SUPPORTING INFORMATION

Multi-Path Quenchers: Efficient Quenching of Common Fluorophores

Pete Crisalli, Eric T. Kool*

Department of Chemistry, Stanford University Stanford, CA 94305-5080 (USA)

*e-mail: kool@stanford.edu

Table of Contents

Mass spectrometric data for quencher-conjugated oligoncleotides p.	. S2
Fluorescence spectra of quencher-conjugated oligonucleotides p.	S 3
Absorbance properties of multiple pathway quenchers p.	S4
Ground state complex formation studiesp.	S5
NMR of synthetic intermediatesp.	S 7

Strand	Mass Calc	Mass Observed	Purity (HPLC)
Alove 250 20mor	6542 110		
Alexa350 20mer	6543.110	6544.614	98.86%
FAM 20mer	6678.201	6678.831	99.55%
Cy3 20mer	6618.312	6617.014	99.86%
TAMRA 20mer	6734.274	6734.328	99.30%
ATTO590 20mer	6821.371	6822.563	98.02%
Quasar670 20mer	6743.396	6742.522	99.94%
MPQ1 15mer	5156.014	5156.707	98.54%
MPQ1 20mer	6676.244	6675.056	99.52%
MPQ2 15mer	5206.029	5205.537	97.74%
MPQ2 20mer	6726.259	6713.450	98.53%
MPQ3 15mer	5200.040	5200.674	99.70%
MPQ3 20mer	6720.270	6720.037	99.03%
MPQ4 15mer	5053.971	5052.607	87.30%
MPQ4 20mer	6576.191	6576.154	99.13%
MPQ5 15mer	5233.040	5233.804	N/A*
MPQ5 20mer	6753.270	6754.076	96.04%
MPQ6 15mer	5206.041	5205.809	99.29%
MPQ6 20mer	6726.271	6724.371	99.15%
DABCYL 15mer	5021.018	5021.461	98.55%
DABCYL 20mer	6541.248	6541.436	98.19%
BHQ2 15mer	5130.993	5129.682	98.55%
BHQ2 20mer	6651.223	6650.192	99.18%

Table S1: MALDI-TOF calculated and observed masses of DNA sequences used. *An insufficient amount of labelled DNA was prepared to obtain an analytical HPLC

Figure S1: Fluorescence spectra of quencher 20mers (---) compared to buffer alone (---). Samples (100nM) were excited at the λ_{max} values indicated in Table XXXX.

Quencher	λ_{\max}	ε _{max}	ϵ_{260}
MPQ1	512	36400	25100
MPQ2	516	19200	10300
MPQ3	517	50800	15000
MPQ4	522	22600	10800
MPQ5	617	8700	18200
MPQ6	620	28700	N.D.*

Table S2: Absorbance maxima and extinction coefficients (in L M^{-1} cm⁻¹) for multiple pathway quenchers in ethanol. ϵ_{260} values are provided for quenchers in 9:1 PBS:DMF * Value could not be determined as a result of aggregation. A value of 8000 L M^{-1} cm⁻¹ was used in DNA

concentration calculations (the value of BHQ1 at 260 nm).

Figure S2: Ground state complex formation between MPQ 20mers and 3'-Fluorescein 20mer. Duplexes were formed by annealing a solution 1 μ M of each strand in hybridization buffer at 70 °C for 5 minutes then allowing to cool to room temperature over 30 minutes. The simple sum was created by adding solutions containing only 1 μ M of either quencher or fluorophore labelled strand.

Figure S2: Ground state complex formation between 5'-Dabcyl or 5'-BHQ2 15mers and 3' Fluorophore labelled 20mers. Duplexes were formed by annealing a solution 1 μ M of each strand in hybridization buffer at 70 °C for 5 minutes then allowing to cool to room temperature over 30 minutes. The simple sum was created by adding solutions containing only 1 μ M of either quencher or fluorophore labelled strand.

