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ABSTRACT Several related classes of operators on nilpo-
tent Lie groups are considered. These operators involve the
following features: (i) oscillatory factors that are exponentials
of imaginary polynomials, (i) convolutions with singular ker-
nels supported on lower-dimensional submanifolds, (Wi) valid-
ity in the general context not requiring the existence of dila-
tions that are automorphisms.

Section 1. Introduction

Our purpose here is to announce results in several related
areas: (i) operators defined by singular kernels that are prod-
ucts of an ordinary Calderon-Zygmund kernel, and an oscil-
latory factor that is the exponential of a purely imaginary
polynomial; (ii) singular integral transformations on general
nilpotent Lie groups (without any assumptions of existence
of underlying automorphic dilations on these groups), (iii)
singular integral transforms on these groups with kernels
carried on lower-dimensional varieties.
The oscillatory integrals we consider arose to begin with

when one analyzed singular integrals on nilpotent groups,
utilizing the abelian Fourier transform on the center or, more
generally, when exploiting variants of "twisted convolu-
tion." This technique has been used by Ricci (1) and by
Geller and Stein (2). In the second of these papers, this idea
was developed to study singular integrals carried on some
hyperplanes of the Heisenberg group. The oscillatory inte-
grals that occurred were then generalized by Phong and
Stein (3, 4) in connection with the study of singular Radon
transforms. Certain related results for two-step nilpotent
groups had been published by Strichartz (5), and some re-
cent progress has been made by Muller (6), by Christ, (7),
and by Greenleaf (8). Of course a model for much of this has
been the previously established theory in the abelian case
[see, e.g., Stein and Wainger (9)]. Our work here may be
viewed as a logical conclusion and unification of several
lines of these developments. One of the principal conclu-
sions that arises is that a wide variety of operators that were
hitherto studied only on homogeneous nilpotent groups have
natural extensions to all (simply-connected) nilpotent Lie
groups.

Section 2. Oscillatory Integrals

We begin by formulating a result on additive group on Rm.
We let K denote a homogeneous function of degree -,, with
A ' m, which is smooth away from the origin, and when ,u =
m we also assume that the mean value of K on the unit
sphere vanishes. We shall denote by P(x, y) a real polynomi-

al on R' x R' of degree s d, and we consider the operator T
given by

(Tf)(x) = P.V. jR ei'(xY) K(x - y)f(y)dy [1]

initially defined for f E Co(R¶).
THEOREM 1. Suppose d is fixed. Then there is a positive e

= E(d), so that thefollowing holds: ifP(x, y) is a real polyno-
mial of degree s d, and P is not of the form PO(x) + Pl(y),
while K is homogeneous ofdegree -,4, with m - E < it < m,
then the operator [1] is extendable to a bounded operator on
L2(Rm) to itself.
With certain modifications the method of proof of Theo-

rem 1 also yields the following corollaries:
COROLLARY 1. Suppose 1 < p < a) and that K is homoge-

neous ofdegree -m. Then the operator [1] is extendable to a
bounded operator on LP(R') to itself, whose bounds de-
pends on p, K, and the degree of P but can otherwise be
taken independent of P.
COROLLARY 2. The statement ofCorollary 1 remains valid

ifwe replace K(x - y) in [1] by a distribution kernel K(x, y)
so that (a) the operator To given by (Tof, g) = ffK(x,
y)f(y)g(x)dydx is extendable to a bounded operator on
L2(Rm) and (b) awayfrom the diagonal, K is a C'function that
satisfies IK(x, y)I C A/Ix - ylm, IVxK(x, y)I + IVYK(x, y)I
SA/Ix yim~
These are analogous results that are valid when the addi-

tive structure of Rm is replaced by that of any nilpotent Lie
group N that is homogeneous. We formulate this as follows.
Let n be a nilpotent Lie algebra of dimension m and suppose
{X,} 1 c i c m is a basis of n. We suppose we are given
positive exponents aj, 1 < i

-
m and mappings 8,:n -n,

defined by 8,(X,) = taiX1, t > 0, which in this section we
assume are automorphisms of n. We identify N with n (and
hence with Rm) via the exponential map and write 8, for the
corresponding automorphism of the group N. We shall as-
sume that the kernel K as a function on N (=Rm) is homoge-
neous of degree -,4 in the sense that K(S,(x)) = t-K(x),
with A c a, where a = a, + a2 . . . + am. We also suppose
that K is smooth away from the origin, and in the critical
case (corresponding to IL = a, which arises in the analogue of
Corollary 1) we assume that the mean value ofK on the unit
sphere vanishes. The substitute for [1] is then

(Tf)(x) = P.V. eip(X Y)K(y-lx)f(y)dy [l']

with y-1 x the corresponding group operations.
COROLLARY 3. With the modifications described above,

the statement of Theorem 1 and Corollary 1 remain valid
when we replace [1] by [1'].
Remarks: (i) The proofs of these results involve a combi-

nation of four ideas: (a) an induction on the degree of P, (b)
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certain inequalities for polynomials, (c) the method of sta-
tionary phase, and (d) the reduction of the boundedness of
an operator A on L2 to that of A*A. The reader may also
consult refs. 4 and 10 where the use of such techniques is
illustrated in several special cases; in this connection, see
also ref. 6. We have been informed by M. Christ (personal
communication) that he has also obtained the case m = 1, p
= 2, of Corollary 1.

(ii) Corollary I (and its analogue for nilpotent Lie groups)
can be given a wider scope as we shall see below.

(iii) Necessary and sufficient conditions for the bounded-
ness of the operator To arising in Corollary 2 (i.e., with P
0) have been given by David and Journd (11).

Section 3. Singular Convolution Operators on Nilpotent
Lie Groups

As mentioned above oscillatory integrals have been used to
prove the boundedness of a variety of convolution operators
on homogeneous nilpotent groups. However the theorems
above lead directly to certain results where the homogeneity
(i.e., the structure of dilations that are automorphisms) is not
relevant. A simple example arises for the Heisenberg group
H1 = {(x, y, z)}, with multiplication law (x, y, z) (x', y', z') =
(x + x', y + y', z + z' + 2(x'y - xy')). Consider the curve t
y(t) = (t, ta, tb), with a and b positive integers, but where we
do not assume that b = a + 1. Then by the representation
theory and Plancherel formula for the group H' one can re-
duce the L2 boundedness of the "Hilbert transform"

T(f)(u) = P.V. uf(u0y(t)) dt u E H1,
t

to Corollary I above in the case P(x, y) = X{(x - y)b + 4X(X -
y)a - 2(x - y)a+l}, -00 < X < cc.

This observation, together with the general nature of The-
orem I and its corollaries, leads one to envisage the possibili-
ty that many of the standard results of harmonic analysis on
R' may in some way be "transferred" to arbitrary nilpotent
Lie groups (where no automorphic dilation structure may be
present). To this we shall now turn.
As in Section 2 above, N is a (simply connected) nilpotent

Lie group that is identified with Rm via the exponential map.
For a fixed basis of {X,} of its Lie algebra n and fixed positive
exponents a,, we let 8, denote the linear mappings of n deter-
mined by 8t(X,) = ta!Xi and also denote by S, the correspond-
ing mappings ofN to itself. However here we no longer as-
sume that the St are automorphisms. We let Ixi denote a
norm function with respect to 8S (i.e., x -* IxI is smooth on
N/{0}, positive, and I8,xl = tlxl, all t > 0). Note, however,
that here the extended triangle inequality Ix YI < c{IxI + YI}
fails in general. We let K denote a Calder6n-Zygmund ker-
nel with respect to the homogeneities 5,; i.e., K(Sx) =
t aK(x)a = a1+ . . . am, K is smooth away from the origin
and the mean value ofK vanishes. We define the operator T
by

T(f) = f*K = lim fi f(xy-')K(y)dy,
e--O ae2

whenever f EE CA(N).
THEOREM 2. The operator T defined above is extendable

to a bounded operator LP(N) to itself, with 1 < p < o0.
There is also a corresponding result for the maximal func-

tion in this setting. We define M by

M(f)(x) = 0up -S1 lf(xy-')jdy. [2]

THEOREM 3. The mapping f -- M(f) is bounded on LP(N)
to itself, when 1 < p s oo.

Section 4. Singular Integrals on Submanifolds of
Nilpotent Groups

The proofs of Theorems 2 and 3 require two ideas. First, that
we pass from arbitrary nilpotent Lie groups to homogeneous
ones, in particular the "free" nilpotent groups (an idea that is
implicit in ref. 12), and, second, that we consider operators
whose kernels are carried on suitable submanifolds. These
considerations lead in fact to an extension of some of the
results described in the previous sections and at the same
time to their unification in a more general statement. We
shall formulate only the generalization of Theorem 2 to this
context, although Theorem 3 can be similarly extended.
As in the previous section, N denotes an arbitrary simply

connected nilpotent Lie group and 8, denotes a family of di-
lations that are not necessarily automorphisms.
We begin by fixing an analytic (open) submanifold S of

N/{0}. While we do not assume that S is connected, we do
require that it have finitely many components. We also as-
sume that S is homogeneous in the sense that 8t(S) = 5, all t
> 0. We denote by do the induced (Lebesgue) measure on S.
We fix a function K on S that is smooth and so that K has
compact support when restricted to S n {lixi = 1}. We also
assume that the measure K(x)dcr(x) (which is supported on
S) is homogeneous of the critical degree -a in the sense that

4.(x)K(x)do-(x) = 4(8,x)K(x)dcr(x), all t > O,

for all 4 E C'(N) that vanish near the origin. We assume
also that K(x)dor(x) has vanishing mean value in the sense
that fa~lxl<p K(x)da(x) = 0, for some fixed 0 < a < 1B.

Finally we take P(x, y) to be a real polynomial on N x N.
The assumptions we have made on K allow us to define the
operator T (as a principal-value integral) by

(Tf)(x) = lim f f(xyl)eI'p(xY) K(y)dar(y)e-0 e|y| [3]

whenever f E CM(N).
THEOREM 4. Assume S is connected. Then T defined by [3]

is extendable to a bounded operator of LP(N) to itself, for 1
< p < 00, whose norm depends only on p, K, and the degree
of P.
The theorem as stated above applies only vacuously to the

case when S is one-dimensional because of the assumption
that S is connected. When S is not connected, a necessary
condition is that broadly speaking each component of S gen-
erates the same subgroup of N. Precise sufficient conditions
when S is not connected may be formulated as follows:
ADDENDUM. (i) Assume first that the dilations described

above are automorphisms ofN, that the polynomial P in [3]
vanishes identically, and that each component of S gener-
ates the same subgroup of N. Then the operator [3] is ex-
tendable to a bounded operator on LP. (ii) Alternatively, as-
sume that S is one-dimensional but S U {0} is real analytic
near the origin (i.e., S U {0} is a polynomial curve). Here we
need not assume that the underlying dilations are automor-
phisms. Then the conclusions of Theorem 4 still hold with
general polynomials P.
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