SUPPLEMENTARY MATERIAL FOR "GENERAL MECHANISM OF ACTOMYOSIN CONTRACTILITY"

DERIVATION OF THEORETICAL WALL STRESS σ_{th}

Here we obtain an approximate expression for the stress on the fixed boundary of a twodimensional actin network due to an active myosin minifilament, as shown in Fig.1a. We treat the minifilament as a force dipole. To simplify our calculations we consider a circular region and assume that the effect of the force dipole is equivalent to that of a uniform inward pressure P along a boundary at a radius a that is half the size of the force dipole (see Fig. 1b).. For generality, we first consider a layered system having two different elastic moduli inside and outside r = a: κ , G from r = 0 to r = a and κ^o and G^o from r = a to r = b; later we will treat the myosin-actin system as a special case.

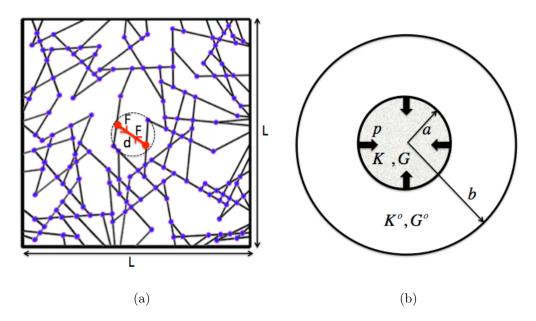


FIG. 1: (a) An actin network with a myosin minifilament (dumbbell) represented as a force dipole acting on the network. (b) Circularly layered system with different material properties in two regions. (Here a and b in (b) correspond to d/2 and L/2 in (a) respectively).

The boundary conditions for the displacement U and the stress σ are as follows. Because of the assumption of a fixed boundary, $U_r(r = b) = 0$, and because there is no singularity at the origin, $U_r(r = 0)$ is finite. Furthermore, because there are no gaps in the material,

TABLE I: Notation Used

- $\kappa,\kappa^o~$ Bulk modulus of the material
- G, G^o Shear modulus of the material.
- $\vec{U}(\vec{r})$ Displacement vector at position r
- U_r Radial component of the displacement vector
- η_{ij} ijth component of the strain tensor
- σ_{ij} ij^{th} component of the stress tensor

 $U_r(r = a^+) = U_r(r = a^-)$. Finally, the application the pressure at r = a leads to a discontinuity in σ , so that $\sigma_{rr}(r = a^+) - \sigma_{rr}(r = a^-) = P$.

To obtain the functional form of the solution, we note that circular symmetry and the absence of body forces imply that $\vec{U}(\vec{r}) = U_r(r)\hat{r}$ and $\vec{\nabla}(\vec{\nabla} \cdot \vec{U}) = 0$ in both regions. Thus the solution has the form $U_r(r) = Ar + B/r$ for r < a and $U_r(r) = Cr + D/r$ for a < r < b, where A, B, C, and D are constants to be determined. The boundary condition that $U_r(r=0)$ is finite implies that B=0, and the condition that $U_r(r=b)=0$ implies that $D = -Cb^2$. Then the condition that $U_r(r=a^+) = U_r(r=a^-)$ implies that $Aa = C(a - b^2/a)$ so that $A = -C(b^2/a^2 - 1)$, and the solution becomes

$$U(r) = \begin{cases} -Cr(b^2/a^2 - 1) & \text{for } r < a \\ -Cr(b^2/r^2 - 1) & \text{for } a < r < b \end{cases}$$

To impose the boundary condition that $\sigma_{rr}(r = a^+) - \sigma_{rr}(r = a^-) = P$, we first calculate the strains, using the general result $\eta_{rr} = \frac{\partial U_r}{\partial r}$, $\eta_{\phi\phi} = \frac{U_r}{r}$ and $\eta_{r\phi} = 0$ (Ref. [1]), Eq. (1.7):

$$\eta_{rr} = -C(b^2/a^2 - 1), \eta_{\phi\phi} = -C(b^2/a^2 - 1) \ (r < a)$$

$$\eta_{rr} = C(b^2/r^2 + 1), \eta_{\phi\phi} = -C(b^2/r^2 - 1) \ (a < r < b)$$
(1)

The stress is given in terms of the strain as follows (Ref. [1], Eq. 4.6)):

$$\sigma_{rr} = (\kappa + \frac{4}{3}G)\eta_{rr} + (\kappa - \frac{2}{3}G)\eta_{\phi\phi}$$

$$\sigma_{\phi\phi} = (\kappa + \frac{4}{3}G)\eta_{\phi\phi} + (\kappa - \frac{2}{3}G)\eta_{rr}$$
 (2)

Thus for r < a

$$\sigma_{rr} = -2C(\kappa + \frac{G}{3})(\frac{b^2}{a^2} - 1)$$

$$\sigma_{\phi\phi} = -2C(\kappa + \frac{G}{3})(\frac{b^2}{a^2} - 1)$$
 (3)

and for a < r < b

$$\sigma_{rr} = 2C[\kappa^{o} + (\frac{1}{3} + \frac{b^{2}}{r^{2}})G^{o}]$$

$$\sigma_{rr} = 2C[\kappa^{o} + (\frac{1}{3} - \frac{b^{2}}{r^{2}})G^{o}]$$
(4)

Then the stress boundary condition, $\sigma_{rr}(r = a^+) - \sigma_{rr}(r = a^-) = P$, implies that

$$2C[\kappa^{o} + (\frac{1}{3} + \frac{b^{2}}{a^{2}})G^{o}] + 2C(\kappa + \frac{G}{3})(\frac{b^{2}}{a^{2}} - 1) = P$$
(5)

so that

$$C = \frac{P}{2[\kappa^{o} + (\frac{1}{3} + \frac{b^{2}}{a^{2}})G^{o} + (\kappa + \frac{G}{3})(\frac{b^{2}}{a^{2}} - 1)]}$$
(6)

Finally, for a < r < b we have

$$\sigma_{rr} = \frac{\left[\kappa^{o} + \left(\frac{1}{3} + \frac{b^{2}}{r^{2}}\right)G^{o}\right]P}{\left[\kappa^{o} + \left(\frac{1}{3} + \frac{b^{2}}{a^{2}}\right)G^{o} + \left(\kappa + \frac{G}{3}\right)\left(\frac{b^{2}}{a^{2}} - 1\right)\right]}$$
(7)

We now assume that the two regions consist of the same material, so that $\kappa^o = \kappa$. Furthermore, for actin networks, Poisson's ratio is close to 0.5 [2], so that we take $G^o = G = 0$. Finally, we assume that b >> a. Then we obtain at r = a

$$\sigma_{rr} \simeq \frac{Pa^2}{b^2} \tag{8}$$

For the geometry of Fig.1a, we have a = d/2, b = L/2. Since the magnitude of the contraction induced by a force distribution $f_{vec}(\vec{r})$ is measured by its force dipole moment $\int \vec{r} \cdot f_{vec}(\vec{r}) d^3r$, we choose the value of P to have the same dipole -Fd as the pair of myosin forces. Since the force density associated with P is $-\hat{r}P\delta(r-a)$, we obtain $-2\pi Pa^2 = -Fd$, so $P = \frac{2F}{\pi d}$. Thus

$$\sigma_{th} = \frac{Fd}{2\pi (L/2)^2} \tag{9}$$

- L. D. Landau and E. M. Lifshitz, *Theory of Elasticity* (Pergamon press, New York, 1986), chapter 1, 3rd ed.
- [2] M. L. Gardel, M. T. Valentine, J. C. Crocker, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 91, 158302 (2003).