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Derivation of the Correlation Functions. We considered a feedfor-
ward network as in Fig. S1A. Let x(t) = [x1(t), . . . , xN(t)]

T denote
the vector of N inputs where xjðtÞ ¼

P
t fj
δðt− tfj Þ is the Dirac delta

spike train of neuron j at time t, where t fj are the spike timings.
The input spike trains have instantaneous firing rates
ρinstðtÞ ¼ ½ρinst1 ðtÞ; . . . ; ρinstN ðtÞ�T ¼ hxðtÞi. (Here the expectation is
taken over the input statistics.) The pairwise input correlation
matrix (second moment) between inputs k and j is defined as

CkjðsÞ ¼ 1
T

ðT
0

�
xkðtÞxjðt− sÞ�dt: [S1]

[Formally, the correlationmatrix should be written asCkj(t; s). For
notational convenience, here we omit the dependence on t.] The
diagonal elements of this pairwise input correlation matrix have
an atomic (or point) discontinuity at s = 0 because hx2kðtÞi ¼hxkðtÞiδð0Þ. [Note that in discrete time with bin size δt, we trivially
have x2kðtÞ ¼ xkðtÞδt− 1; where xk(t) ∈ {0, δt−1} is the kth spike train
at time t.] Separating this correlation matrix from the pairwise
correlation matrix without atomic discontinuities, C∘

kj (where the
“o” superscript denotes the absence of such discontinuity), gives

CkjðsÞ ¼ C∘
kjðsÞ þ δkjδðsÞ ρk [S2]

where δkj is the Kronecker delta function δkj = 0 if k ≠ j and δkj =
1 if k = j, and the mean firing rate averaged over the duration of
the trial T is ρk ¼ ð1=TÞÐ T0 ρinstk ðtÞdt. The third-order correlation
input statistic is given by

Ukjnðs1; s2Þ ¼ 1
T

ðT
0

�
xkðtÞxjðt− s1Þxnðt− s2Þ

�
dt: [S3]

For this third-order tensor, Uj denotes a matrix whose (k, n)
element is Ukjn. This third-order correlation function has atomic
discontinuities at s1 = 0, s2 = 0, and s1 = s2, and we can write

Ukjnðs1; s2Þ ¼ U∘
kjnðs1; s2Þ þ δkjδjn   δðs1Þδðs2 − s1Þ ρj

þ δkj   δðs1ÞCjnðs2 − s1Þ þ δkn   δðs2ÞCkjðs1Þ
þ δjn   δðs2 − s1ÞCknðs2Þ; [S4]

where U∘
kjnðs1; s2Þ is the third-order correlation without atomic

discontinuities and is equal to ρkρjρn if the inputs have in-
dependent Poisson statistics.
Let u(t) denote the membrane potential of the postsynaptic

neuron,

uðtÞ ¼
XN
k¼1

wk

ð∞
0
εðrÞxkðt− rÞdr; [S5]

where ε(r) denotes the excitatory postsynaptic potential (EPSP)
kernel taken to be a decaying exponential, 1=τee− r=τeΘðrÞ, and
Θ(r) is the Heaviside step function such that Θ(r) = 1 when r >
0 and Θ(r) = 0 otherwise. Postsynaptic spikes were generated
stochastically from the membrane potential (1, 2), such that the
probability density of firing a spike at time t was given by
a nonlinear transfer function depending on the membrane po-
tential, 〈y(t)〉 = g(u(t)). (Here the expectation was taken over the
postsynaptic spike train statistics.) For additional simplicity, this
function was approximated by the first-order expansion about u0
in the rest of the calculations

gðuðtÞÞ ≈ gðu0Þ þ g′ðu0ÞðuðtÞ− u0Þ; [S6]

where the expected membrane potential averaged over the trial
duration T was

u0 ¼ 1
T

ðT
0
huðtÞidt ¼

XN
k¼1

wkρk: [S7]

We also denoted the mean postsynaptic firing rate with ν= g(u0).
We derive the pre-post correlation Kj (between one presynaptic
and the postsynaptic train),

KjðsÞ¼ 1
T

ðT
0

�
yðtÞxjðt− sÞ�dt

¼ 1
T

ðT
0

�
gðuðtÞÞxjðt− sÞ�dt

¼ 1
T

ðT
0

h
gðu0Þρjðt− sÞ þ g′ðu0Þ

�
uðtÞxjðt− sÞ�

− g′ðu0Þu0ρjðt− sÞ
i
dt

¼ gðu0Þρj þ g′ðu0Þ
�
1
T

ðT
0

�
uðtÞxjðt− sÞ�dt− u0ρj

�
¼ ðgðu0Þ− g′ðu0Þu0Þρj þ g′ðu0Þ

X
k

wkCε
kjðsÞ

¼ g′ðu0Þ
X
k

wkCε
kjðsÞ þ αðu0Þρj; [S8]

where α(u) = g(u) – g′(u)u andCε
kjðsÞ ¼

Ð∞
0 εðs′ÞCkjðs− s′Þds′. Note

that α(u) vanishes when g(u) is strictly linear (g(u) = u) and is in-
dependent of the weights if g(u) is an affine function (i.e., a linear
function plus a translation). When the transfer function is linear
gðuÞ ¼ u; then αðu0Þ ¼ 0 and KjðsÞ ¼

P
k C

ε
kjðsÞwk. We have ex-

pressed this term in Fig. S1B andD (red curve). Fig. S1B shows the
pre-post correlation for independent Poisson inputs (no corre-
lations) which only has an exponential causal component ðΔt> 0Þ;
corresponding to the EPSP. The presence of input correlations in
Fig. S1D contributes both a larger exponential causal component
and a nonzero acausal component ðΔt< 0Þ - here we have assumed
exponentially-decaying input correlations symmetric about 0.
For the post–prepost correlation tensor Q, we ignore the case

when the two postsynaptic spikes overlap (s2 = 0) because it is
accounted for in the contribution from the pair rule. Then

Qjðs1; s2Þ¼1
T

ðT
0

�
yðt− s2Þxjðt− s1ÞyðtÞ

�
dt

¼ 1
T

ðT
0

�
gðuðt− s2ÞÞxjðt− s1ÞgðuðtÞÞ

�
dt

¼ g2ðu0Þρj − ðg′ðu0ÞÞ2u20ρj − 2g′ðu0Þðgðu0Þ− g′ðu0Þu0Þ u0ρj
þ  g′ðu0Þðgðu0Þ− g′ðu0Þu0Þ
1
T

ðT
0

��
xjðt− s1ÞuðtÞ

�þ �uðt− s2Þxjðt− s1Þ
��
dt

þ  ðg′ðu0ÞÞ2 1T
ðT
0

�
uðtÞuðt− s2Þxjðt− s1Þ

�
dt:

[S9]

Using the expression for α(u) above, we get
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Qjðs1; s2Þ ¼ αðu0Þg′ðu0Þ
�
1
T

ðT
0

�
xjðt− s1ÞuðtÞ

�
dt

þ 1
T

ðT
0

�
uðt− s2Þxjðt− s1Þ

�
dt
�

þ  ðg′ðu0ÞÞ2
�
1
T

ðT
0

�
uðtÞuðt− s2Þxjðt− s1Þ

�
dt
�

þ α2ðu0Þρj: [S10]

Now using Eq. S7, we get

Qjðs1; s2Þ ¼ αðu0Þg′ðu0Þ
X
k

wk

�
Cε
kjðs1Þ þ Cε

kjðs1 − s2Þ
	

þ  ðg′ðu0ÞÞ2
X
k;n

wkwnUε
kjnðs1; s2Þ þ α2ðu0Þρj; [S11]

where Uε
j ðs1; s2Þ ¼

Ð∞
0

Ð∞
0 εðrÞεðqÞUjðs1 − r; s2 − r þ qÞdr dq: When

the transfer function is linear gðuÞ ¼ u; then αðu0Þ ¼ 0; the pre-
post-post correlation Qj is simply a function of the (convolved)
third-order input correlation tensor: Qjðs1; s2Þ ¼

P
k
P

n
wkwnUε

kjnðs1; s2Þ: This post-pre-post correlation is illustrated in
Fig. S1C (Right) for independent Poisson inputs; due to the
absence of correlations, the only nonzero component is for
triplets in which the presynaptic spike occurs before the two
postsynaptic spikes ðΔt1 >Δt2 > 0Þ: For correlated inputs with
symmetric exponentially-decaying correlations, the component
corresponding to pre-post-post triplet has a larger amplitude
(Fig. S1E, Right), but here post-pre-post triplets ðΔt2 >Δt1 > 0Þ
also contribute to the correlation function.

Weight Dynamics. The triplet spike-timing–dependent plasticity
(STDP) model can be written in the following differential form.
Let xj be a low-pass filtered version of the jth presynaptic spike
train xj with time constant τ+ given by

_xj ¼ −
xj
τþ

þ xj; j ¼ 1; . . . ;N: [S12]

Similarly, let y1 and y2 be two different low-pass filtered versions
of the postsynaptic spike train y with time constants τ– and τy,
respectively:

_y1 ¼ −
y1
τ−

þ y; [S13]

_y2 ¼ −
y2
τy

þ y: [S14]

The minimal triplet STDP model can be written as

_wj ¼ −A−
2 xj y1 þ Aþ

3 y xj y2: [S15]

In the previous section we assumed that the weights wj were fixed.
Here, we allowed the weights to be dynamic, but with a small
learning rate such that the results in the previous section are still
valid (1, 2). Consistent with the approach of ref. 1, we expressed
the weight change as a Volterra expansion of both the pre- and
postsynaptic spike trains. Setting the first order terms to zero
(because they correspond to non-Hebbian dynamics), we as-
sumed that synaptic plasticity depends on second- and third-or-
der terms only, i.e. pairs of spikes (1 pre and 1 post) and triplets
of spikes (1 pre and 2 post)

where W2 is pair-based STDP and W3 is triplet STDP (equations
and parameters listed in the main text). [Note that in ref. 3, the
wrong number of pairs is assumed in the STDP experiments (60
instead of 75) and therefore the fitted amplitude parameters were
overestimated by approximately 10 %. For the sake of consistency
with ref. 3 we kept the same parameters.] Assuming slow learning
relative to the neuronal dynamics, and replacing the weights by
their expectation averaged over a time period T, we have

_wj ¼
ð∞
−∞

W2ðsÞKjðsÞdsþ
ð∞
−∞

ð∞
−∞

W3ðs1; s2ÞQjðs1; s2Þds1ds2:
[S16]

Under the assumption of a linear approximation of the transfer
function given in Eq. S6, and by inserting Eqs. S8 and S11 into
Eq. S16, we find

_w ¼ g′ðu0ÞðAþDÞwþ g′2ðu0Þ
XN
j¼1



wTBjw

�
ej þ κðu0Þρ; [S17]

where ej is a vector of zeros with a 1 at the jth component and

Ajk ¼
ð∞
−∞

W2ðsÞCε
kjðsÞds; [S18]

Djk ¼ αðu0Þ
ð∞
−∞

ð∞
−∞

W3ðs1; s2Þ
�
Cε
kjðs1Þ þ Cε

kjðs1 − s2Þ
	
ds1ds2;

[S19]

Bkjn ¼
ð∞
−∞

ð∞
−∞

W3ðs1; s2ÞUε
kjnðs1; s2Þds1ds2; [S20]

κðu0Þ ¼ αðu0ÞW 2 þ α2ðu0ÞW 3; [S21]

with W 2 ¼
Ð∞
−∞W2ðsÞds and W 3 ¼

Ð∞
0

Ð∞
0 W3ðs1; s2Þds1ds2. Note

that g′(u0) and κ(u0) depend on the weights w (through u0), and
therefore we cannot analyze Eq. S17 in the same way as if we
assume a strictly linear transfer function. In that case, with a
linear transfer function, g(u) = u, we have g′(u0) = 1, α(u0) = 0,
and hence κ(u0) = 0. Then we get:

_w ¼ Awþ
XN
j¼1



wTBjw

�
ej: [S22]

We can also write this equation so that it resembles the Bien-
enstock–Cooper–Munro (BCM) equation for weight evolution
(see also Eq. 6 in the main text),

_w ¼ ϕðνÞρ|fflfflffl{zfflfflffl}
BCM term

þΔAwþ
XN
j¼1



wTΔBjw

�
ej; [S23]

where ϕðνÞ ¼ W 2νþW 3ν2 corresponds to the BCM term. The
new covariance terms ΔA and ΔB are defined analogously to A
and B given the input covariances,

ΔAjk ¼
ð∞
−∞

W2ðsÞΔCε
kjðsÞds; [S24]

where ΔCkj(s) = Ckj(s) −ρkρj is the input pairwise covariance
matrix, and

ΔBj ¼
ð∞
0

ð∞
0
W3ðs1; s2ÞΔUε

j ðs1; s2Þds1ds2;

_wj ¼ yðtÞ
ð∞
0
W2ðsÞxjðt− sÞdsþ xj



t
�ð∞

0
W2ð− sÞyðt− sÞds

þ yðtÞ
ð∞
0

ð∞
0
W3ðs1; s2Þxjðt− s1Þyðt− s2Þds1ds2
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where ΔUkjn(s1, s2) = Ukjn(s1, s2) −ρkρjρn is the input triplet
covariance tensor.
M patterns were presented to the network, pattern i with

probability pi, with a mean firing rate of ρ(i ) and pairwise and
triplet correlations terms A(i) and B(i), respectively. To match
the triplet rule to the BCM model, we set A−

2 → A−
2 ν=ρp0,

where the expectation of the pth power of the postsynaptic
firing rate can be expressed as ν ¼PM

i¼1piðνðiÞÞp: This quantity
was approximated by low-pass filtering the pth power of the
instantaneous postsynaptic firing rate νðtÞ ¼ gðuðtÞÞ with a time
constant which has to be larger than M times the frequency of
pattern presentation, i.e. rx ν where τr _r ¼ − r þ νp with a time
constant of τr ¼ 5s: For all the calculations in this paper we
took p = 2. Using the minimal triplet model of ref. 3 where
Aþ
2 ¼ 0; AðiÞ contains only depression effects from the pair

STDP rule ðA−
2 ≠ 0Þ such that the weight equation becomes

_w ¼
XM
i¼1

pi

 
ϕ
�
νðiÞ; ν

	
ρðiÞ þ ΔAðiÞðνÞwþ

XN
j¼1

�
wTΔBðiÞ

j w
	
ej

!
:

[S25]

Here, ν(i) = wTρ(i) denotes the average postsynaptic firing rate
elicited by pattern i.

Selectivity with N Orthogonal Rate-Based Input Patterns. In the case
of M=N orthogonal Poisson inputs we show that the maximally
selective fixed points of the weight dynamics driven by the triplet
learning rule are stable. Because we consider patterns with
positive components (rates), the Poisson rate of the jth compo-
nent of pattern i is given by ρðiÞj ¼ δijjρðiÞj (i.e., pattern i has all
zero components but the ith component).
Because of the Poisson assumption, we haveΔCkj(s) = δkjδ(s)ρk

and hence ΔCε
kjðsÞ ¼ δkj   ρkεðsÞ ¼ 0 for s < 0. Because we use the

minimal triplet model (for which Aþ
2 ¼ 0), W2(s) = 0 for s ≥ 0.

As a consequence, ΔA vanishes because it is obtained by inte-
grating the product W2ðsÞ·ΔCε

kjðsÞ (Eq. S24). By using Eqs. S4
and S11, ΔBðiÞ

kjn can be written as

ΔBðiÞ
kjn ¼

�
b1δkjρðiÞn þ b2δknρ

ðiÞ
k þ b3δkjδkn

	
ρðiÞj ; [S26]

where

b1 ¼
ð∞
0

ð∞
0
W3ðs1; s2Þðεðs1Þ þ εðs2 − s1ÞÞds1 ds2; [S27]

b2 ¼
ð∞
0

ð∞
0
W3ðs1; s2Þ

ð∞
0
εðrÞεðr− s2Þdr ds1 ds2; [S28]

and

b3 ¼
ð∞
0

ð∞
0
W3ðs1; s2Þεðs1Þεðs2 − s1Þds1ds2: [S29]

In the presence of M = N Poisson patterns, we can write the
expected weight dynamics as

_w ¼
XM
i¼1

pi
�
ϕ
�
νðiÞ; ν

	
1þ ΛðiÞ

	
ρðiÞ; [S30]

where

ϕ
�
νðiÞ; ν

	
¼ W 2

ν

ρ20
νðiÞ þW 3

�
νðiÞ
	2
; [S31]

1 is the N × N identity matrix, and Λ(i) is a diagonal matrix where
the jth diagonal element is

ΛðiÞ
jj ¼

�
b1wjν

ðiÞ þ b2ν
ðiÞ
2 þ b3w2

j

	
ρðiÞj [S32]

with νðiÞ2 ¼P
k
w2
kρ

ðiÞ
k . Recall that ν ¼Pi piðνðiÞÞ2 with ν(i) = wTρ(i).

Because of the orthogonality assumption, the condition _w ¼ 0 im-
plies that ϕðνðiÞ; νðiÞÞ þ ΛðiÞ

ii ¼ 0, for all i= 1, . . . , N and therefore

w2
i F
�
ρðiÞi
	
−GρðiÞi wiν ¼ 0; ∀i ¼ 1; . . .  ;N; [S33]

where

G ¼ −W 2

ρ20
> 0 and F

�
ρðiÞi
	
¼ W 3

�
ρðiÞi
	2
þðb1 þ b2ÞρðiÞi þ b3:

[S34]

Each fixed point of Eq. S30 must satisfy the N conditions from
Eq. S33. Each condition has two solutions: either w∗

i ¼ 0 or
w∗
i ¼ GρðiÞi =FðρðiÞi Þ. As a consequence, there are 2N fixed points,

which is consistent with the BCM theory.
It remains to be shown that the maximally selective fixed points

are stable. The nth fixed point is given by

w∗ðnÞ ¼ 
0; . . . ; 0; w∗
n; 0; . . . ; 0

�T
;

where

w∗
n ¼

F
�
ρðnÞn

	
Gpn

�
ρðnÞn

	3 takes the nth position:

To demonstrate that this fixed point is stable, we have to show that
the eigenvalues of the Jacobian of Eq. S30 are negative when
evaluated at w*(n). We find that this Jacobian matrix is given by

Jij
�
w∗ðnÞ

	
¼ − δijpiG

�
ρðiÞi
	2
νðnÞ; [S35]

where νðnÞ ¼ pnw2
nðρðnÞn Þ2. Because this matrix is diagonal with all

diagonal elements being negative, we conclude that all of the
maximally selective fixed points are stable.
At this fixed point, the sliding threshold takes the value

θ ¼ w∗ðnÞρðnÞn ¼ θ0ðνÞ
�
1þ

�
τ1ρ

ðnÞ
n

	− 1
þ
�
τ2ρ

ðnÞ
n

	− 2	− 1
; [S36]

where θ0ðνÞ ¼ A−
2 τ− ν=ðAþ

3 τþτyρ
p
0Þ is the sliding threshold of the

BCM term only when the correlation terms can be neglected
(i.e., ΔA = 0 and ΔB = 0). The new timescales are

τ1 ¼ W 3=ðb1 þ b2Þ and τ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 3=b3

q
: [S37]

One can calculate these values and obtain

b1 þ b2
W 3

¼ 1
τm þ τþ

þ τþ
ðτm þ τþÞ



τþ þ τy

�þ 1
2


τm þ τy

� [S38]

and
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b3
W 3

¼ τþ
ðτm þ 2τþÞ



τþτy þ τmτþ þ τmτy

�; [S39]

where W 3 ¼ Aþ
3 τþτy. Note that in the limit where τm x τ+ x τ−

and τy � τm, we have τ1 ≈ 2τm and τ2≈
ffiffiffiffiffiffiffiffiffiffiffiffi
6τmτy

p
.

Selectivity in a 2D System with Correlation-Based Input Patterns. We
consider a 2D system where two patterns are presented to the
feedforward network, each consisting of two pools of inputs: let
j= 1, . . . , N/2 denote the inputs from the first pool and j= N/2 +
1, . . . , N denote the inputs from the second pool. Let ~wj

denote the weights in the network and ~A
ðiÞ

and ~B
ðiÞ
k the con-

volved pairwise and third-order correlations of the inputs in
each pool for pattern i, respectively, with the pair-based and
the triplet STDP rules (Eqs. S18 and S20). We further im-
posed a lower bound on the weights, w≥wmin¼ 0, which in
the case of orthogonal rate-based patterns was automatically
satisfied.
Under the assumption that the weights in each pool evolve

together,

~wj xw1; j ¼ 1; . . .  ;
N
2
; [S40]

~wj xw2; j ¼ N
2
þ 1; . . .  ;N: [S41]

Summing the weights in each pool of inputs for pattern i=1, 2 gives

XN=2

j¼1

_~wj ¼
N
2
_w1 ¼

XN=2

j¼1

 XN
k¼1

~A
ðiÞ
jk ~wk

ν

ρ20
þ
XN
m¼1

XN
n¼1

~wm~wn

�
~B
ðiÞ
j

	
mn

!

[S42]

XN
j¼N=2þ1

_~wj ¼
N
2
_w2 ¼

XN
j¼ N

2þ1

 XN
k¼1

~A
ðiÞ
jk ~wk

ν

ρ20
þ
XN
m¼1

XN
n¼1

~wm~wn

�
~B
ðiÞ
j

	
mn

!
:

[S43]

The contributions from the pairwise correlations are given by

AðiÞ
11 ¼

2
N

XN=2

j¼1

XN=2

k¼1

~A
ðiÞ
jk ; AðiÞ

12 ¼
2
N

XN=2

j¼1

XN
k¼ N

2 þ 1

~A
ðiÞ
jk ;

AðiÞ
21 ¼

2
N

XN
j¼ N

2 þ 1

XN=2

k¼1

~A
ðiÞ
jk ; AðiÞ

22 ¼
2
N

XN
j¼N=2þ1

XN
k¼ N

2 þ 1

~A
ðiÞ
jk

for pattern i = 1, 2, where the average postsynaptic rate over all
of the patterns is

ν ¼ p1
�
ρð1Þ1 w1 þ ρð1Þ2 w2

	2
þ p2

�
ρð2Þ1 w1 þ ρð2Þ2 w2

	2
[S44]

with

ρðiÞ1 ¼
 XN=2

j¼1

~ρðiÞj

!
; ρðiÞ2 ¼

0
@ XN

j¼N=2þ1

~ρðiÞj

1
A:

The terms involving the third-order correlations are

�
BðiÞ
1

	
11
¼ 2

N

XN=2

j¼1

XN=2

m¼1

XN=2

n¼1



~Bj
�
mn;

�
BðiÞ
1

	
12
¼ 2

N

XN=2

j¼1

XN=2

m¼1

XN
n¼N=2þ1



~Bj
�
mn;

�
BðiÞ
1

	
21
¼ 2

N

XN=2

j¼1

XN
m¼ N

2 þ 1

XN=2

n¼1



~Bj
�
mn;

�
BðiÞ
1

	
22
¼ 2

N

XN=2

j¼1

XN
m¼ N

2 þ 1

XN
n¼ N

2 þ1



~Bj
�
mn;

�
BðiÞ
2

	
11
¼ 2

N

XN
j¼ N

2 þ 1

XN=2

m¼1

XN=2

n¼1



~Bj
�
mn;

�
BðiÞ
2

	
12
¼ 2

N

XN
j¼ N

2 þ 1

XN=2

m¼1

XN
n¼ N

2 þ 1



~Bj
�
mn;

�
BðiÞ
2

	
21
¼ 2

N

XN
j¼ N

2 þ 1

XN
m¼ N

2 þ 1

XN=2

n¼1



~Bj
�
mn;

�
BðiÞ
2

	
22
¼ 2

N

XN
j¼ N

2 þ 1

XN
m¼ N

2 þ 1

XN
n¼ N

2 þ 1



~Bj
�
mn;

finally giving an equation for the weight dynamics of the two pools
of inputs, corresponding to M = 2 in Eq. S25

_w ¼
X2
i¼1

pi

 
AðiÞðνÞwþ

X2
k¼1

wTBðiÞ
k wek

!
: [S45]

Next, we derive the fixed points of the 2D system of Eq. S45 using
ν ¼P2

i¼1piðwTρðiÞÞ2. To obtain the general fixed points of this
equation, we have to simultaneously solve _w1 = 0 and _w2 = 0.
This process amounts to solving two cubic equations for which we
do not get nice analytical expressions. Fortunately, the fixed points
of interest [the ones associated with maximal selectivity, i.e., ðw∗

1; 0Þ
and ð0;w∗

2Þ with w∗
1;w

∗
2 > 0 ] are simpler to express. To find a fixed

point on the w1 axis, we solve _w1 = 0 at w1 ¼ w∗
1 and w2 = 0,

0 ¼ p1

"
Að1Þ
11 w1

p1


wTρð1Þ

�2þ p2


wTρð2Þ

�2
ρ20

þ
�
Bð1Þ
1

	
11
w2
1

#

þ p2

"
Að2Þ
11 w1

p1


wTρð1Þ

�2þ p2


wTρð2Þ

�2
ρ20

þ
�
Bð2Þ
1

	
11
w2
1

#
; [S46]

which gives the linear equation

�
p1A

ð1Þ
11 þ p2A

ð2Þ
11

	p1�ρð1Þ1

	2
þ p2

�
ρð2Þ1

	2
ρ20

w∗
1

þ
�
p1
�
Bð1Þ
1

	
11
þp2

�
Bð2Þ
1

	
11

	
¼ 0: [S47]

This equation has the solution

w∗
1 ¼ −

p1
�
Bð1Þ
1

	
11
þ p2

�
Bð2Þ
1

	
11

ρ− 2
0

�
p1A

ð1Þ
11 þ p2A

ð2Þ
11

	
p1
�
ρð1Þ1

	2
þ p2

�
ρð2Þ1

	2: [S48]

The expression for w*2 can be similarly obtained. Instead of ex-
amining the Jacobian of the system at the fixed points to obtain
their stability, because of the nonlinearity due to the lower
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bound on the weights, we require that the following two con-
ditions be satisfied for stability (where the system is denoted by
_w ¼ FðwÞ):

∂F1ðwÞ
∂w1

���
w¼w∗

< 0; [S49]

F2ðw∗Þ< 0: [S50]

The first condition becomes

3
�
p1A

ð1Þ
11 þ p2A

ð2Þ
11

	 p1
�
ρð1Þ1

	2
þ p2

�
ρð2Þ1

	2
ρ20

w∗
1

þ 2
�
p1
�
Bð1Þ
1

	
11
þ p2

�
Bð2Þ
1

	
11

	
< 0: [S51]

If we use the expression for w∗
1 from Eq. S48, then the condition

reduces to

p1
�
Bð1Þ
1

	
11
þp2

�
Bð2Þ
1

	
11
> 0; [S52]

which is always true because the correlation terms convolved with
the triplet rule in BðiÞ

k are always positive.
The second condition becomes

�
p1A

ð1Þ
21 þ p2A

ð2Þ
21

	p1�ρð1Þ1

	2
þ p2

�
ρð2Þ1

	2
ρ20

w∗
1

þ
�
p1
�
Bð1Þ
2

	
11
þ p2

�
Bð2Þ
2

	
11

	
< 0: [S53]

If we use the expression for w∗
1 from Eq. S48, the condition re-

duces to

p1A
ð1Þ
21 þ p2A

ð2Þ
21

p1A
ð1Þ
11 þ p2A

ð2Þ
11

>
p1
�
Bð1Þ
2

	
11
þ p2

�
Bð2Þ
2

	
11

p1
�
Bð1Þ
1

	
11
þ p2

�
Bð2Þ
1

	
11

: [S54]

Similarly, the fixed point on the w2 axis is stable if the following
condition holds:

p1A
ð1Þ
12 þ p2A

ð2Þ
12

p1A
ð1Þ
22 þ p2A

ð2Þ
22

>
p1
�
Bð1Þ
1

	
22
þ p2

�
Bð2Þ
1

	
22

p1
�
Bð1Þ
2

	
11
þ p2

�
Bð2Þ
2

	
22

: [S55]

Numerical evaluations of these two conditions for a large variety
of firing rates and pairwise and third-order correlations have
demonstrated that the conditions always hold. Therefore, in the
case of a 2D network, the system always results in selectivity. As
we show in the main text, this is not always the case for a general
N-dimensional system, where selectivity depends on the input
correlation structure.

Numerical Simulations with Multiple Patterns. For the simulations
with rate-based patterns in Fig. 2, the inputs within each pattern
were given independent Poisson spike trains lacking correlations.
For each of 10 patterns uniformly spaced and centered at inputs
5, 15, . . . 95, a Gaussian rate profile was used with a background
firing rate of rmin and a peak firing rate of rmax; and we ex-
plored three ratios in Fig. 2B: rmin=rmax ¼ f0=55; 5=55; 10=55g:
The SD of the Gaussian was also varied in Fig. 2,
σ ¼ f5:0; 7:5; 10:0; 12:5; 15:0g; but the Gaussian profile was
normalized such that it generated the same postsynaptic firing
rate for each value of σ and rmin=rmax. The postsynaptic neuron

was linear gðuÞ ¼ 10u and the target postsynaptic firing rate was
set to ρ0 ¼ 8:5 Hz.
For the simulations with correlation-based patterns in Fig. 3,

each of the 100 inputs had the same firing rate of 10 Hz. In each
pattern, 90 inputs were given independent Poisson spikes, and 10
inputs had uniform correlations between any pair and triplet of
inputs. For the spatial correlations in Fig. 3B, each pair and
triplet of inputs shared 90% identical spikes. For the spatio-
temporal correlations in Fig. 3C, half of the 90% shared spikes
for each pair and triplet of inputs were shifted by an exponential
random distribution with a mean of 5 ms resulting in symmetric,
exponentially-decaying correlations with a timescale of 5 ms. For
simplicity, we assumed uniform correlations for all input pairs
and triplets. The postsynaptic neuron was linear gðuÞ ¼ 10 u and
the target postsynaptic firing rate was set to ρ0 ¼ 10.5 Hz.
For the simulations in Fig. 4 A–C, there were two patterns

consisting of three inputs each, with the same firing rates and
pairwise correlations, but with different third-order correlations.
The postsynaptic neuron was linear gðuÞ ¼ 50 u and the target
postsynaptic firing rate was 20 Hz. For Fig. 4D, a network of two
groups of five neurons each was simulated so that the two input
groups had the same lower-order correlations (for example,
same firing rates, pairwise and third-order correlations), but
differed in the presence or absence of higher-order correlations
in each group (corresponding example, fourth- and fifth-order
correlations). The correlated spike trains in Fig. 3 and 4 were
generated using the mixture method described in ref. 4 (see next
section).
In Figs. 2–5, a new randomly-chosen pattern was presented to

the network every 200 ms. Pre- and postsynaptic spikes were
simulated stochastically given the respective firing rates. The
initial weights were set to 1 and hard bounds were set between
0 and 3 (in Fig. 4 because of the small number of inputs the
bounds were five times larger.) Postsynaptic activity was low-pass
filtered with a time constant of 5 seconds. Aþ

2 and A−
3 were re-

duced by a factor of 10 compared to the parameters in ref. 3
to give smooth evolution of the weights, but this did not affect
the results.

Simulations of Correlated Spike Trains. Correlated spike trains in
Figs. 3 and 4 in the main text were simulated by using the mixture
method following Brette (3). The general method is illustrated
in Fig. S2, where N target spike trains (gray) are generated
from M source trains (blue), with specifics adjusted to fit our
simulations. Fig. S2A illustrates the method for generating
correlated spike trains with pairwise correlations only, and Fig.
S2B shows the method for generating correlated spike trains
with pairwise and third-order correlations. Both methods were
used in Fig. 4 B and C for simulating 6 spike trains with N = 3
for each method (in Fig. 4D we used 10 spike trains with N = 5)
and M = N in Fig. S2A and M = N + 1 in Fig. S2B, whereas the
method in Fig. S2B was used in Fig. 3 with M = N = 100. The
source trains were independent Poisson processes with rate R.
Spikes from source train m were copied into target train m with
probability p1. Furthermore, to generate instantaneous corre-
lations among the target spike trains, spikes from the common
source spike trains were copied into the the target trains. In
Fig. S2B, spikes were copied from the single common spike
train, generating correlations of higher order in the target
trains. In Fig. S2A, each pair of target trains received spikes
from a single common course train (probability of copying p2),
different for each pair of target trains, thus generating only
pairwise correlations among the target trains, but no higher-
order correlations.
In both cases, the firing rate of the kth target train is given

by (3)
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ρk ¼ ðp1 þ p2ÞR: [S56]

The pairwise covariance matrix without the atomic discontinuities
ΔC° can be defined analogously to the corresponding correlation
matrix in Eq. S2:

ΔCkjðsÞ ¼ ΔC∘
kjðsÞ þ δkjδðsÞ ρj: [S57]

Then the instantaneous pairwise covariance is (see ref. 3 for
details)

ΔC∘
kjðsÞ ¼ γkjδðsÞ: [S58]

This covariance had the same magnitude for any pair of inputs k,
j: For Fig. S2A, γkj = p1p2R and for Fig. S2B, γkj ¼ p22R.
The expression for the third-order covariance is more com-

plicated [it can be related to Ukjn by ΔVkjn(s1, s2) = Ukjn(s1, s2) −
ρkΔCjn(s2 − s1) − ρjΔCkn(s2) − ρnΔCkj(s1) − ρkρjρn]:

ΔVkjnðs1; s2Þ

¼ 1
T

ðT
0

D
ðxkðtÞ− ρkÞ

�
xjðt− s1Þ− ρj

	
ðxnðt− s2Þ− ρnÞ

E
dt:

[S59]

After separating the atomic discontinuities

ΔVkjnðs1; s2Þ ¼ΔV ∘
kjnðs1; s2Þ þ δkjδjnδðs1Þδðs2 − s1Þρj

þ δkjδðs1ÞΔC∘
jnðs2 − s1Þ þ δknδðs2ÞΔC∘

kjðs1Þ
þ δjnδðs2 − s1ÞΔC∘

knðs2Þ;
[S60]

we can specify the instantaneous third-order covariance by (see
ref. 3 for details)

ΔV ∘
kjnðsÞ ¼ λkjnδðs1Þδðs2Þ: [S61]

This covariance had the same magnitude for any triplet of inputs
k, j, n: For Fig. S2A, λkjn = 0 and for Fig. S2B, λkjn ¼ p32R.
In Fig. 3, we used the method in Fig. S2B with N = 100, R =

9.09 Hz, and p1 = 0.1 and p2 = 1.0. In Fig. 4 B and C, we used
both methods in Fig. S2 with N= 3, R= 5 Hz, and p1 = p2 = 1.0.
To show that in Fig. 4C of the main text these methods do

indeed generate the same pairwise correlations (but different
third-order correlations), we computed the mean ± SEM of the
peak correlation coefficients for 200 simulation runs in each case
(Fig. S3).
In Fig. 4D, we extended the methods described in Fig. S2 to

generate correlations of higher than third order and considered
N = 5 neurons per group. To illustrate the procedure, we de-
scribe how we generated correlated spikes to distinguish between
correlations of fifth order. First we generated a single common
source train (with rate R) from which spikes were copied into the
target trains of the inputs in group 1 with probability p. This
process generated the following statistics for the inputs in group
1: rates pR, pairwise correlations p2R, third-order correlations
p3R, fourth-order correlations p4R, and fifth-order correlations
p5R. Then we generated ð54Þ ¼ 5 source trains (with rates R),

each copying spikes with probability p into the 4-tuplets of target
trains (1, 2, 3, 4), (1, 2, 3, 5), (2, 3, 4, 5), (1, 2, 4, 5), (1, 3, 4, 5) in
group 2. This process generated fourth-order correlations p4R in
group 2 (but no fifth-order correlations because no target trains
received spikes from the same source train). Thus, the fifth-order
correlations were different for groups 1 (p5R) and 2 (0), but the
fourth-order correlations were the same (p4R). However, the
lower-order correlations also differed. The third-order correla-
tions in group 1 (p3R) were lower than the third-order correla-
tions in group 2 (2p3R). Therefore, we generated ð53Þ ¼ 10 more
source trains for the inputs in group 1, which copied spikes into
the triplets of target trains (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1,
3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5) in group 1. Now
even the third-order correlations in both groups were matched to
2p3R. However, the pairwise correlations in group 1 then became
4p2R, whereas in group 2 they were 3p2R. To match these pair-
wise correlations, we generated ð52Þ ¼ 10 source trains in group 2,
copying spikes into the pairs of target trains (1, 2), (1, 3), (1, 4),
(1, 5) (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5) in group 2. Now the
pairwise correlations in both groups 1 and 2 were matched to
4p2R. However, the firing rates for the target trains in group 1
were 7pR, whereas for the target trains in group 2 they were 8pR.
Finally, we generated ð51Þ ¼ 5 more source trains in group 1 that
copied spikes independently into each of the 5 target trains,
giving firing rates in each group equal to 8pR. Because the target
firing rate was 10 Hz, all source trains had rates 10/(8p) Hz. For
simplicity, we used a copying probability of p= 1.0, meaning that
all of the spikes from the source trains were copied into the
target trains. In this example, there were a total of 16 source
trains generated for the 5 target trains in group 1 and 15 source
trains for the 5 target trains in group 2. Analogous procedures
were used for the cases with correlations of k= 2, 3, or 4th order.
For the case of k = 1 we studied the difference in first-order
correlations, i.e., firing rates, and thus we considered rates of 10
Hz in group 1 and 7 Hz in group 2.
For generating spatiotemporal correlations, the mixture

method described by Brette (3) was used. The instantaneous
correlated spike trains (generated as above) were shifted by in-
dependent and identically distributed random numbers from an
appropriate distribution function. We used an exponential dis-
tribution with a time constant τc, f ðtÞ ¼ ð1=τcÞe− t=τcΘðtÞ, where
Θ(x) is the Heaviside function, such that

ΔC∘
kjðsÞ ¼ γkj

ð∞
−∞

f ðtÞf ðt− sÞdt ¼ γkj
2τc

e− jsj=τc [S62]

and the third-order covariance

ΔV ∘
kjnðs1; s2Þ ¼ λkjn

ð∞
−∞

f ðtÞf ðt− s1Þf ðt− s2Þdt

¼ λkjn
3τ2c

8<
:

e− ðs1þs2Þ=τc ; s1 ≥ 0; s2 ≥ 0
eð2s1 − s2Þ=τc ; s1 < 0; s2 > s1
eð− s1þ2s2Þ=τc ; s1 > s2; s2 < 0:

[S63]

Note that in all of the simulations in the main text we assumed
uniform correlations for all spike pairs and triplets such that γkj =
γ for all pairs (k, j) and λkjn for all triplets (k, j, n).
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Fig. S1. Weight dynamics depend on pairwise and triplet input correlations. (A) The modeling framework consists of a feedforward network of N input
spiking neurons connected through the weight vector w = [w1,. . ., wN]

T to a single postsynaptic neuron. (B and C) The weight dynamics in the case of in-
dependent Poisson inputs. (B) The pairwise contribution to the weight dynamics consists of the integral of the pair-based learning window W2 (blue line) and
the prepost correlation vector Kj (red analytics, black numerics). (C) The triplet contribution to the weight dynamics is obtained by multiplying the triplet
learning window W3 (Left) with the prepost–post correlation vector Qj (Right). The spike triplets illustrate the particular spike ordering in that region of Qj.
(D and E) Same as in B and C, but with exponentially decaying correlated inputs.
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Fig. S2. Generating correlated spike trains. N correlated (target) spike trains (gray) were generated by copying spikes from M independent Poisson (source)
trains (blue) with rates R. The coping probability from source train k into target train k was p1. (A) N target spike trains were generated with nonzero pairwise
and zero third-order correlations. Correlations arise by copying spikes from a different common source train for each pair of target trains with probability p2.
We show only arrows from the right neighboring source train to each target spike train for clarity. (B) N target spike trains are generated with nonzero
pairwise and third-order correlations. Correlations arise by copying spikes from a single common source train to all target spike trains with probability p2.
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Fig. S3. Correlation strength. The peak correlation strengths (mean for 200 simulation runs) for the two groups of neurons in Fig. 4C are shown. (Left)
Correlation peak for pairwise correlations was very similar for the two groups. Because each group consisted of three inputs, the average of the correlation was
computed between any of the three input pairs. (Right) Correlation peak for third-order correlations was nonzero for the three inputs in group 1 and zero for
the three inputs in group 2.
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