

We now assume that the two regions consist of the same material, so that «k° = k.
Furthermore, for actin networks, Poisson’s ratio is close to 0.5 [2], so that we take G° = G =

0. Finally, we assume that b >> a. Then we obtain at r = a
Pa?
Opp =~ b_2 (8>
For the geometry of Fig.la, we have a = d/2, b = L/2. Since the magnitude of the
contraction induced by a force distribution f,..(7) is measured by its force dipole moment
[ 7 frec(F)d?r, we choose the value of P to have the same dipole —Fd as the pair of myosin
forces. Since the force density associated with P is —#P§(r —a), we obtain —27 Pa? = —Fd,

so P = %. Thus

Fd
T Sr(L )
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