

Number of peptides per protein with spectra in NIST database

Supplementary Figure 1. Poor coverage of target transcription factor proteins in NIST database

A histogram of the number peptide MS/MS spectra in the NIST database per target protein demonstrates how underrepresented transcription factors are from current peptide spectral libraries. A majority of our target proteins have no MS/MS spectra in the NIST spectrum library.

Supplementary Figure 2. *In vitro-synthesized proteins are enriched full-length proteins* **(a-b)** Glutathione-enriched protein samples from 46 of the 96 reactions were run on a denaturing SDS-PAGE gel and subjected to either western blotting with an anti-schistosomal GST antibody **(a)** or silverstaining **(b)**. The endogenous glutathione-binding proteins EEF1G and GSTM3 were identified using 'shotgun' mass spectrometry. The molecular weight of the full length cDNA is indicated in parentheses. These weights do not include the 26kDa GST tag.

Supplementary Figure 3. Calibration curve for the schistosomal GST peptide IEAIPQIDK

A dilution curve of the unlabeled schistosomal GST peptide IEAIPQIDK peptide standard was spiked with a constant amount of the heavy labeled IEAIPQIDK peptide. The unlabeled to labeled peak area was measured by LC-SRM-MS for each standard in triplicate.

Supplementary Figure 4. Histogram of dot-products for quality score 1 and 2 peptides Dot-products were calculated using Skyline and the 2011_05_26 NIST release of the H. sapiens Ion Trap peptide spectral library.

Supplementary Figure 5. Spearman correlation of our empirical peptide ranking with ESPPredictor rankings

(a) Box-and-whisker plot showing the distribution of spearman correlations for the 75 proteins with both ESPPredictor scores and empirical SRM peptide signal intensities. The spearman correlation of these 2 rankings for each protein ranged from -0.45 to 0.85 with an average correlation of 0.47. (b) A representative comparison of our empirical signal intensity rank for the STAT5A peptides and the ESPPredictor score rank for the same peptides. This comparison shows a better than average correlation (rho = 0.55 versus an average of rho = 0.47).

Supplementary Figure 6. Peptide MS/MS spectrum counts are a poor predictor of targeted peptide signal intensity using selected reaction monitoring-mass spectrometry

(a-b) The NFKB1 **(a)** and NR5A1 **(b)** samples were subjected to 'shotgun' analysis using datadependent acquisition. For each peptide, the number of +2 charge state spectra identified in this 'shotgun' run is indicated above the SRM signal intensity of that peptide.

ltem	Manufacturer	Product #	Cost per unit	Units used per 96 reactions	Cost per 96 reactions			
Human In Vitro Protein Expression Kit - DNA (50								
reactions)	Pierce	88855	\$515	2	\$1,030.00			
Glutathione Sepharose 4B (10mL)	GE	17-0756-01	\$242	0.2	\$48.40			
PPS Silent Surfactant (5x1 mg vials)	Protein Discovery	21011	\$199	1	\$199.00			
Oasis [®] MCX plate 30mg/60 μm 1/pkg	Waters	186000250	\$326	1	\$326.00			
Sequencing Grade Modified Trypsin (100µg)	Promega	V5111	\$80	0.4	\$32.00			
Lab reagents	Various	Various	\$150	1	\$150.00			
				Total:	\$1,785.40			
Cost per reaction:								

Supplementary Figure 7. Reagent cost for generating *in vitro*-synthesized proteins from plasmids

The reagent usage is based on our current working protocol (Methods). The prices used in this calculation are based on manufacture posted prices on May 24th 2011.

SUPPLEMENTARY DATA LEGENDS

Supplementary Data 1. Rank order of proteotypic peptides and fragment ions for targeted proteins

(Pages 9-10) Proteins targeted in this dataset. <u>Columns:</u> Gene Symbol, Gene Description, DNAbinding domain family, mRNA Accession, DNASU Plasmid Repository Clone ID, Page number for targeted data.

(Pages 11-35) For each protein monitored in this dataset, the summed peak intensity for each peptide, as well as the relative contribution of each fragment ion to this signal is displayed. Quality score 1 peptides are labeled in green, quality score 2 peptides are labeled in yellow, quality score 3 peptides are labeled in purple, and quality score 4 peptides are labeled in red.

Proteins Targeted

Gene Symbol	Description	DNA-binding domain family	Accession	DNASU Clone ID	Page
ATF4	activating transcription factor 4 (tax-responsive enhancer element B67)	basic-leucine zipper (bZIP)	CR456384	HsCD00301229	ng 12
	atonal homolog 7 (Drosonhila)	basis bolix loop bolix (bULU)	BC022621	HcCD00077283	pg. 12
ATOTI/	hosis louging rinner transprintion factor. ATE like	basic leuring zinner (bZID)	NM 006200	HaCD00077203	pg. 12
	basic leucine zipper transcription factor, ATF-like	basic-leucine zipper (bziP)	NIM_000399	HSCD00301436	pg. 12
BHLHB2	basic helix-loop-helix domain containing, class B, 2	basic helix-loop-helix (bHLH)	BC082238	HsCD00299716	pg. 12
CCDC16	coiled-coil domain containing 16	zinc finger, C2H2-type (C2H2)	BC011584	HsCD00078107	pg. 13
CEBPG	CCAAT/enhancer binding protein (C/EBP), gamma	basic-leucine zipper (bZIP)	BC007582	HsCD00077759	pg. 13
CLOCK	clock homolog (mouse)	basic helix-loop-helix (bHLH)	BC041878	HsCD00299832	pg. 13
CREB1	cAMP responsive element binding protein 1	basic-leucine zipper (bZIP)	BC010636	HsCD00077213	pg. 13
CTCF	CCCTC-binding factor (zinc finger protein)	zinc finger C2H2-type (C2H2)	BC014267	HsCD00078657	ng 14
DMRT1	doublesex and mab-3 related transcription factor 1	DM DNA-binding domain (DM)	BC040847	HsCD00300076	ng 14
DMDTC2	DMDT like femily C2	DM DNA-binding domain (DM)	BC020202	HaCD00300070	pg. 14
DIVIRIOZ		DM DNA-binding domain (DM)	BC029202	HSCD00299783	pg. 14
E2F5	E2F transcription factor 5, p130-binding	TF E2F/dimerisation partner (TDP)	NM_001951	HSCD00302966	pg. 14
ERG	v-ets erythroblastosis virus E26 oncogene like (avian)	ETS-domain (ETS)	BC040168	HsCD00299791	pg. 15
ETS2	v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)	ETS-domain (ETS)	NM_005239	HsCD00301527	pg. 15
ETV3	ets variant gene 3	ETS-domain (ETS)	BC022868	HsCD00077713	pg. 15
EWSR1	Ewing sarcoma breakpoint region 1	ETS-domain (ETS)	CR456490	HsCD00301321	pg. 15
EZH2	enhancer of zeste homolog 2 (Drosophila)	SANT-domain (SANT)	BC010858	HsCD00077678	pg. 16
FEV	EEV (ETS oncogene family)	ETS-domain (ETS)	BC023511	HsCD00079089	ng 16
EOSP	ER L murino ostoosarcoma viral ancegano homolog R	basic Jourine zipper (bZIP)	NM 006722	HcCD00301650	pg. 10
F03B			NIVI_000732	115000001000	pg. 10
FOSL2	FOS-like antigen 2	basic-leucine zipper (bZIP)	BC022791	HsCD00079102	pg. 16
FOXD4L1	forkhead box D4 like 1	Forkhead-domain (Forkhead)	NM_012184	HsCD00302896	pg. 17
FOXD4L2	FOXD4-like 2	Forkhead-domain (Forkhead)	BC103887	HsCD00299718	pg. 17
FOXN1	forkhead box N1	Forkhead-domain (Forkhead)	NM_003593	HsCD00302766	pg. 17
FOXR2	forkhead box R2	Forkhead-domain (Forkhead)	BC012934	HsCD00301098	pg. 17
GATA2	GATA binding protein 2	zinc finger, GATA-type (ZNF-GATA)	BC002557	HsCD00077154	pg. 18
GATA3	GATA binding protein 3	zinc finger, GATA-type (ZNF-GATA)	BC006793 1	HsCD00305430	ng 18
GEI1	growth factor independent 1	zinc finger, C2H2 type (C2H2)	BC032751	HeCD00070249	ng 10
CMER1			BC001472	HaCD000074	hR: 10
GMEB1	giucocorticold modulatory element binding protein 1	SAND-domain (SAND)	BC001473	HSCD00299674	pg. 18
GMEB2	glucocorticoid modulatory element binding protein 2	SAND-domain (SAND)	BC036305	HsCD00299890	pg. 19
GTF2H4	general transcription factor IIH, polypeptide 4, 52kDa	Other	BC004935	HsCD00079304	pg. 19
H1F0	H1 histone family, member 0	Other	CR456502	HsCD00301329	pg. 19
HMGA1	hiah mobility group AT-hook 1	hiah mobility group-type (HMG)	NM 002131	HsCD00301489	pg. 19
HMGB2	high-mohility group box 2	high mobility group-type (HMG)	BC001063	HsCD00078150	ng 20
	homoobox A10	Homoodomain (Homoodomain)	BC012071	HcCD00078530	pg. 20
	homeobox ATO		DC0139/1	115000078559	pg. 20
HUXAS	nomeodox A5	Homeodomain (Homeodomain)	NM_019102	HSCD00304202	pg. 20
HSF4	heat shock transcription factor 4	Heat-shock factor (Heat Shock)	NM_001538	HsCD00302758	pg. 20
HSFY2	heat shock transcription factor, Y linked 2	Heat-shock factor (Heat Shock)	NM_153716	HsCD00302426	pg. 21
ID2	inhibitor of DNA binding 2, dominant negative helix-loop-helix protein	helix-loop-helix (HLH)	D13891	HsCD00301602	pg. 21
ID3	inhibitor of DNA binding 3, dominant negative helix-loop-helix protein	helix-loop-helix (HLH)	BC003107	HsCD00078304	pg. 21
IRF1	interferon regulatory factor 1	Interferon regulatory factor (IRF)	BC009483	HsCD00077440	pg. 21
IRE3	interferon regulatory factor 3	Interferon regulatory factor (IRE)	BC009395	HsCD00079105	ng 22
	interferen regulatory factor 4	Interferen regulatory factor (IRE)	BC015752	HcCD00077553	pg. 22
			DC013732	115000077333	pg. 22
IRF5	Interferon regulatory factor 5	Interferon regulatory factor (IRF)	BC004139	HsCD00078081	pg. 22
LEF1	lymphoid enhancer-binding factor 1	high mobility group-type (HMG)	BC050632	HsCD00299770	pg. 22
LHX4	LIM homeobox 4	Homeodomain (Homeodomain)	BC011759	HsCD00077458	pg. 23
LIN28	lin-28 homolog (C. elegans)	zinc finger, C2HC-type (C2HC)	BC028566	HsCD00079059	pg. 23
MAD	MAX dimerization protein 1	basic helix-loop-helix leucine zipper	L06895	HsCD00301580	
		(bHLHZ)			pg. 23
ΜΔΥ	MVC associated factor X	basic belix-loon-belix leucine zinner	NM 002382	HeCD00301600	10
100 0 0			1111_002002	1130200001000	ng 22
			D0040407	11-000000000	pg. 25
MEFZA	MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer	MADS-DOX (MADS-DOX)	BC013437	HSCD00299868	
	factor 2A)				pg. 24
MEF2C	MADS box transcription enhancer factor 2, polypeptide C (myocyte enhancer	MADs-box (MADs-box)	BC026341	HsCD00300012	
	factor 2C)				pg. 24
MYB	v-mvb mveloblastosis viral oncogene homolog (avian)	SANT-domain (SANT)	AF104863	HsCD00301531	pg. 24
MYBL2	v-myb myeloblastosis viral oncogene bomolog (avian)-like 2	SANT-domain (SANT)	BC007585	HsCD00077770	pg. 24
MYC	v-myc myelocytomatosis viral oncogene homolog (avian)	basic helix-loon-helix leucine zinner	BC000141	HsCD00076570	1.0
	·, ·, ·, ·, · · · · · ·		20000141	133200010310	ng 35
10/50			D0047001	11 0000000000	pg. 25
MYF6	myogenic factor 6 (herculin)	pasic helix-loop-helix (bHLH)	BC01/834	HsCD00077638	pg. 25
NFATC3	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3	Cell surface receptor (IPT/TIG)	BC001050	HsCD00077145	pg. 25
NFE2	nuclear factor (erythroid-derived 2), 45kDa	basic-leucine zipper (bZIP)	BC005044	HsCD00079103	pg. 25
NFIA	nuclear factor I/A	nuclear factor I-domain (NFI)	BC022264	HsCD00077446	pg. 26
NFIC	nuclear factor I/C (CCAAT-binding transcription factor)	nuclear factor I-domain (NFI)	BC012120	HsCD00078641	pg. 26
NFKB1	nuclear factor of kanna light polypentide gene enhancer in B-cells 1 (p105)	Cell surface recentor (IPT/TIC)	BC051765	HsCD00301116	ng 26
	nuclear recenter subfemily 1, group 1, see the 2	Nuclear hormons accenter (NUC)	BC060000 4	HaCD00204000	Pg. 20
	nuclear receptor subtarnity 1, group 1, member 3	Nuclear normone receptor (NHR)	BC009626.1	HSCD00304068	pg. 27
NR2E1	nuclear receptor subtamily 2, group E, member 1	Nuclear hormone receptor (NHR)	NM_003269	HsCD00305417	pg. 27
NR3C1	nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)	Nuclear hormone receptor (NHR)	BC015610	HsCD00300083	pg. 27
NR5A1	nuclear receptor subfamily 5, group A, member 1	Nuclear hormone receptor (NHR)	BC032501	HsCD00299843	pg. 27
OLIG1	oligodendrocyte transcription factor 1	basic helix-loop-helix (bHLH)	BC033290	HsCD00076967	pg. 28
OTX1	orthodenticle homolog 1 (Drosophila)	Homeodomain (Homeodomain)	BC007621	HsCD00077740	pg. 28
PAT71	POZ (BTB) and AT book containing zing finger 1	zinc finger_C2H2-type (C2H2)	CR456612	HsCD00301150	pg 20
			0044040	1150000301130	pg. 20
	paired-like nomeodomain transcription factor 3		BC011642	HSCD00078535	pg. 28
PLEK2	pieckstrin 2	Other	BC001226	HsCD00077265	pg. 29
POLR2F	polymerase (RNA) II (DNA directed) polypeptide F	Other	CR456546	HsCD00301192	pg. 29
POU1F1	POU domain, class 1, transcription factor 1 (Pit1, growth hormone factor 1)	POU-domain (POU)	NM_000306	HsCD00302903	pg. 29
POU3F4	POU domain, class 3, transcription factor 4	POU-domain (POU)	NM_000307	HsCD00303140	pg. 29
POU4F1	POU domain, class 4, transcription factor 1	POU-domain (POU)	NM 006237	HsCD00302919	ng 30
POLI4F3	POLI class 4 homeobox 3	POLL-domain (POLL)	BC104923	HsCD00300001	ng 20
		Nucleas has	00104923		hR: 20
FPARA	peroxisome proliferator-activated receptor alpha	Nuclear normone receptor (NHR)	UK456547	HSCD00304173	pg. 30
		$z_{inc} t_{indor} (200) t_{inc} (C200)$	BC004434	Her 1)00070091	ng 20

Gene Symbol	Description		Accession	DNASU Clone ID	Page
SOX10	SRY (sex determining region Y)-box 10	high mobility group-type (HMG)	CR456584	HsCD00301364	pg. 31
SOX5	SRY (sex determining region Y)-box 5	high mobility group-type (HMG)	NM_006940	HsCD00301463	pg. 31
SREBF2	sterol regulatory element binding transcription factor 2	basic helix-loop-helix leucine zipper	CT841522	HsCD00301198	
		(bHLHZ)			pg. 31
STAT5A	signal transducer and activator of transcription 5A	Signal Transducers and Activators of	BC027036	HsCD00076786	
		Transcription subdomain (STAT)			pg. 32
STAT5B	signal transducer and activator of transcription 5B	Signal Transducers and Activators of	BC065227	HsCD00299823	
		Transcription subdomain (STAT)			pg. 32
TAF11	TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor,	Other	NM_005643	HsCD00301672	
	28kDa				pg. 32
TEF	thyrotrophic embryonic factor	basic-leucine zipper (bZIP)	NM_003216	HsCD00304220	pg. 33
TFAP2A	transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)	Transcription factor AP-2 (AP2)	BC017754	HsCD00077076	pg. 33
TFAP2B	transcription factor AP-2 beta (activating enhancer binding protein 2 beta)	Transcription factor AP-2 (AP2)	BC037225	HsCD00076757	pg. 33
TFCP2L1	transcription factor CP2-like 1	CP2 transcription factor (CP2)	BC064698	HsCD00299737	pg. 33
TFCP2L4	transcription factor CP2-like 4	CP2 transcription factor (CP2)	BC036890	HsCD00299801	pg. 34
TFDP2	transcription factor Dp-2 (E2F dimerization partner 2)	TF E2F/dimerisation partner (TDP)	BC021113	HsCD00299708	pg. 34
TGIF2	TGFB-induced factor 2 (TALE family homeobox)	Homeodomain (Homeodomain)	BC012816	HsCD00079074	pg. 34
TP53	tumor protein p53 (Li-Fraumeni syndrome)	p53-like DNA-binding (p53)	BC003596	HsCD00078349	pg. 34
TP73L	tumor protein p73-like	p53-like DNA-binding (p53)	BC039815	HsCD00299815	pg. 35
XBP1	X-box binding protein 1	basic-leucine zipper (bZIP)	CR456611	HsCD00301204	pg. 35
ZMAT5	zinc finger, matrin type 5	zinc finger, C2H2-type (C2H2)	CR456353	HsCD00301319	pg. 35
ZNF496	zinc finger protein 496	zinc finger, C2H2-type (C2H2)	BC007263	HsCD00077733	pg. 35
ZNF530	zinc finger protein 530	zinc finger, C2H2-type (C2H2)	BC060865	HsCD00301131	pg. 36
ZNF70	zinc finger protein 70 (Cos17)	zinc finger, C2H2-type (C2H2)	CR456615	HsCD00301373	pg. 36
ZNF74	zinc finger protein 74	zinc finger, C2H2-type (C2H2)	CR456616	HsCD00301379	pg. 36

Table Legend

Peptide Quality
Score
1
2
3
4

			Re	elativ	e Co	ontri	buti	on of	f Tra	nsiti	on to	o Sig	nal ([%)		
Peptides	У3	y_4	y ₅	y 6	y ₇	y ₈	y ₉	y ₁₀	y ₁₁	y ₁₂	y ₁₃	y ₁₄	y ₁₅	y ₁₆	y ₁₇	y ₁₈
FYYNPNFK	2	28	14	56												
GYPQLLVR	9	26	15	50												
IFQTDAIK	6	4	24	67												
NLNMPLTR	2	31	16	51												
QIIANSSVPIR	21	5	10	10	13	19	22									
QLNLYGFSK	4	32	37	10	17											
SAFLATFLSEEK	3	14	7	10	22	31	11	3								
YPLVSVNEAPYR	7	11	4	11	7	33	17	10								
NASPISTLFNEDFNK	59	7	18	12	2	1	1	0	0	0						
NMLPAGNPWLQMPTIADR	11	3	2	27	13	11	8	2	21	1	1					
DELTASEASTR	3	10	7	19	24	31	7									
IVESDQFK	3	3	15	79												
LALQPSPLDK	3	20	4	61	6	5										
SISWDENGTCIVINEELFK	5	9	7	27	19	17	5	7	2	2						
SPLCEHTFPGDSDLR	16	14	16	30	5	9	10	0	0	0						

				Re	elativ	e Co	ontri	butio	on of	Tra	nsiti	on to	o Sig	nal ((%)		
Y17 Y18	Peptides ELVPSIPQNK NSLSDHSLGISR TPVDDPMSLLYNMNDCYSK	У ₃ 0 1 8	y ₄ 35 12 14	У ₅ З 8 6	У _б 5 20 9	У7 53 22 9	У ₈ 3 9 17	У ₉ 23 20	y ₁₀ 5 14	У ₁₁ 3	У ₁₂	У13	У ₁₄	У ₁₅	У16	У ₁₇	y ₁₈

sprides	13		10	10	,,	10	,,,	10		112	113	7.14	10	110	 10	 - ch
IPGFANLDLNDQVTLLK	21	15	3	6	4	9	10	18	5	6	3					FM
LSVGMSHNAIR	3	5	5	11	6	37	10	24								WC
GMLVAYGNGFITR	4	2	3	3	19	18	35	13	2	0						
PFCDIMEPK	10	8	19	7	31	26										ME
HLQSNHPDDIFLFPK	35	9	7	12	6	1	22	3	2	4						NH
VANGIQNK	4	2	8	12	74											QF
IQEGIVHVLR	5	16	22	4	20	33										
LVTEHAQLVQIIK	9	17	8	6	8	16	17	5	11	4						EA
ESDAALHPLLQEIYR	3	2	3	4	2	59	19	5	2	0						MD
EILTCEHDIEDSETADLK	15	11	12	4	22	7	6	8	8	7						
SNNPPFVIHDMETLCMAEK	16	13	17	5	9	3	7	9	14	7						
FHCCQCTSVETVTELTEFAK	18	10	19	11	4	15	3	7	8	2	2					
YEAYLK	6	18	75													
SGYHYGVHACEGCK	16	5	10	14	16	3	19	14	4	0						

			Re	elativ	/e Co	ontri	butio	on of	Tra	nsiti	on to	Sig	nal	[%)		
ptides	y ₃	y ₄	y ₅	y ₆	У7	y ₈	y ₉	y ₁₀	y ₁₁	y ₁₂	y ₁₃	y ₁₄	y ₁₅	y ₁₆	y ₁₇	y ₁₈
ISAYEQR	5	13	9	73												
QYLLMAAEPYETIAFK	7	20	4	1	1	19	9	13	12	10	3					
EKPPAPPSLPAGPPGVK	1	4	8	5	1	17	2	2	6	33	3	8	11			
ILGSYECK	4	3	6	51	37											
FFLQFHFK	14	24	19	19	24											
PAQPAPEK	55	4	24	4	4	9										
DFQHRPGGK	5	19	6	17	3	50										

SUPPLEMENTARY DATA LEGENDS

Supplementary Data 2. Comparison of our empirical rankings with peptide rank predictions from the ESPPredictor algorithm

CLOCK ESPPredictor vs. Empirical SRM intensities

FOSL2 **ESPPredictor vs. Empirical SRM intensities**

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.77)

GATA2 **ESPPredictor vs. Empirical SRM intensities** SRM Signal Intensity (x10[^]6 1.0 SRM signal intensity rank **ESPPredictor Score** 0.8 0.8 5 0.6 0.6 0.4 0.4 0 2 10 0.0 NANGDPVCNACGLYYK-LHNVNRPLTMK-MNGQNRPLIKPK-VSYSPAHAR-AGTCCANCQTTTTTLWR AALSAAAAHHHNPWTVSPFSK. DGTGHYLCNACGLYHK ECVNCGATATPLW MEVAPEQPI YQVSLTESMI 10 GAECFEEL

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.79)

GATA3 ESPPredictor vs. Empirical SRM intensities

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.64)

GMEB2 **ESPPredictor vs. Empirical SRM intensities** 26.5 SRM Signal Intensity (x10^6) 1.0 SRM signal intensity rank **ESPPredictor Score** 0.8 5 0.6 0.4 10 0.2 0.0 VCSNTCR-MAEEGENLEAEIVYPITCGDSR-DAGLLDEVIQEFHQELVETMR-DAVLLNNIVQNFGMLDLVK CVQYDEHVISPK. IMDSGELDFYQHDK. SQHLSNVLMTLTPVSLPPPVK. IDLSGAR-FVCPGINV DLAALEQQCDEF MNGIML VQDPPLG

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.78)

GTF2H4 ESPPredictor vs. Empirical SRM intensities SRM Signal Intensity (x10⁶) 1.0 15 **ESPPredictor Score** 0.8 12 0.6 9 0.4 6 0 2 3 0.0 MESTIPSK IWHTQLLPGGLQGLINPIFR LYAYTESELQIALIALFSEMLYI DYSVEGMSDSLLNFLQHLR GMDLVEILSFLFQLSFTGK ELron MLFLEQPLPQAAVALW DVPSL ESVQQAIASGITAQQIHI MESTF ELPS LMVVTPAGH: AQEESTGLLS ELGVLVFEP QTPVLPPTTT FPNMVVAG NLQEFLGGLSPO EFGL AWSDDTSQ LYGHPA

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.85)

ESPPredictor rank

MYC

ESPPredictor vs. Empirical SRM intensities

ESPPredictor Rank vs.

Empirical SRM Intensity Rank

NR1I3 ESPPredictor vs. Empirical SRM intensities SRM Signal Intensity (x10⁶) 1.0 3.2 SRM signal intensity rank **ESPPredictor Score** 0.8 2.6 0.6 1.9 0.4 1.3 0 2 0.6 0.0 DMILSAEALAIR LLIGLLAELR EGEELR CLOBOATGYHFNALTGSKK DEDOAGEEMATLGSKK DEDOAGEEMALTGSKK SLPIEDQISLLK-AQQTPVQLSK-SIGPTCPFAGSCEVSK-YTIEDGAF TLLGAHTF

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.59)

NR2E1 ESPPredictor vs. Empirical SRM intensities SRM Signal Intensity (x10^6) 1.0 117 **ESPPredictor Score** 0.8 - 9.4 0.0 0.4 4.7 0.2 2.3 0.0 VERTAPOR SCANOGOCSPUCK HYGVYACDOCSOFTHE MARANALODEAGLTLSWHT MARANALODEAGLTLNSVHTFR QTLVSLAQPTI TIGNVPI SISPSTIEEVFI AVPTHSGSEI LDATEFAC LDATEFAC ILDIPC LLLLLPAL CLEVNMN DAVQHE SVPAFSTLSLQDQLMLLEDAV

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.65)

OLIG1 **ESPPredictor vs. Empirical SRM intensities** SRM Signal Intensity (x10[^]6) 1.0 18.9 **ESPPredictor Score** 0.8 15.1 0.6 11.3 0.4 7.6 0.2 3.8 0.0 IATLLLAR-MYYAVSQAR EEQQQQLR-MQDLNLAMDALR-EVILPYSAAHCQGAPGR ALGEGAGPAAPR NYILLLGSSLQELR. FPHLVPASLGLAAVQAQFSM

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.4)

<figure>

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.4)

ESPPredictor Rank vs. **Empirical SRM Intensity Rank** (Spearman=-0.26)

POU4F1 **ESPPredictor vs. Empirical SRM intensities**

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.29)

σī

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.74)

ESPPredictor Rank vs. **Empirical SRM Intensity Rank**

TGIF2 **ESPPredictor vs. Empirical SRM intensities**

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.13)

σı

_

ZMAT5 ESPPredictor vs. Empirical SRM intensities

ESPPredictor Rank vs. Empirical SRM Intensity Rank (Spearman=0.76)

19.5

13

6.5

56

Skyline Absolute Quantification

Introduction

This tutorial covers how to determine the absolute abundance of a target protein using Selected Reaction Monitoring (SRM) mass spectrometry. Specifically, we will demonstrate how to use an external calibration curve with an internal standard heavy labeled peptide.

Peptide absolute abundance measurements can be obtained using either a single-point or a multiplepoint calibration. Single-point calibration absolute abundance measurements are generated by spiking into a target sample a heavy labeled 'standard' version of the target peptide that is of known abundance. The absolute abundance of the 'sample' target peptide is obtained by calculating the relative abundance of the light 'sample' target peptide to the heavy 'standard' target peptide²². One drawback is that this approach assumes that a light-to-heavy ratio of 2 implies that the light peptide is actually twice as abundant as the heavy peptide – this is referred to as having a peptide response with a slope of 1. Furthermore, this approach of using a single point calibration makes the assumption that both the light and the heavy peptide are both within the linear range of the mass spectrometry detector. However, these assumptions are not always correct^{23,24,25,26}.

Multiple-point calibration experiments correct for situations where the peptide response does not have a slope of 1. This calibration is done by measuring the signal intensity of a 'standard' peptide at multiple calibration points of known abundance and generating a calibration curve. This calibration curve can then be used to calculate the concentration of the target peptide in a sample, given the signal intensity of that peptide in that sample²⁴. One drawback is that this method requires multiple injections into the mass spectrometer to build a calibration curve.

To improve the precision of absolute abundance measurements using an external calibration curve, stable isotope labeled internal standards are often used²⁷. Imprecise measurements of the ion intensity of a peptide often arise from sample preparation, autosampler or chromatographic irregularities. By adding an identical quantity of a standard heavy labeled peptide to each of the calibrants and the sample, one is able to measure the ratio of calibrant-to-standard or sample-to-standard. This approach is favored as this ratio is unaffected by some sample preparation, autosampler or chromatographic irregularities. Consequently, by performing peptide absolute quantification using an external calibration curve and an internal standard heavy labeled peptide one is able to obtain the most accurate and precise measurements while minimizing the amount of valuable sample that has to be used.

Experimental Overview

This tutorial will work with data published in Stergachis et al. 2011 where the absolute abundance of GST-tagged proteins were measured using a 'proteotypic' peptide present within the GST-tag (**Tutorial Figure 1A**). For any absolute quantification experiment, it is critical to first identify one or more 'proteotypic' peptides that will be used to quantify the protein of interest. The peptide IEAIPQIDK was identified as 'proteotypic' based on its strong signal intensity relative to other tryptic peptides in the GST-tag (unpublished). Also, this peptide uniquely identifies this schistosomal GST-tag as opposed to other human glutathione-binding proteins.

For this experiment, FOXN1 protein containing an in frame GST-tag was generated using *in vitro* transcription/translation and full-length proteins were purified using glutathione resin (**Tutorial Figure 1B**). Heavy labeled IEAIPQIDK peptide was then spiked into the elution buffer and the sample was digested and analyzed using selected reaction monitoring (SRM) on a Thermo TSQ Vantage triple-quadrupole mass spectrometer. An external calibration curve was generated using different quantities of a light IEAIPQIDK peptide that was purified to >97% purity and the concentration determined by amino acid analysis. Heavy labeled IEAIPQIDK peptide was also spiked into these calibrants at the same concentration as in the FOXN1-GST sample (**Tutorial Figure 1C**). It is important to note that it does not matter what the concentration of the heavy peptide is in each of the samples, so long as it is the same. However, it is best if the amount of heavy peptide in the samples is similar to the amount of light peptide originating from FOXN1-GST. Also, it is best if the concentration of the light peptide originating from FOXN1-GST. Also, it is best if the concentration range tested using the different calibrants.

Light:Heavy ratio of IEAIPQIDK peptide and external calibration curve

Sample		Light IEAIPQIDK peptide [*]	Heavy IEAIPQIDK peptide [‡]
Standard 1	H	40 fmole/μl	5 fmole/μl
Standard 2		12.5 fmole/µl	5 fmole/μl
Standard 3	H	5 fmole/μl	5 fmole/μl
Standard 4	H	2.5 fmole/μl	5 fmole/μl
Standard 5	H	1 fmole/μl	5 fmole/μl
Standard 6	H	0.5 fmole/μl	5 fmole/μl
Standard 7	H	0.25 fmole/μl	5 fmole/μl
Standard 8	U	0.1 fmole/μl	5 fmole/μl
FOXN1-GST <i>ivtt</i> reaction	?	Unknown	5 fmole/μl

* Light standard peptide is purified to >97% purity and the concentration was determined by amino acid analysis (AAA)

 \pm Heavy peptide is ${}^{13}C_{2}$ ${}^{15}N_{3}$ L-Lysine labeled crude peptide and the concentration was determined by absorbance at A280

Tutorial Figure 1. Experimental Overview

(A) Schistosomal GST-tag protein sequence. The tryptic peptide used for quantification purposes is indicated in red.

(B) Schematic of the synthesis, enrichment, digestion and analysis of tagged proteins.

(C) Samples monitored and the abundance of light and heavy IEAIPQIDK peptide in each.

Getting Started

First, please check

(https://skyline.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?name=tutorials) to ensure that this tutorial is up-to-date. Periodic revisions of this tutorial will occur as additional features are added to Skyline.

To start this tutorial, download the following ZIP file:

https://skyline.gs.washington.edu/tutorials/AbsoluteQuant.zip

Extract the files in it to a folder on your computer, like:

C:\Users\absterga\Documents

This will create a new folder:

C:\Users\absterga\Documents\AbsoluteQuant

Now start Skyline, and you will be presented with a new empty document.

Generating a Transition List

Before you insert a peptide sequence into Skyline, it is important to make sure that all of the peptide and transition settings are correctly configured for this experiment. The settings described below are designed for ${}^{13}C_{6}{}^{15}N_{2}$ L-Lysine labeled internal standard peptides. If you are using a different isotope, please choose the appropriate isotope modification in the Peptide settings configuration.

Configuring Transition settings:

- On Settings menu, click Transition Settings.
- Click the **Prediction** tab.
- Choose Monoisotopic for the Precursor mass and the Product ion mass.
- From the **Collision energy** drop-list choose the instrument that you will be using for your measurements. For this experiment, a **Thermo TSQ Vantage** was used for all measurements.
- Click the Filter tab.
- For these experiments we monitored doubly charged precursors (**Precursor charges**), and singly charged (**Ion charges**) y₃ to y_{n-1} product ions (**Ion types** and **Product Ions From** and **To**).
- The correct configuration of these tabs can be seen below.

Transition Settings	Transition Settings
Prediction Filter Library Instrument Full-Scan	Prediction Filter Library Instrument Full-Scan
Precursor mass: Product ion mass: Monoisotopic	Precursor charges: Ion charges: Ion types: 2 1 y
Collision energy: Declustering potential: Thermo TSQ Vantag Use optimization values when present Declustering potential: None	Product ions From: To: ion 3 Aways add: Aways add: Cterminal to Proline Cterminal to Glu or Asp Precursor m/2 exclusion window: Th Vato-select all matching transitions
OK Cancel	OK Cancel

Configuring Peptide settings:

- On the Settings menu, click Peptide Settings.
- Click the **Modifications** tab.
- Click the Edit list button for Isotope modifications.
- Click the **Add** button.
- Choose Label:13C(6)15N(2) (C-term K) from the Name dropdown list.
- Click the **OK** button.
- Check the new Label:13C(6)15N(2) (C-term K) modification in the Isotope modifications list.
- Since the experiment uses a heavy labeled internal standard peptide, ensure that the **Internal** standard type drop-list is set to heavy.

Inserting a peptide sequence:

- On the Edit menu, choose Insert and click Peptides.
- Paste *IEAIPQIDK* into the **Peptide Sequence** box and *GST-tag* into the **Protein Name** box.
- Click the **Insert** button.

eptide	e List		
	Peptide Sequence	Protein Name	Protein Description
•	IEAIPQIDK	GST-tag	
*			

After performing the above steps, the main screen of Skyline should appear as below. You can save this file as test_file or whatever you like in the folder you have created for this tutorial.

tu Skyline				
File Ec	lit View Set	tings Help		
눱 💕	🔏 🖻 📇	1) - (1 -		
	IEAIPQIDK ▲ 513.7951++ ▲ 6√7] - 784 ▲ 1√6] - 713 ▲ 1√6] - 713 ▲ 1√6] - 713 ▲ 1√6] - 713 ▲ 1√6] - 503 ▲ 1√7] - 784 ▲ 1√3] - 375 ▲ 1√3] - 375 ▲ 1√7] - 792	4.4563+ .4192+ 0.3352+ 3.2824+ .2238+ eavy) 2.4705+ .4334+ 3.3494+ 1.2966+ .2380+		
Ready	1/1 prot	1/1 рер	1/2 prec	1/10 tran;

Exporting a transition list:

- On the File menu, choose Export and click Transition List.
- The **Export Transition List** form can be configured as desired. Below is what was used for this experiment
- This exported transition list was used to generate an SRM method for a Thermo TSQ Vantage triple-quadrupole mass spectrometer.

Instrument type:	ОК
Thermo 🔻	Cancel
Single method	
One method per protei	n
Multiple methods	Ignore proteins
Methods: 1	
Optimizing:	
None •	
Method type:	
Chandrad]

Analyzing SRM Data from Calibrants

In this next section you will work with the nine samples indicated in **Tutorial Figure 1C**. You will import the .RAW files into Skyline to view the data. Data will be imported into the saved Skyline document that was generated in the previous section. The files that you will import are contained in the folder you created for this tutorial and are called:

- Standard_1.RAW
- Standard_2.RAW
- Standard_3.RAW
- Standard_4.RAW
- Standard_5.RAW
- Standard_6.RAW
- Standard_7.RAW
- Standard_8.RAW
- FOXN1-GST.RAW

These RAW files were collected in a random order and were interspersed amongst a larger set of runs contained within **Supplemental Data 2** for the original paper

(http://proteome.gs.washington.edu/software/skyline/ivt_srm/Supplementary_data_2.zip).

Before you look at the FOXN1-GST sample, you should first become familiar with the standards.

Importing RAW files into Skyline:

- On the File menu, choose Import and click Results.
- Click the Add single-injection replicates in files option in the Import Results form.

- Click the OK button.
- In the Import Results Files form, find and select all eight Standard RAW files listed above.
- Click **Open** to import the files.
- When presented with the option to remove the 'Standard_' prefix in creating replicate names, click **Do not remove**.

It may take a few moments for Skyline to import all of the RAW files.

(ort Results Files	? 🗙
Import Results	Look in: 🚞 Raw Files	- G 🤌 🖽 -
Add single-injection replicates in files Add multi-injection replicates in directories Add one new replicate Name: Add files to an existing replicate Name:	My Recent Documents Desktop My Documents	
	My Computer Source name: "Standard_1.1 Sources of type: Any spectra for	xmat Cancel

To ensure that the chromatographic peaks for each of the standards looks good, it is best to view all of the traces next to each other in a tiled view.

This can be done by clicking ctrl-T or on the **View** menu, by choosing **Arrange Graphs** and clicking **Tiled**.

If you select the IEAIPQIDK peptide on the left side of the screen, you will see the heavy (Blue) and light (Red) traces loaded into the same window for each standard.

What to inspect when looking at the chromatographic traces for the standards:

- Make sure that the correct peak is selected for both the heavy and light trace of each standard.
- Make sure the peak shapes look Gaussian and do not show an excessively jagged appearance. If this is the case, it may be best to rerun your samples.
- Make sure that the retention time is similar for the different standards. Widely varying retention times often indicate poor chromatography.

Analyzing SRM Data from FOXN1-GST Sample

Next you will want to import the FOXN1-GST.RAW file into the current Skyline document using the same instructions as detailed above. To ensure that this sample looks good, we will inspect the chromatographic trace, the fragmentation pattern and the retention time of both the heavy and light peak.

Because this is already a refined method, on the **Settings** menu, click **Integrate All**.

To focus on just the FOXN1-GST data, on the **View** menu, choose **Arrange** and click **Tabbed** (Ctrl-Shift-T), and click on the FOXN1-GST tab.

The **Retention Time** comparison graph can be displayed by pressing F8 or on the **View** menu, by choosing **Retention Times** and then clicking **Replicate Comparison**.

The **Peak Areas** comparison graph can be displayed by pressing F7 or on **View** menu, by choosing **Peak Areas** and then clicking **Replicate Comparison**.

To view the relative contribution of each transition to the total signal intensity, you can right-click on the **Peak Areas** graph, choose **Normalized To** and click **Total.**

You can then select either the light or heavy precursor and inspect to ensure that:

- The correct peak is selected for both the heavy and light trace.
- The peak shape looks Gaussian and does not show an excessively jagged appearance.
- The retention time is similar for the standards and the FOXN1-GST sample.
- The relative contribution of each transition to the total signal is similar for each sample. If this does not appear to be so, then an incorrect peak is likely selected for one of the samples.

Another way to view the data is to select the IEAIPQIDK peptide in the Peptide View to the left, as opposed to the individual light and heavy precursor ions.

To view the light-to-heavy ratio for each standard and the FOXN1-GST sample, you can right-click on the **Peak Areas** graph, choose **Normalized To** and click **Heavy**.

The values displayed in this **Peak Areas** graph will be the ones we use to build our calibration curve. It can be easily observed from this graph that the light-to-heavy ratio for the FOXN1-GST sample falls somewhere in the middle of the ratios from our calibration points. This is ideal, as this portion of the calibration curve is best for quantification purposes.

Generating a Calibration Curve

For this tutorial, you will make a calibration curve using Microsoft Excel. However, this can be done using other graphical or statistical programs such as R.

Exporting data from Skyline:

- On the File menu, choose Export and click Report.
- Click Edit List and then Add to specify the columns that will appear in the report.
- For this experiment you will want to have identifying features for each sample, as well as the **RatioToStandard** (See below for the parameters included).
- Once the report is configured, you can provide a **Report Name**.

Report Name: Peptide Ratio Results	Preview	ן
Peptides Precursors PeptideResults PeptideResults PeptideRetentionTime PeptideRetentionTime PeptideRetentionTime RestReplicate Sequence BeginPos PredictedRetentionTime AverageMeasuredRetentionTime Note ProteinName ProteinName ProteinNate ProteinNate ProteinNate ProteinNate	Peptide Sequence Protein Name Replicate Name Flatio To Standard	

- Click OK.
- Click **OK** in the **Edit Reports** form.
- Click Export in the Export Report form.
- Enter 'Calibration.csv' in the **File name** field of the save form that appears.
- Click Save.

When opened in Excel, the exported report should look like this:

X	🚽 ") • (" - =	Calibration_2.	csv - Microsoft Exc	el 🗆 🖻	23		
F	ile Home Insert	Page Layout Fo	ormulas Data Revi	iew View 🛇 🕜 🗆	er 23		
	A1	- (≏	PeptideSequ	ence	*		
	А	В	С	D	E		
1	PeptideSequence	ProteinName	ReplicateName	RatioToStandard			
2	IEAIPQIDK	GST-tag	Standard_1	21.4513			
3	IEAIPQIDK	GST-tag	Standard_2	6.2568	_		
4	IEAIPQIDK	GST-tag	Standard_3	2.0417	_		
5	IEAIPQIDK	GST-tag	Standard_4	0.8244			
6	IEAIPQIDK	GST-tag	Standard_5	0.2809			
7	IEAIPQIDK	GST-tag	Standard_6	0.1156			
8	IEAIPQIDK	GST-tag	Standard_7	0.0819			
9	IEAIPQIDK	GST-tag	Standard_8	0.0248			
10	IEAIPQIDK	GST-tag	FOXN1-GST	0.7079			
11					-		
14 -	Calibration	2/2/	1	Ш	▶		
Ready 100%							

To generate a calibration curve, you first need to specify for each standard the concentration of the light IEAIPQIDK peptide. These values can be found in **Tutorial Figure 1C** and are also displayed below.

Once these known concentrations are entered, you can display the calibration curve by selecting the values, as indicated below, and clicking the **Insert** tab and then **Scatter Plot**.

A trendline for the calibration curve can be generated by right-clicking on the data points within the graph and selecting **Add Trendline**. From the trendline options, you will want to select Linear Regression. In more recent versions of Excel, you will also want to make sure the check boxes are checked to display the equation and the R-squared value on the chart.

Now inspect the trendline to ensure that:

- None of the standards drastically depart from it.
- The data points still appear to follow the trendline even at the lower concentration points.
- The R² value is high, indicating a good fit.

Calculating the Concentration of the FOXN1-GST Sample

To calculate the concentration of the light IEAIPQIDK peptide within the FOXN1-GST sample you will use the calibration curve from the previous section. This will allow you to calibrate the light-to-heavy ratio of IEAIPQIDK within the FOXN1-GST sample to known concentrations. To do this, you must first identify the slope and intercept of the calibration curve.

To do this, you can select two adjacent cells in Excel and type into the equation dialog:

=LINEST(E2:E9,D2:D9)

E2:E9 are the y-values (Concentration) D2:D9 are the x-values (light-to-heavy ratio)

Then press ctrl-shift-Enter and the Slope and Intercept will be displayed in the two selected cells

Using this linear equation the concentration of any unknown sample (y-value) can be obtained by inserting the light-to-heavy ratio of that sample (x-value) into a standard $y = m^*x + b$ equation (concentration = slope * ratio + intercept).

We can do this for the FOXN1-GST sample in excel by typing into a cell:

=B32*D10 + C32

B32 is the slope of the linear regression D10 is the light-to-heavy ratio of the FOXN1-GST sample C32 is the Intercept of the linear regression

This yields the value 1.86 as the concentration of FOXN1-GST within our sample. This concentration is in units fmole/ μ l or nM, as this is the concentration of our calibrants used for the linear regression.

Since the purified FOXN1-GST reaction was resuspended in 100 μ l total volume, we can state that there are 189 femtomoles, or 1.13×10^{11} molecules of FOXN1-GST within our sample.

Conclusion

This tutorial presented the advantages of different absolute abundance experimental setups and demonstrated how to determine absolute abundances using an external calibration curve with an internal standard heavy labeled peptide. This method provides accurate and precise absolute measurements while minimizing the amount of valuable sample that has to be used during the experiment.

Reference List

- 22. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. *Proceedings of the National Academy of Sciences of the United States of America* **100**, 6940-6945 (2003).
- 23. MacCoss, M.J., Wu, C.C., Matthews, D.E. & Yates, J.R. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. *Analytical Chemistry* **77**, 7646-53 (2005).
- 24. Lavagnini, I. & Magno, F. A statistical overview on univariate calibration, inverse regression, and detection limits: Application to gas chromatography/mass spectrometry technique. *Mass spectrometry reviews* **26**, 1-18
- 25. Watson, J.T. Mass Spectrometry. *Methods in Enzymology* **193**, 86–106 (1990).
- 26. Patterson, B.W. & Wolfe, R.R. Concentration dependence of methyl palmitate isotope ratios by electron impact ionization gas chromatography/mass spectrometry. *Biological mass spectrometry* **22**, 481-6 (1993).
- MacCoss, M.J., Toth, M.J. & Matthews, D.E. Evaluation and optimization of ion-current ratio measurements by selected-ion-monitoring mass spectrometry. *Analytical chemistry* 73, 2976-84 (2001).