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Derivation of the Correlation Functions. We considered a feedfor-
ward network as in Fig. S14. Let x(f) = [x,(?), ... , xx(¢)]" denote

the vector of N inputs where x;(t) = 3 g 5(t— tf ) is the Dirac delta

spike train of neuron j at time ¢, where tjf are the spike timings.
The input spike trains have instantaneous firing rates
PUE) = [pinst(r), ... pist(e)] = (x(t)). (Here the expectation is
taken over the input statistics.) The pairwise input correlation
matrix (second moment) between inputs k and j is defined as

T
Cii(s) = %JO (i (t)x; (£ —s) )dt. [S1]
[Formally, the correlation matrix should be written as Cy(#; s). For
notational convenience, here we omit the dependence on ¢.] The
diagonal elements of this pairwise input correlation matrix have
an atomic (or point) discontinuity at s = 0 because (x2(¢)) =
(x4 (£))8(0). [Note that in discrete time with bm size &t, we trivially
have x7 (f) = xi ()t~ ", where x;(¢) € {0, 8t ~'} is the k™ spike train
at time t.] Separatlng this correlation matrix from the pairwise
correlation matrix without atomic discontinuities, C;; (Where the
“0” superscript denotes the absence of such drscontmulty) gives

Cij(s) = Cyy(s) + 8150(s) pi [S2]

where &y is the Kronecker delta function 6;; = 0 if k #/ and 65 =
1if k = j, and the mean ﬁrrng rate averaged over the duration of
the trial T is p, = (1/T) jo pmst t)dt. The third-order correlation
input statistic is given by

1 T
Uin(s1,82) = TJO (e ()% (£ = 51 ) (£ — 52) )dlt. [S3]

For this third-order tensor, U; denotes a matrix whose (k, n)

element is Uy;,. This third-order correlation function has atomic

discontinuities at s; = 0, s, = 0, and 5; = s5,, and we can write
Ukjn(sl,&) = Ulzjn (Sl,Sz) + 5kj5jn 5(S1)5(S2 —Sl) pj

+ 8kj 6(51)Cin (52 =51) + Gkn 6(52)Cii(51)

+ (3(S2 —51)Cin(52), [S4]

where Uy, (s1,52) is the third-order correlation without atomic
dlscontmultles and is equal to pgpjp, if the inputs have in-
dependent Poisson statistics.

Let u(f) denote the membrane potential of the postsynaptic
neuron,

Zwkj i (t—r)dr, [S5]

where £(r) denotes the excitatory postsynaptic potential (EPSP)
kernel taken to be a decaying exponential, 1/z.e~"/*@(r), and
O(r) is the Heaviside step function such that ©(r) = 1 when r >
0 and ©(r) = 0 otherwise. Postsynaptic spikes were generated
stochastically from the membrane potential (1, 2), such that the
probability density of firing a spike at time ¢ was given by
a nonlinear transfer function depending on the membrane po-
tential, (y(t)) = g(u(¢)). (Here the expectation was taken over the
postsynaptic spike train statistics.) For additional simplicity, this
function was approximated by the first-order expansion about u
in the rest of the calculations
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g(u(?)) ~ g(uo) +g'(uo) (u(t) —uo), [S6]

where the expected membrane potential averaged over the trial
duration T was

1 T N
= TJ {u(t))dt = Zwkpk. [S7]
0 k=1

We also denoted the mean postsynaptic firing rate with v = g(u).
We derive the pre-post correlation K; (between one presynaptic
and the postsynaptic train),

1 T
Ko = 7 o)

T
— 7| G e=s)a

1 T
= TJO {8(”0)/’;0—8) +8 (o) (u(t)x;(t —s))
=& (uo)uop;(t —s)] dr
T
=gluo)p; +8'(uo) (%JO (u(tyx(t—s))dt —uopj)

= (g(uo) —g'(uo)uo)p; + g (o) Z wiCiy(s)
"(uo Z chkj

where a(u) = g(u) —g'(u)u and Cj;(s) = = [ e(s")Cyi(s —s")ds’. Note
that a(u) vanishes when g(u) is strlctly linear (g(u) = u) and is in-
dependent of the weights if g(i) is an affine function (i.e., a linear
function plus a translation). When the transfer function is linear
g(u) = u, then a(up) = 0 and Kj(s) = >, Cp;(s)wk. We have ex-
pressed this term in Fig. S1 B and D (red curve) Fig. S1B shows the
pre-post correlation for independent Poisson inputs (no corre-
lations) which only has an exponential causal component (Af > 0),
corresponding to the EPSP. The presence of input correlations in
Fig. S1D contributes both a larger exponential causal component
and a nonzero acausal component (Az < 0) - here we have assumed
exponentially-decaying input correlations symmetric about 0.

For the post—prepost correlation tensor O, we ignore the case
when the two postsynaptic spikes overlap (s, = 0) because it is
accounted for in the contribution from the pair rule. Then

) + a(uo)p;, [S8]

1 T
0/s1.52) = re=saps (e=sup0)r

T
— 7] Getute=s2 s
= g*(uo)p; — (8'(u0)) ugp; — 28 (0) (g (o) —g' (uo)uo) uop;

—8'(uo)uo)

1 T
TJO [0t —s0)ut)) + (et — 52t —s1))] de

+ 8/ (u0)(g(uo)

T

+ (g/(uo))Z%J (u(O)u(t —s2)x;(t —s1) )dr.
0
[S91

Using the expression for a(u) above, we get
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1 T
Qj(s1,52) = aluo)g’ (uo) <TJ (xi(t = s1)u(r))d
1 T
+?J <u(t—s2)xj(t—s1)>dt)

T
ug))? (%L (u(Oyu(t —s2)x;(t —s1)>dt)

(
+ o (u0)p- [S10]

Now using Eq. S7, we get
0,(s1,52) = aluo)g' (o) S wi (C,ij(sl) +Clsn —s2)>
k

+ (g,(uo))zz wiw, Ug, (s1,52) + az(uo)pj, [S11]
knn

where US (s1,52) fo fo Ui(s1 —r,s2 —r +q)drdg. When
the transfer function is hnear g( ) = u, then a(ug) = 0; the pre-
post-post correlation Q; is simply a function of the (convolved)
third-order input correlation tensor: Qj(si,82) =D x>,
wiwn Ug, (s1,52). This post-pre-post correlation is illustrated in
Fig. SIC (Right) for independent Poisson inputs; due to the
absence of correlations, the only nonzero component is for
triplets in which the presynaptic spike occurs before the two
postsynaptic spikes (Af; > At, >0). For correlated inputs with
symmetric exponentially-decaying correlations, the component
corresponding to pre-post-post triplet has a larger amplitude
(Fig. S1E, Right), but here post-pre-post triplets (At; > Aty > 0)
also contribute to the correlation function.

Weight Dynamics. The triplet spike-timing—dependent plasticity
(STDP) model can be written in the following differential form.
Let X; be a low-pass filtered version of the jth presynaptic spike
train x; with time constant 7, given by

= - 4y j=1,....N. [S12]
T+

Similarly, let ¥, and ¥, be two different low-pass filtered versions

of the postsynaptic spike train y with time constants z_ and z,,

respectively:

= - +Y, [S13]
y
Vo= —2+y. [S14]
Ty
The minimal triplet STDP model can be written as
Wj = —A;x %1 + ALy Xids. [S15]

In the previous section we assumed that the weights w; were fixed.
Here, we allowed the weights to be dynamic, but with a small
learning rate such that the results in the previous section are still
valid (1, 2). Consistent with the approach of ref. 1, we expressed
the weight change as a Volterra expansion of both the pre- and
postsynaptic spike trains. Setting the first order terms to zero
(because they correspond to non-Hebbian dynamics), we as-
sumed that synaptic plasticity depends on second- and third-or-
der terms only, i.e. pairs of spikes (1 pre and 1 post) and triplets
of spikes (1 pre and 2 post)

Wa(s)x (1 —)ds +xj(t)J:W2(—s)y(t—s)ds

0 L Wa(s1, 5201 — s )y(t — s2)dsyds;
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where W, is pair-based STDP and Wj is triplet STDP (equations
and parameters listed in the main text). [Note that in ref. 3, the
wrong number of pairs is assumed in the STDP experiments (60
instead of 75) and therefore the fitted amplitude parameters were
overestimated by approximately 10 %. For the sake of consistency
with ref. 3 we kept the same parameters.] Assuming slow learning
relative to the neuronal dynamics, and replacing the weights by
their expectation averaged over a time period 7, we have

w]-:J Wg(s)K,-(s)ds—l—J J Wi(s1,52)0)(s1,52)dsuds».
[S16]

Under the assumption of a linear approximation of the transfer
function given in Eq. S6, and by inserting Eqs. S8 and S11 into
Eq. S16, we find

N

Z w Bw Yej + k(uo)p,
j=1

W =g'(up)(A+D)w +g*( [S17]

where ¢; is a vector of zeros with a 1 at the j™ component and

A= | mIc o) (s18]

D= atw) | [ Walor,52) () + Cilor - 52) )
[S19]
Bkjn = meJfWW3 (shsz)U];n(s],sz)ds]dsz, [S20]
k(o) = a(uo)Wa + o (1) W3, [S21]

with Wy = f W2 dS and W3 = JSOJSOW3(S1,Sz)dS1dS2. Note
that g’(uo) and K(uo) depend on the weights w (through 1), and
therefore we cannot analyze Eq. S17 in the same way as if we
assume a strictly linear transfer function. In that case, with a
linear transfer function, g(u) = u, we have g'(ug) = 1, a(ug) = 0,
and hence x(up) = 0. Then we get:

N
w=Aw+ Y (WBw)e [S22]
j=1

We can also write this equation so that it resembles the Bien-
enstock—-Cooper—-Munro (BCM) equation for weight evolution
(see also Eq. 6 in the main text),

N
W= ¢W)p +Adw + Z(WTAij)ej,
N—— =1
BCM term
where ¢(v) = Wov + W3r? corresponds to the BCM term. The
new covariance terms A4 and AB are defined analogously to A
and B given the input covariances,

[S23]

Ady = J Wa(s)ACE(5)ds, [S24]

where ACy(s) = Cyi(s) —prp; is the input pairwise covariance
matrix, and

AB; =J J Ws(s1,52) AU (s1,52)ds1dss,
0Jo
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where AUn(s1, 52) =
covariance tensor.

M patterns were presented to the network pattern i with
probability p;, with a mean ﬁrlng rate of p*) and pairwise and
triplet correlations terms A®) and B®), respectively. To match
the triplet rule to the BCM model, we set Ay — A5 7/},
where the expectation of the p™ power of the postsynaptic
firing rate can be expressed as v = Zfi i@ . This quantity
was approximated by low-pass filtering the p'™ power of the
instantaneous postsynaptic firing rate v(t) = g(u(¢)) with a time
constant which has to be larger than M times the frequency of
pattern presentation, i.e. 7 = v where 7,7 = —r + v” with a time
constant of 7, = 5s. For all the calculations in this paper we
took p = 2. Using the minimal triplet model of ref. 3 where
AF =0, AY contains only depression effects from the pair
STDP rule (45 # 0) such that the weight equation becomes

M N
w=>p <¢ (+9,2)09 + 849 @pw + Z(WTAB}i)W>ef> :
i=1 j=1

[S25]

Ukj,,(sl, Sz) —PkPiPn is the input triplet

Here, ) = w'p® denotes the average postsynaptic firing rate
elicited by pattern i.

Selectivity with N Orthogonal Rate-Based Input Patterns. In the case
of M=N orthogonal Poisson inputs we show that the maximally
selective fixed points of the weight dynamics driven by the triplet
learning rule are stable. Because we consider patterns with
positive components (rates), the Poisson rate of the ™ compo-
nent of pattern i is given by p() = §;|p?| (i.e., pattern i has all
zero components but the i component).

Because of the Poisson assumption, we have ACy;(s) = 6,6(s)px
and hence AC,(s) = 9 pre(s) = 0 for s < 0. Because we use the
minimal trlplet model (for which A7 = 0), Wx(s) = 0 for s > 0.
As a consequence, A4 vanishes because it is obtained by inte-
grating the product W;(s)-ACj;(s) (Eq. S24). By using Eqs. S4

and S11, AB,((])H can be written as

ABkJ,, = <b15k,/7n +b25knpk +b35k15kn) 0, [S26]
where
b= [ et + et sasdss, 527
0Jo
b2 J J W%(SI,SZ)J S() (r sz)drdsl dSz, [SZS]
0Jo 0
and
b3 :J J W3 (s1,82)e(s1)e(s2 —s1)dsdss. [S29]
0Jo

In the presence of M = N Poisson patterns, we can write the
expected weight dynamics as

[S30]

where
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$(u9.2) = ot W5 (0] [s31]
0

1is the N x N identity matrix, and ADisa diagonal matrix where
the j™ diagonal element is

[S32]

Ay = (b + bl + baw? )

with u2 = Zwkpk Recall that 7 = Y, p; (1 0)? with v© = wTp(i).

Because of the orthogonahty assumption, the condition w = 0 im-

plies that ¢ (v, 7)) + A =0, foralli =1, ..., N and therefore
ZF(p, ) =Gpi'wiz =0, Vi=1,....N, s3]
where
w i — (>
G= —p—g > 0 and F(pP) - W3(p§>) +(by +b2)p" + bs.
[S34]

Each fixed point of Eq. S30 must satisfy the N conditions from
Eq S33 Each condition has two solutions: either w; =0 or
G/)l /F (p; )) As a consequence, there are 2V ﬁxed points,
Wthh is consistent with the BCM theory.
It remains to be shown that the max1mally selective fixed points
are stable. The n™ fixed point is given by

w = (0,...,0, w}, 0,...,0)",
where
F (ﬂﬁ,")
w;, = ———~— takes the n™ position.
Gp,, (/’ﬁln))

To demonstrate that this fixed point is stable, we have to show that
the eigenvalues of the Jacobian of Eq. S30 are negative when
evaluated at w*?”, We find that this Jacobian matrix is given by

Ji (W*W) - yPiG(pfi))zﬂ("),

where o) = p,w ( )2. Because this matrix is diagonal with all
diagonal elements being negative, we conclude that all of the
maximally selective fixed points are stable.

At this fixed point, the sliding threshold takes the value

6o(7) (1 + (rl/),g”))_]—t—(12/)2")>_2)_1, [S36]

where 0y(v) = Ay t_U/(Af 7, 7,p}) is the sliding threshold of the
BCM term only when the correlation terms can be neglected
(i.e., AA = 0 and AB = 0). The new timescales are

[S35]

T = W3/(b1 +b2) and 7, = \/W3/b3. [S37]
One can calculate these values and obtain
1
bitby _ s n [S38]
Wi  tmtte (tmtr)(te 1) 2(mt1)
and
30f7
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b3 T4+
— = , S39
W3 (tm +274) (T+Ty + Tty + TmTy) [S39]

where W3 = A3 7, 7,. Note that in the limit where 7, = 7, = 7_
and 7, > 7,,, we have t; & 27, and 1o % /67,7,

Selectivity in a 2D System with Correlation-Based Input Patterns. We
consider a 2D system where two patterns are presented to the
feedforward network, each consisting of two pools of inputs: let
j=1,...,N/2denote the inputs from the first pool andj = N/2 +
1, ..., N denote the inputs from the second pool. Let w;
denote the weights in the network and A" and B, the con-
volved pairwise and third-order correlations of the inputs in
each pool for pattern i, respectively, with the pair-based and
the triplet STDP rules (Eqs. S18 and S20). We further im-
posed a lower bound on the weights, w >wp;, = 0, which in
the case of orthogonal rate-based patterns was automatically
satisfied.

Under the assumption that the weights in each pool evolve
together,

, [S40]

[S41]

N/2 N N/2/ N 0. 7 N N )
iy == 3 S A 4 55w (8) )
j= J=1 \ k=1 m=1n=1

o 2 N/2 N/2 0o 2 N/2 N 0
i ~ (i i ~ (i
A11 :N A/ka A12 :N Z Ajk?
=1 k=1 N
2 L& )y 2 al (i)
Agl)—]v > Jk?A(zgzﬁ > Ay
=Ykt JEN/2A N

for pattern i = 1, 2, where the average postsynaptic rate over all
of the patterns is

2 2
v=pi (/Jﬁmwl + pé”Wz) +p2 (/7(12)""1 + /7<22)W2)

with

[S44]

@) “ () @) S @
= (Sa)or-( 35
=1

j=N/2+1

The terms involving the third-order correlations are
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g0\ _2 B)
( 1 )12 Nj:1 m:1n:NZ/2+l( J)mn
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g0y _2 B)
( 1 )21 szl mz%+1n1( ])mn
Q) 2R R
(Bl )ZZZNZ Z Z ( j)mn’
=1 m:%+ln:%,+1
o 5 N NAN2
( Zl)llzﬁ Z ( ])mn’
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2 N N/2 N B
( g))12:17 Z Z (j)’"”’
=Yt
@ 7 N N N2
(Bz )21:ﬁ Z Z ( I)mn’
j:%Jrlm:%’Jrl":l
W 2 N N N 5
( 2 )ZZZN Z Z Z (l)mn’
=Y eim=Yrin=5 1

finally giving an equation for the weight dynamics of the two pools
of inputs, corresponding to M = 2 in Eq. S25

2 2 )
W= pi <A<"> @w+ > wTB,i”wek) .
i=1

k=1

[S45]

Next, we derive the fixed points of the 2D system of Eq. S45 using
7 =37 piwTp®)?. To obtain the general fixed points of this
equation, we have to simultaneously solve w; = 0 and w, = 0.
This process amounts to solving two cubic equations for which we
do not get nice analytical expressions. Fortunately, the fixed points
of interest [the ones associated with maximal selectivity, i.e., (w],0)
and (0,w5) with wi,w} >0 ] are simpler to express. To find a fixed
point on the w, axis, we solve w; = 0 at w; =w] and w, = 0,

2 2
0 = pu |4 2LVPD) P2(T ) +(B") w%}

Ajwi 2 1
Po

T (1))2 T (2))?
Aﬁ)wlpl (W P ) +P2(W P ) + (B(Z)> w%} [S46]

+p2
P !

which gives the linear equation

m\? @)?
AN L 40 P(l") + (o)
Py +p2Ay; p% Wy

+(p1 (Bgl))11+p2 (B(12))11) =0

This equation has the solution

(1) )
o P (Bl >114>pZ(B1 )11 [S48]
V= — )
2, 4O @ m)? )2
Po (PlAu +p2Ayy )P1</’1 ) +p2(91 )

The expression for w3 can be similarly obtained. Instead of ex-
amining the Jacobian of the system at the fixed points to obtain
their stability, because of the nonlinearity due to the lower

[S47]
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bound on the weights, we require that the following two con-
ditions be satisfied for stability (where the system is denoted by
w=F(Ww)):

aFl (W)
()Wl w=w"

<0, [S49]

F,(w") <0. [S50]

The first condition becomes
3(p1A§11) +p2A§21)> P1 <p(11))2:2p2 (p(12))2w;
0
(81, (o), <0

If we use the expression for w| from Eq. S48, then the condition
reduces to

[S51]

p) o), 50 s

which is always true because the correlation terms convolved with
the triplet rule in B,(c') are always positive.
The second condition becomes

D) 2)\?
1) 2\P! (Pg )) +p2 <P§ )> .
(p1A21 + P2A21> P Wi

o (), 0 (8),) <0

If we use the expression for w} from Eq. S48, the condition re-
duces to

[S53]

1 : 1) @
plAél) +P2A(21) S p1 (32 )11+p2 <B2 >11 [S54]
(2)
1

1 2 :
Pl Al (), (),

Similarly, the fixed point on the w, axis is stable if the following
condition holds:

1 2 (1) )
P1A(12) +P2A(12) S P (B )22+p2 <Bl )22'

i
1 2
PlAgz) +P2A52) )41 (B(z

=
+
<
N

—~
[
S

Numerical evaluations of these two conditions for a large variety
of firing rates and pairwise and third-order correlations have
demonstrated that the conditions always hold. Therefore, in the
case of a 2D network, the system always results in selectivity. As
we show in the main text, this is not always the case for a general
N-dimensional system, where selectivity depends on the input
correlation structure.

Numerical Simulations with Multiple Patterns. For the simulations
with rate-based patterns in Fig. 2, the inputs within each pattern
were given independent Poisson spike trains lacking correlations.
For each of 10 patterns uniformly spaced and centered at inputs
5,15, ...95, a Gaussian rate profile was used with a background
firing rate of rpj, and a peak firing rate of rya, and we ex-
plored three ratios in Fig. 2B: ryin/rmax = {0/55,5/55,10/55}.
The SD of the Gaussian was also varied in Fig. 2,
o =1{5.0,7.5,10.0,12.5,15.0}, but the Gaussian profile was
normalized such that it generated the same postsynaptic firing
rate for each value of o and ryin/Fmax- The postsynaptic neuron

Gjorgjieva et al. www.pnas.org/cgi/content/short/1105933108

was linear g(u) = 10u and the target postsynaptic firing rate was
set to p, = 8.5 Hz.

For the simulations with correlation-based patterns in Fig. 3,
each of the 100 inputs had the same firing rate of 10 Hz. In each
pattern, 90 inputs were given independent Poisson spikes, and 10
inputs had uniform correlations between any pair and triplet of
inputs. For the spatial correlations in Fig. 3B, each pair and
triplet of inputs shared 90% identical spikes. For the spatio-
temporal correlations in Fig. 3C, half of the 90% shared spikes
for each pair and triplet of inputs were shifted by an exponential
random distribution with a mean of 5 ms resulting in symmetric,
exponentially-decaying correlations with a timescale of 5 ms. For
simplicity, we assumed uniform correlations for all input pairs
and triplets. The postsynaptic neuron was linear g(u) = 10 u and
the target postsynaptic firing rate was set to p, = 10.5 Hz.

For the simulations in Fig. 4 A-C, there were two patterns
consisting of three inputs each, with the same firing rates and
pairwise correlations, but with different third-order correlations.
The postsynaptic neuron was linear g(u) = 50 u and the target
postsynaptic firing rate was 20 Hz. For Fig. 4D, a network of two
groups of five neurons each was simulated so that the two input
groups had the same lower-order correlations (for example,
same firing rates, pairwise and third-order correlations), but
differed in the presence or absence of higher-order correlations
in each group (corresponding example, fourth- and fifth-order
correlations). The correlated spike trains in Fig. 3 and 4 were
generated using the mixture method described in ref. 4 (see next
section).

In Figs. 2-5, a new randomly-chosen pattern was presented to
the network every 200 ms. Pre- and postsynaptic spikes were
simulated stochastically given the respective firing rates. The
initial weights were set to 1 and hard bounds were set between
0 and 3 (in Fig. 4 because of the small number of inputs the
bounds were five times larger.) Postsynaptic activity was low-pass
filtered with a time constant of 5 seconds. 45 and A5 were re-
duced by a factor of 10 compared to the parameters in ref. 3
to give smooth evolution of the weights, but this did not affect
the results.

Simulations of Correlated Spike Trains. Correlated spike trains in
Figs. 3 and 4 in the main text were simulated by using the mixture
method following Brette (3). The general method is illustrated
in Fig. S2, where N target spike trains (gray) are generated
from M source trains (blue), with specifics adjusted to fit our
simulations. Fig. S24 illustrates the method for generating
correlated spike trains with pairwise correlations only, and Fig.
S2B shows the method for generating correlated spike trains
with pairwise and third-order correlations. Both methods were
used in Fig. 4 B and C for simulating 6 spike trains with N = 3
for each method (in Fig. 4D we used 10 spike trains with N = 5)
and M = N in Fig. S24 and M = N + 1 in Fig. S2B, whereas the
method in Fig. S2B was used in Fig. 3 with M = N = 100. The
source trains were independent Poisson processes with rate R.
Spikes from source train m were copied into target train m with
probability p;. Furthermore, to generate instantaneous corre-
lations among the target spike trains, spikes from the common
source spike trains were copied into the the target trains. In
Fig. S2B, spikes were copied from the single common spike
train, generating correlations of higher order in the target
trains. In Fig. S24, each pair of target trains received spikes
from a single common course train (probability of copying p,),
different for each pair of target trains, thus generating only
pairwise correlations among the target trains, but no higher-
order correlations.

In both cases, the firing rate of the k' target train is given

by (3)
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pr = (p1+p2)R. [S56]

The pairwise covariance matrix without the atomic discontinuities
AC”® can be defined analogously to the corresponding correlation
matrix in Eq. S2:

ACyi(s) = AC(s) + 6(s) pj- [S57]

Then the instantaneous pairwise covariance is (see ref. 3 for
details)

AC;,(5) = 145(s).

This covariance had the same magnitude for any pair of inputs k,
J: For Fig. 824, yi; = ppoR and for Fig. S2B, y;; = p3R.

The expression for the third-order covariance is more com-
plicated [it can be related to Uy, by AV (51, 52) = Ugjn(s1, 52) —
PrACi(s2 = 51) = pjACkA(52) — PrACK(S1) = prpjpnl:

[S58]

AViin (51,52)

— %J:<(xk(t) = Pk) (xj(t—51) —pj) (x, (£ —52) _Pn)>dt~
[S59]

After separating the atomic discontinuities

AVign(s1,52) =AV5, (51,52) + 86 d(s1)8(s2 = 51)p;
+ 3j0(51) AC;, (52 = 51) + 5 (52) AC;(51)
+ Gnd(s2 —51)AC, (52),
[S60]

we can specify the instantaneous third-order covariance by (see
ref. 3 for details)

AV (8) = Ajnd(s1)3(s2). [Se61]
This covariance had the same magnitude for any triplet of inputs
k, j, n: For Fig. S24, A, = 0 and for Fig. S2B, 4, = p3R.

In Fig. 3, we used the method in Fig. S2B with N = 100, R =
9.09 Hz, and p; = 0.1 and p, = 1.0. In Fig. 4 B and C, we used
both methods in Fig. S2 with N = 3, R = 5 Hz, and p; = p, = 1.0.

To show that in Fig. 4C of the main text these methods do
indeed generate the same pairwise correlations (but different
third-order correlations), we computed the mean + SEM of the
peak correlation coefficients for 200 simulation runs in each case
(Fig. S3).

In Fig. 4D, we extended the methods described in Fig. S2 to
generate correlations of higher than third order and considered
N = 5 neurons per group. To illustrate the procedure, we de-
scribe how we generated correlated spikes to distinguish between
correlations of fifth order. First we generated a single common
source train (with rate R) from which spikes were copied into the
target trains of the inputs in group 1 with probability p. This
process generated the following statistics for the inputs in group
1: rates pR, pairwise correlations PR, third-order correlations
p3R, fourth-order correlations p4R, and fifth-order correlations
P°R. Then we generated (i) =5 source trains (with rates R),

1. Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking
neurons. Phys Rev E 59:4498—4514.

2. Gerstner W, Kistler WK (2002) Spiking Neuron Models (Cambridge Univ Press,
Cambridge, UK).
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each copying spikes with probability p into the 4-tuplets of target
trains (1, 2, 3,4), (1, 2,3,5), (2,3,4,5), (1,2, 4,5), (1,3,4,5) in
group 2. This process generated fourth-order correlations p”R in
group 2 (but no fifth-order correlations because no target trains
received spikes from the same source train). Thus, the fifth-order
correlations were different for groups 1 (p°R) and 2 (0), but the
fourth-order correlations were the same (p4R). However, the
lower-order correlations also differed. The third-order correla-
tions in group 1 (p°R) were lower than the third-order correla-
tions in group 2 (2p°R). Therefore, we generated (g) = 10 more
source trains for the inputs in group 1, which copied spikes into
the triplets of target trains (1, 2, 3), (1, 2, 4), (1, 2,5), (1, 3, 4), (1,
3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5), (3, 4,5) in group 1. Now
even the third-order correlations in both groups were matched to
2p°R. However, the pairwise correlations in group 1 then became
4p°R, whereas in group 2 they were 3p°R. To match these pair-
wise correlations, we generated (3) = 10 source trains in group 2,
copying spikes into the pairs of target trains (1, 2), (1, 3), (1, 4),
(1,5) (2,3). (2.4), (2, 5), (3, 4), (3. 5). (4, 5) in group 2. Now the
pairwise correlations in both groups 1 and 2 were matched to
4p”R. However, the firing rates for the target trains in group 1
were 7pR, whereas for the target trains in group 2 they were 8pR.
Finally, we generated (?) = 5 more source trains in group 1 that
copied spikes independently into each of the 5 target trains,
giving firing rates in each group equal to 8pR. Because the target
firing rate was 10 Hz, all source trains had rates 10/(8p) Hz. For
simplicity, we used a copying probability of p = 1.0, meaning that
all of the spikes from the source trains were copied into the
target trains. In this example, there were a total of 16 source
trains generated for the 5 target trains in group 1 and 15 source
trains for the 5 target trains in group 2. Analogous procedures
were used for the cases with correlations of k = 2, 3, or 4™ order.
For the case of k = 1 we studied the difference in first-order
correlations, i.e., firing rates, and thus we considered rates of 10
Hz in group 1 and 7 Hz in group 2.

For generating spatiotemporal correlations, the mixture
method described by Brette (3) was used. The instantaneous
correlated spike trains (generated as above) were shifted by in-
dependent and identically distributed random numbers from an
appropriate distribution function. We used an exponential dis-
tribution with a time constant z., f(¢) = (1/z.)e ~/*©(t), where
O(x) is the Heaviside function, such that

. « Y —sl/e
AG6) = | SO e=s)ar= e s
— o0 C
and the third-order covariance
AV (51:52) = | FOF =511/ (t=s2)
e~ b1ts2)/7 $1>0,5>0
}“kjn o ) =Y =
= ﬁ et _52)/%, 51 < 07 857> 8 [S63]
¢ et/ g >, 8, <0.

Note that in all of the simulations in the main text we assumed
uniform correlations for all spike pairs and triplets such that y;; =
y for all pairs (k, j) and A, for all triplets (k, j, n).

3. Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent
plasticity. J Neurosci 26:9673—9682.
4. Brette R (2009) Generation of correlated spike trains. Neural Comput 21:188—215.
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Fig. S1. Weight dynamics depend on pairwise and triplet input correlations. (A) The modeling framework consists of a feedforward network of N input
spiking neurons connected through the weight vector w = [w;,..., wal" to a single postsynaptic neuron. (B and C) The weight dynamics in the case of in-
dependent Poisson inputs. (B) The pairwise contribution to the weight dynamics consists of the integral of the pair-based learning window W, (blue line) and
the prepost correlation vector K; (red analytics, black numerics). (C) The triplet contribution to the weight dynamics is obtained by multiplying the triplet
learning window W5 (Left) with the prepost-post correlation vector Q; (Right). The spike triplets illustrate the particular spike ordering in that region of Q;.
(D and E) Same as in B and C, but with exponentially decaying correlated inputs.

Poisson neurons
with rate: R

rate: (p1 +p2) R
pairwise correlation: pip2 R
third-order correlation: 0

Poisson neurons
with rate: R

rate: (p1 + p2)R
pairwise correlation: p 2R
third-order correlation: p3R

Fig. S2. Generating correlated spike trains. N correlated (target) spike trains (gray) were generated by copying spikes from M independent Poisson (source)
trains (blue) with rates R. The coping probability from source train k into target train k was p1. (A) N target spike trains were generated with nonzero pairwise
and zero third-order correlations. Correlations arise by copying spikes from a different common source train for each pair of target trains with probability p,.
We show only arrows from the right neighboring source train to each target spike train for clarity. (B) N target spike trains are generated with nonzero
pairwise and third-order correlations. Correlations arise by copying spikes from a single common source train to all target spike trains with probability p,.

J o o g, o

group 1
— group 2

Fig. S3. Correlation strength. The peak correlation strengths (mean for 200 simulation runs) for the two groups of neurons in Fig. 4C are shown. (Left)
Correlation peak for pairwise correlations was very similar for the two groups. Because each group consisted of three inputs, the average of the correlation was
computed between any of the three input pairs. (Right) Correlation peak for third-order correlations was nonzero for the three inputs in group 1 and zero for
the three inputs in group 2.
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