Supporting Information for ja-2011-056852:

Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

Todd F. Markle, Ian J. Rhile, and James M. Mayer

Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700 mayer@chem.washington.edu

I. Complete citation for reference 64	
II. EXSY spectrum of compound 2	
III. Spectrophotometric determination of <i>K</i> _{eq}	S3
IV. Solution IR spectra	S4
V. Crystallography	S4
VI. DFT calculated geometries	S6
VII. Oxidations using iron(III)-tris-diimine oxidants	

I. Complete citation for reference 64.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford CT, 2004.

II. EXSY spectrum of compound 2.

Simple analysis of the EXSY spectrum, Figure S1, gives a rough estimate of the rate constant for the exchange process of 0.6 s⁻¹. This was determined using the relation: $k = t_{\rm m}^{-1} \ln(r + 1 / r - 1)$, where $t_{\rm m}$ is the mixing time and the term *r* is related the intensity of the cross and diagonal peaks ($I_{\rm AB}$, $I_{\rm AA}$, and $I_{\rm BB}$), $r = 4X_{\rm A}X_{\rm B}(I_{\rm AA} + I_{\rm BB})/2I_{\rm AB} - (X_{\rm A} - X_{\rm B})^2$, where *X* is the mole fraction population of a given site.¹

Figure S1. 2D EXSY ¹H NMR spectrum of **2** (6 mM) in CD₃CN, collected at 298 K. The lines on the 2D spectrum indicate the exchange cross peak for the phenolic and amino protons. The asterisks on the 1D spectra indicate the residual solvent peak.

¹ Perrin, C. L.; Dwyer, T. J. Chem. Rev. **1990**, 90, 935-967.

III. Spectrophotometric determination of K_{eq} .

The equilibrium constant for reaction 2, K_2 , was determined from the change in the position of the equilibrium with varying amounts of excess phenol. With known initial concentrations of the four species and the assumption of mass balance, the decrease in absorbance at λ_{max} of **3a** (718 nm) was used to calculate equilibrium concentrations of **2**, **3a**, **2**⁺, and **3a**⁰. Plotting $[2^+]_{\text{eq}}[3^0]_{\text{eq}}/[3]_{\text{eq}}$ vs. $[2]_{\text{eq}}$ yields a straight line with a slope equal to K_2 , here 0.049(8), $R^2 = 0.998$, Figure S2a. This treatment was repeated at various temperatures, giving the Van't Hoff plot, Figure S2.

Figure S2. (a) Determination of K_2 at 295 K, see text. (b) Variation of K_{eq} with temperature for the reaction of **3a** with **2** (filled circles) and d_3 -**2** (open circles). Lines are fits to the Van't Hoff equation.

IV. Solution IR spectra.

Compound 1 was deuterated via exchange with MeOD. IR spectra for 1 and d_3 -1 were collected in CHCl₃ solution, Figure S3. Upon deuteration, the broad band assigned to vOH, which overlaps with the sharper CH stretches at ca. 2800-3000 cm⁻¹, decreased and a new broad band centered at 2200 cm⁻¹, corresponding to the vOD stretch, appeared.

Figure S3. IR spectra of **1** (blue) and d_3 -**1** (red).

V. Crystallography.

Empirical formula	C ₁₇ H ₂₇ NO		
Formula weight	261.40		
Temperature	208(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	$a = 9.5490(17) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	$b = 12.040(2) \text{ Å} \qquad \beta = 90^{\circ}.$		
	$c = 27.566(5) \text{ Å} \qquad \gamma = 90^{\circ}.$		
Volume	3169.4(10) Å ³		
Z	8		
Density (calculated)	1.096 Mg/m ³		
Absorption coefficient	0.067 mm^{-1}		
F(000)	1152		
Crystal size	$0.12 \times 0.10 \times 0.04 \text{ mm}^3$		
Crystal color/habit	colorless block		
Theta range for data collection	2.59 to 25.02°.		
Index ranges	$-11 \le h \le 10, -11 \le k \le 14, -32 \le l \le 31$		
Reflections collected	19339		
Independent reflections	2794 [$R_{\rm int} = 0.1033$]		
Completeness to theta = 25.00°	99.7%		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9973 and 0.9920		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2794 / 0 / 182		
Goodness-of-fit on F ²	1.060		
Final R indices [I>2sigma(I)]	$R_1 = 0.0698, wR_2 = 0.1420$		
<i>R</i> indices (all data)	$R_1 = 0.1381, wR_2 = 0.1660$		
Largest diff. peak and hole	0.339 and -0.206 <i>e</i> Å ⁻³		

Table S1. Collection and refinement data for the crystallographic structure of 2.

VI. DFT calculated geometries.

	$d_{ m ON}$	$d_{ m OH}$	$d_{ m NH}$	∠OHN	r_0^{a}	
1	2.643	0.995	1.743	148.0	0.684	
$1^{+\bullet}$	2.533	1.549	1.083	147.9		
2	2.808	0.985	1.934	146.4	0.897	
$2^{+\bullet}$	2.646	1.699	1.072	145.9		

Table S2. B3LYP/6-31G(d,p) hydrogen bond geometries for 1 and 2. Bond lengths are in Å, angles are in degrees.

^{*a*} Proton transfer distance calculated following: Johannissen, L. O.; Irebo, T.; Sjödin, M.; Johansson, O.; Hammarström, L. *J. Phys. Chem. B.*, **2009**, *113*, 16214-16225.

Table S3. Effect of basis set and functional on the difference in d_{ON} calculated for 1 and 2.

	6-311G(d)	6-311++G(d,p)	6-311++G(3d,3p)	cc-pVTZ	aug-cc-pVTZ
BP86	0.148	0.171	0.171	0.162	0.169
PBEPBE	0.148	0.173	0.172	0.162	0.171
B3LYP	0.156	0.178	0.179	0.171	0.180
M06	0.149	0.165	0.168	0.161	0.168
M062X	0.155	0.173	0.179	0.176	0.182

B3LYP/6-31G(d,p): $d_{ON} = 0.165$ Å (gas phase), 0.163 Å (with PCM model of MeCN solvent)

	6-311G(d)	6-311++G(d,p)	6-311++G(3d,3p)	cc-pVTZ	aug-cc-pVTZ
			$d_{ m ON}$		
BP86	2.626	2.631	2.629	2.630	2.629
PBEPBE	2.623	2.628	2.626	2.627	2.626
B3LYP	2.650	2.657	2.655	2.655	2.655
M06	2.655	2.667	2.670	2.670	2.670
M062X	2.660	2.669	2.667	2.662	2.664
			$d_{ m OH}$		
BP86	1.013	1.011	1.010	1.010	1.010
PBEPBE	1.011	1.009	1.008	1.009	1.009
B3LYP	0.989	0.988	0.987	0.988	0.987
M06	0.985	0.983	0.981	0.981	0.981
M062X	0.983	0.982	0.982	0.984	0.983
			$d_{ m NH}$		
BP86	1.708	1.711	1.708	1.708	1.708
PBEPBE	1.707	1.710	1.706	1.706	1.706
B3LYP	1.769	1.774	1.771	1.770	1.772

Table S4. Calculated d_{ON} , d_{OH} , d_{NH} , and $\angle OHN$ values for 1.

SI Appendix: Markle, et al.

M06	1.788	1.800	1.803	1.802	1.803
M062X	1.797	1.803	1.797	1.790	1.794
			∠OHN		
BP86	148.6	149.2	149.6	149.6	149.5
PBEPBE	148.5	149.2	149.6	149.7	149.6
B3LYP	146.3	146.8	147.1	147.2	147.0
M06	145.0	145.3	145.4	145.6	145.4
M062X	144.7	145.3	145.8	145.9	145.8

Table S5. Calculated d_{ON} , d_{OH} , d_{NH} , and $\angle OHN$ values for **2**.

	6-311G(d)	6-311++G(d,p)	6-311++G(3d,3p)	cc-pVTZ	aug-cc-pVTZ
			$d_{ m ON}$		
BP86	2.774	2.801	2.799	2.792	2.798
PBEPBE	2.772	2.801	2.798	2.790	2.797
B3LYP	2.806	2.835	2.834	2.826	2.835
M06	2.804	2.832	2.837	2.831	2.837
M062X	2.816	2.843	2.846	2.838	2.846
			$d_{ m OH}$		
BP86	1.002	0.998	0.997	0.998	0.998
PBEPBE	1.000	0.996	0.995	0.997	0.996
B3LYP	0.982	0.980	0.978	0.979	0.979
M06	0.980	0.977	0.975	0.976	0.975
M062X	0.976	0.974	0.973	0.974	0.974
			$d_{ m NH}$		
BP86	1.876	1.908	1.904	1.893	1.902
PBEPBE	1.876	1.910	1.905	1.892	1.903
B3LYP	1.942	1.975	1.973	1.961	1.974
M06	1.951	1.983	1.989	1.981	1.990
M062X	1.970	1.999	2.001	1.991	2.002
			∠OHN		
BP86	147.5	147.5	148.0	148.3	148.0
PBEPBE	147.4	147.4	147.9	148.3	147.9
B3LYP	145.4	145.2	145.5	145.8	145.4
M06	144.1	143.9	144.1	144.4	144.0
M062X	143.6	143.6	143.9	144.1	143.7

VII. Oxidations using iron(III)-tris-diimine oxidants.

Figure S4. Variation of rate constants $\ln(k)$ with $\ln(K_{eq})$ for the reactions of [Fe(N–N)₃]³⁺ with **1** (**•**)² and **2** (**•**).

While the CPET mechanism is generally indicated for all the reactions described in this report, the thermodynamic arguments are not as strong for the reactions of the iron tris-diimine oxidants, which have higher apparent barriers and lower $\Delta G^{\circ}_{\rm ET}$. For example, the $k = (4.3 \pm 0.4) \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ for $\mathbf{2} + [\mathrm{Fe}(5.5 -\mathrm{Me_2}\mathrm{bpy})_3]^{3+}$ corresponds to an Eyring barrier (ΔG^{\ddagger}) of 0.42 eV, which is lower than the estimated $\Delta G^{\circ}_{\rm ET} \approx -0.51 \,\mathrm{V}$ but still within the uncertainty of this estimate. Still, a CPET pathway is most consistent with the results, such as the primary KIE of 2.6 ± 0.4 for $\mathbf{1} + [\mathrm{Fe}(5.5 -\mathrm{Me_2}\mathrm{bpy})_3]^{3+}$.² In addition, the rate constants for the reactions of $\mathbf{2}$ follow the trends expected from Marcus cross-relation. For instance, the reaction of $\mathbf{2} + [\mathrm{Fe}(\mathrm{Me_4}\mathrm{phen})_3]^{3+}$ is *ca*. 5 times slower than the reaction of $\mathbf{2} + 3\mathbf{d}^+$ due to a slightly higher driving force (0.02 V) and the higher intrinsic barriers for [Fe(N-N)_3]^{3+} vs. the amminium reagents.³ Thus all of the reactions studied here are indicated to proceed by CPET.

² Rhile, I. J.; Markle, T. F.; Nagao, H.; DiPasquale, A. G.; Lam, O. P.; Lockwood, M. A.; Rotter, K.; Mayer, J. M. *J. Am. Chem. Soc.* **2006**, *128*, 6075-6088.

³ A factor of nine is predicted from the Marcus cross relation, $k_{2+ox} = (k_{se,ox} k_{se,2} K_{eq} f)^{1/2}$ using the rates for the self-exchange reactions in MeCN $(k_{se,ox})$: 6.9 × 10⁸ M⁻¹ s⁻¹ for $3c^{+/0}$ and 1.7 × 10⁷ M⁻¹ s⁻¹ for [Fe(Me₄phen)₃]^{3+/2+}. (a) Eberson, L. *Electron Transfer Reactions in Organic Chemistry*; Springer-Verlag: New York, 1987; p. 51. (b) Wherland, S. *Coord. Chem. Rev.* **1993**, *123*, 169-199.