Non-enzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme

Carlos Castañeda, Jia Liu, Apurva Chaturvedi, Urszula Nowicka, T. Ashton Cropp, David Fushman

Figure S1. ¹H-¹⁵N TROSY-HSQC spectra highlighting the importance of domain-specific isotopic labeling for Ub units in polyubiquitin chains. (a) Overlay of the spectra of the distal Ub (red) and the proximal Ub (blue) in all-natural K11-linked Ub₂ showing significant overlap of the signals from the two Ub monomers. (b) Overlay of the spectra of the middle domain in all-natural K11-linked Ub₃ (green), the distal Ub (red) of K11-linked Ub₂ and the proximal Ub (blue) of K11-linked Ub₂. The overlap of the NMR signals from the individual Ub units (reflecting their chemical and spectroscopic identity) would make it essentially impossible to distinguish which signal belongs to which Ub unit if the chain was uniformly isotope-labeled.

Figure S2. Optimization of Alloc deprotection reactions. In black is the deconvoluted ESI-MS spectrum of ¹⁵N-Ub that is fully protected with nine Alloc groups (each Alloc group has a MW of 84 Da). Optimal Alloc deprotection conditions require the use of 50% mol Ru catalyst, 50 eq of thiophenol, 30% H₂O and 50 °C. After the reaction is incubated for two hours, the protein is fully deprotected (green). If less catalyst (magenta) or lower temperature (sky blue) are used, the Alloc deprotection reaction does not go to completion, resulting in a distribution of multiple Ub species containing a variable number of Alloc groups.

Figure S3. ESI-MS analyses demonstrate that Alloc deprotection does not remove the Boc group on Ub. Shown in black and red are ESI-MS spectra of ¹⁵N-labeled K11Boc Ub before Alloc protection and after Alloc deprotection, respectively. Shown in blue is the ESI-MS spectrum of this protein after Alloc protection.

Figure S4. Portion of ¹H-¹⁵N TROSY spectra of (a) proximal Ub in enzymatically assembled K11-linked Ub₂, (b) proximal Ub in chemically ligated K11-linked Ub₂, and (c) middle Ub in chemically ligated homogeneously K11-linked Ub₃. Arrow points toward the G76-K11 isopeptide signal that is present in the spectrum in (a). This signal is absent in the spectra in (b) and (c) due to the incorporation of unlabeled (¹⁴N) Lys(Boc) amino acid at residue 11.

Figure S5. (a) Overlay of ¹H-¹⁵N TROSY spectra of K11Boc Ub monomer (red) and WT Ub (blue). (b) Overlay of ¹H-¹⁵N TROSY spectra of the distal K11Boc Ub in K11-linked Ub₂ (red) and of the distal Ub in all-natural K11-linked Ub₂ (blue). (c,d) The spectral differences between residues in (c) K11Boc Ub and WT Ub and (d) distal K11Boc in K11-linked Ub₂ and distal Ub in all-natural K11-linked Ub₂ are quantified as amide chemical shift perturbations (CSPs). The CSPs were calculated as $\Delta \delta = [(\Delta \delta_H)^2 + (\Delta \delta_N/5)^2]^{1/2}$, where $\Delta \delta_H$ and $\Delta \delta_N$ are chemical shift differences for ¹H and ¹⁵N, respectively.

Figure S6. ESI-MS analysis of K33-linked Ub₂ with the proximal Ub ¹⁵N-labeled. The expected molecular weight is 17210 Da, resulting from the sum of one unlabeled Ub (8564 Da), one TFA-treated ¹⁵N-labeled Ub (8664 Da), and the loss of one water molecule from the K33 isopeptide linkage condensation.

Figure S7. ESI-MS analysis of homogeneously K11-linked Ub₃ with the middle Ub ¹⁵N-labeled. The expected molecular weight is 25756 Da, resulting from the sum of two unlabeled Ubs (8564 Da), one TFA-treated ¹⁵N-labeled Ub (8664 Da), and the loss of two water molecules from two K11 isopeptide linkage condensations.

Figure S8. SDS-PAGE gel of purified (post size exclusion chromatography) K33,K11-linked Ub₃ and K33-linked Ub₂. The ESI-MS characterization of the K33-linked Ub₂ is shown in Fig.S9.

Figure S9. ESI-MS spectrum of purified K33-linked Ub₂ (15 N-labeled on the distal Ub). No monomer contamination is evident; no peaks at either 8564 (unlabeled Ub) or 8664 (15 N-labeled Ub) are observed.

Figure S10. ESI-MS spectrum of purified K11-linked Ub₂ (15 N-labeled on the proximal Ub). No monomer contamination is evident; no peaks at either 8564 (unlabeled Ub) or 8664 (15 N-labeled Ub) are observed. A shorter mass-range version of this spectrum is shown in Fig. 1c (main text).

Figure S11. ESI-MS characterization of various steps in preparation of K27-linked Ub₂ (¹⁵N-labeled on the proximal Ub) to be used as the distal Ub in the assembly of a Ub₃ chain. The molecular weight of K27-linked Ub₂ is 17211 Da (black). Reaction with E1 and MESNA adds a C-terminal thioester functional group to Ub₂, increasing its molecular weight by ~125 Da to 17335 Da (blue), and fully converts *all* Ub₂s into Ub₂-SR. Alloc protection of K27-linked Ub₂ (red) adds a total of 17 Alloc groups (nine Alloc groups on the distal Ub and eight Alloc groups on the proximal Ub as its K27 is already involved in the isopeptide linkage to the distal Ub). Each Alloc protecting group adds 84 Da.