Supporting Information

Baschant et al. 10.1073/pnas.1105857108

SI Materials and Methods

Mice. BALB/c mice (Charles River Laboratories) and GR^{dim} (1), $GR^{LysMCre}$ (2), and GR^{LckCre} (3) were back-crossed for at least four generations to the BALB/c background. $GR^{CD11cCre}$ and $GR^{CD19Cre}$ mice were generated by crossing to CD11cCre transgenic (4) and CD19Cre mice (5), respectively, and were back-crossed for at least four generations to the C57BL/6 background. GR^{dim} mice were also crossed for 12 generations to the DBA/1 background. IL-17A^{-/-} (C57BL/6) and IFN- $\gamma^{-/-}$ (C57BL/6) mice were supplied by Yoichiro Iwakura (Tokyo, Japan) and the Jackson Laboratory, respectively. The mice were kept under specific pathogen-free conditions.

Antigen-Induced Arthritis. In brief, mice were immunized with 100 μ g methylated BSA (mBSA; Sigma-Aldrich) emulgated 1:1 with complete Freund's adjuvant (Sigma-Aldrich) supplemented with 1 mg/mL *Mycobacterium tuberculosis* (Difco) and simultaneously treated i.p. with 5 × 10⁸ heat-inactivated *Bordtella pertussis* (Chiron-Behring) at days 21 and 14 before arthritis induction. Arthritis was induced by an intraarticular injection of 100 μ g mBSA into the right knee joint cavity (6). This was followed by i.v. treatment with 1.25 mg/kg Micromethason (Novosom AG) or PBS at 4, 24, and 48 h. Knee joint swelling was determined using an Oditest caliper (Kroeplin) and expressed relative to the knee diameter at day 0 (before arthritis induction).

Glucose-6-Phosphate Isomerase-Induced Arthritis. Glucose-6-phosphate isomerase-induced arthritis (G6PI-IA) was established as described elsewhere (7) using 6- to 10-wk-old GR^{dim} mice (DBA/1 background) and monitored for 30 d. A score of 0 indicated no clinical signs of arthritis, 1 slight swelling and redness, 2 strong swelling and redness, and 3 massive swelling and redness. Dexamethasone (Dex; 1 mg/kg; Sigma-Aldrich) or PBS was applied daily i.p. starting from day 9 (onset of the disease) until day 15.

Histology. Knee joints were removed at day 1 after AIA induction, fixed in phosphate-buffered 4% formalin for 24 h, and subsequently decalcified with 15% EDTA, dehydrated, and embedded in paraffin, and 6- μ m sections were stained with H&E. Histological scoring was performed blindly according to Tolk and Földi's grading of joint inflammation from 0 to 3 regarding (*i*) cellular infiltration, (*ii*) fibrin exudation into the joint space, (*iii*) lining cell layer, and (*iv*) synovitis of subintimal connective tissue, and the average was calculated (8).

Serum Analysis. Eight hours after AIA induction, several cytokines (IFN- γ , IL-6, IL-17, and TNF- α) were analyzed in serum with a cytometric bead array (BD Biosciences) and subsequent flow cytometry according to the manufacturer's instructions.

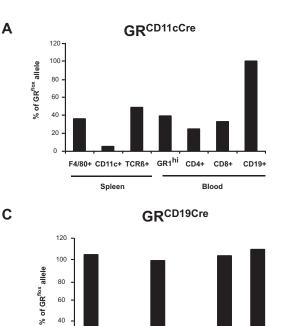
Blood was taken from the animals 24 h after AIA induction. Protein levels of IL-6, IL-17, and IFN- γ were measured by a sandwich ELISA (R&D Systems) according to the manufacturer's instructions.

- Reichardt HM, et al. (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93:531–541.
- Tuckermann JP, et al. (2007) Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest 117:1381–1390.
- Baumann S, et al. (2005) Glucocorticoids inhibit activation-induced cell death (AICD) via direct DNA-dependent repression of the CD95 ligand gene by a glucocorticoid receptor dimer. *Blood* 106:617–625.
- Caton ML, Smith-Raska MR, Reizis B (2007) Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204:1653–1664.

Lymph Node Cell Analysis. Cells from draining lymph nodes (inguinal and popliteal) were isolated 24 h after AIA induction, and 1 mL was cultured (7.5×10^6 cells/mL; 48-well plates; 37 °C, 5% CO₂) in RPMI medium (PAA Laboratories) containing 10% FCS, 1% penicillin/streptomycin, and 50 µM 2-mercapto-ethanol (Gibco) with either 25 µg mBSA or with 5 ng/mL 4 α -phorbol 12-myristate 13-acetate and 1 µg/mL ionomycin. After 2 h, brefeldin A (eBioscience) was added, and after a further 4 h, cells were harvested for flow cytometry. Cells were subsequently stained with anti–CD4-PECy7 (L3T3), anti–CD154-APC, anti–IL17A-FITC (eBio17B7), anti–IFN- γ -PE (XMG1.1), and anti–TNF α -eF405 (MP6-XT22).

Proliferation and Apoptosis Measurements. BrdU (2 mg) was injected i.p. 4 h after arthritis induction in glucocorticoid (GC)and PBS-treated mice. Twenty hours after BrdU application, inguinal and popliteal lymph nodes were removed and isolated cells stained for flow cytometry [anti–CD4-PECy7, anti–CD3-APC (17A2)], fixed and permeabilized (BD Cytofix/Cytoperm Buffer), and subsequently stained with anti-BrdU (FITC) antibody (BD Biosciences). Apoptosis was determined by incubating lymph node cells with FITC-labeled annexin V and 50 μ g/mL propidium iodide (Molecular Probes). FACS analysis was performed using a FACSCanto (BD Biosciences), and the data were processed with FlowJo software (version 8.7; Tree Star).

T_H17 in Vitro Differentiation. Naïve CD4⁺TCRβ⁺CD62L^{high}C-D44^{low} cells were purified from spleens and lymph nodes of BALB/c mice by flow cytometry sorting (FACSAria; BD Biosciences) after staining with anti–CD4-PECy7, anti–TCRβ-APC (H57-597), anti–CD62L-FITC (MEL-14), and anti–CD44-PE (IM7) antibodies. Purified T cells were activated by plate-bound anti-CD3 and anti-CD28 antibodies (5 µg/mL of each) and cultured in the presence of 10 µg/mL anti–IL-4 (11B11), 10 µg/mL anti–IFN-γ (XMG.1) (eBioscience), IL-6 (PeproTech), TGF-β (PeproTech), IL-1β (ImmunoTools), and TNF-α (ImmunoTools). After 7 d, cells were restimulated with plate-bound anti-CD28 antibodies (5 µg/mL of each) for 6 h, in the presence of brefeldin A for the final 4 h, and treated with 1 µM Dex. Subsequently, cells were analyzed by FACS as described above.


Quantitative Real-Time PCR for Recombination Efficiencies. Leukocytes of GR^{CD11cCre}, GR^{CD19Cre}, and GR^{LckCre} mice were purified from different hematopoietic organs using flow cytometry sorting (FACSAria; BD Biosciences) after staining with indicated cell surface markers. DNA was isolated from the purified cells, and quantitative real-time PCR amplifying the GR^{flox} allele was performed with an iCycler (Bio-Rad) using a Sensi-Mix DNA Kit containing SYBR Green (Invitrogen). Primer information can be supplied on request.

Rickert RC, Roes J, Rajewsky K (1997) B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res 25:1317–1318.

Brackertz D, Mitchell GF, Mackay IR (1977) Antigen-induced arthritis in mice. I. Induction of arthritis in various strains of mice. Arthritis Rheum 20:841–850.

Schubert D, Maier B, Morawietz L, Krenn V, Kamradt T (2004) Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. J Immunol 172:4503–4509.

^{8.} Berry EC, Grundmann E, Kirsten W (1982) Bone and Joint Disease (Current Topics in Pathology) (Springer, New York).

20 0

120

100 -80 -60 -40 -20 -0 **DP**

% of GR^{flox} allele

Ε

TCRB+

CD19+

Spleen

CD4+ CD8+

DN

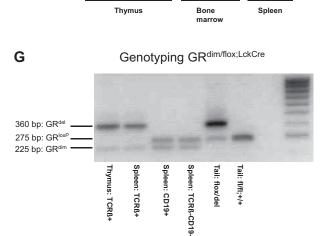
CD11c+

GRLckCre

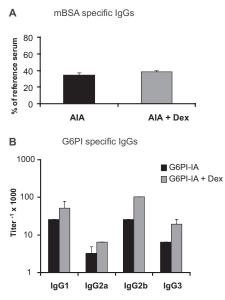
B220+

CD11b+

Bone marrow


GR1^{hi} CD11b+ TCRB+ CD19+ CD11c+

GR1^{hi}


в				
D	Cell type	Surface markers	Recombi- nation %	
	Macrophages (Spleen)	F4/80+/ MHCII+	65.0	
	DC (Spleen)	CD11c+/ MHCII+	95.3	
	T cells (Spleen)	TCR _{\$} +	52.0	
	Neutrophile granuloc. (Blood)	GR1hi	62.0	
	T cells (Blood)	CD4+	76.5	
	T cells (Blood)	CD8+	67.3	
	B cells (Blood)	CD19+	0.0	

D	Cell type	Surface markers	Recombi- nation %
	T cells (Spleen)	TCR _{\$} +	0.0
	B cells (Spleen)	CD19+	96.6
	DC (Spleen)	CD11c+	1.7
	B cells (BM)	B220+	79.2
	Macrophages (BM)	CD11b+	0.0
	Neutrophile	GR1hi	0.0
	granulocytes (BM)		

Cell Type	Surface markers	Recombi- nation %
DP (Thymus)	CD4+CD8+	99.7
DN (Thymus)	CD4-CD8-	16.3
T cells (Thymus)	CD4+	99.1
T cells (Thymus)	CD8+	98.0
Neutrophile granulocytes (BM)	GR1hi	19.8
Macrophages (BM)	CD11b+	0.0
T cells (Spleen)	TCR ^{®+}	99.0
B cells (Spleen)	CD19+	3.6
DC (Spleen)	CD11c+	1.0

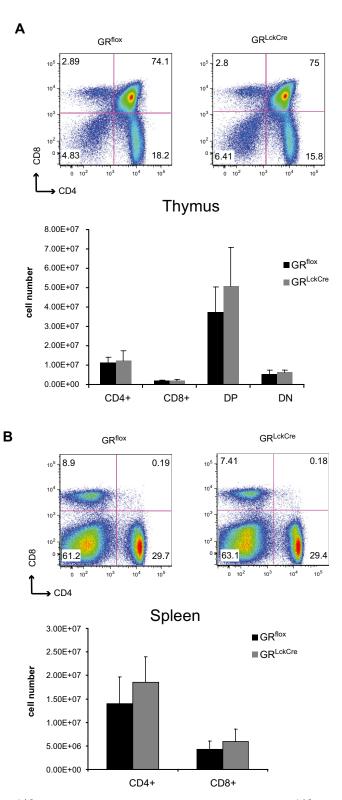


Fig. S1. Recombination efficiency of the GR^{flox} allele in different Cre lines. (*A*, *C*, and *E*) Abundance of the GR^{flox} allele in leukocytes of (*A*) GR^{CD11cCre}, (*C*) GR^{CD19Cre}, and (*E*) GR^{LckCre} mice determined by quantitative real-time PCR. Cells were sorted by flow cytometry with antibodies against indicated cell surface markers. DP, double-positive (CD4⁺/CD8⁺) cells; DN, double-negative (CD4⁻CD8⁻) cells. (*B*, *D*, and *F*) Summarized recombination efficiencies (%) of the GR^{flox} allele into the deleted GR allele for (*B*) GR^{CD11cCre}, (*D*) GR^{CD19Cre}, and (*F*) GR^{LckCre} mice, calculated from values in *A*, *C*, and *E*, respectively. (*G*) Determination of the GR^{flox} and the GR^{dim} allele in T cells of GR^{dim/flox;LckCre} mice. Thymocytes and T cells from the indicated organs were sorted by flow cytometry with indicated cell surface markers and the GR^{dim}, the GR^{loxP}, and the deleted GR^{del} allele amplified by PCR.

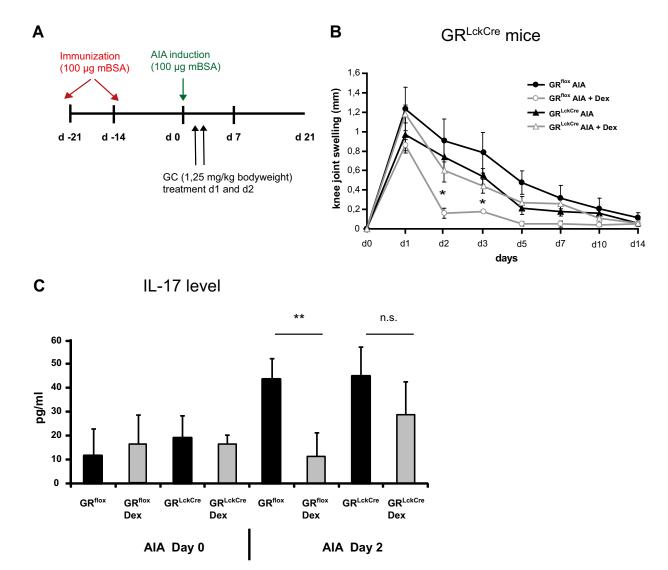
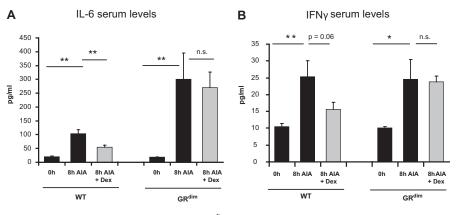
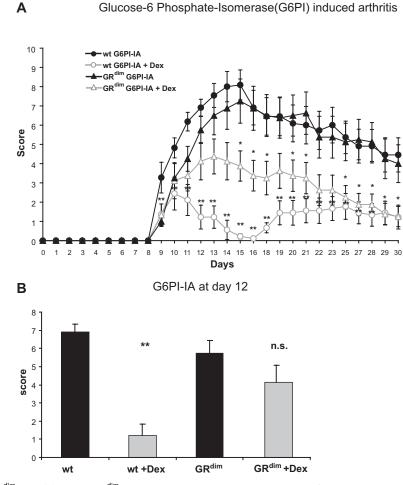
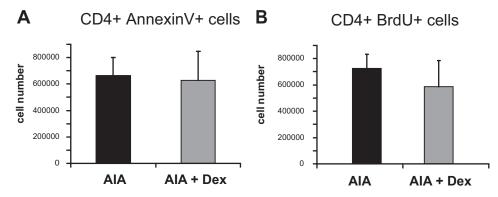
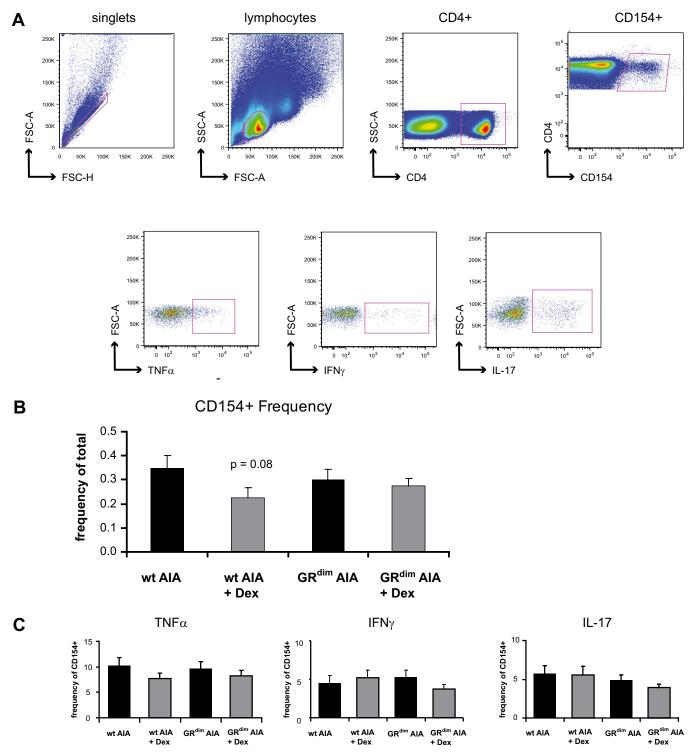


Fig. 52. mBSA-specific IgG levels and G6PI-specific IgG levels in serum of arthritic mice are not changed with GC treatment. (*A*) mBSA-specific IgG levels were determined at day 3 after AIA induction in serum of PBS- and Dex-treated mice by ELISA (n = 5). Pooled sera from AIA mice were used as the relative reference for antibodies specific to mBSA. (*B*) G6PI-specific IgG levels were determined at day 12 after G6PI-IA induction in serum of PBS- and Dex-treated mice by ELISA (n = 3). The highest serum dilution in which anti-G6PI antibodies were still detectable is shown on the y axis.


AS PNAS


Fig. S3. Cell compartments of GR^{flox} and GR^{LckCre} mice have comparable T cell numbers. (*A*) Thymocytes of GR^{LckCre} mice and their respective littermate control mice GR^{flox} were analyzed by flow cytometry with antibodies against surface expression of CD4 and CD8 (*Upper*). The number of CD4⁺, CD8⁺, double-positive (DP) CD4⁺CD8⁺, and double-negative (DN) CD4⁻CD8⁻ cells was determined by calculating the frequencies of the respective cells in the total number of cells (*Lower*; n = 3). (*B*) Splenic T cells of GR^{LckCre} and GR^{flox} mice were analyzed by flow cytometry as described in *A*. The number of CD4⁺ and CD8⁺ cells was determined by calculating the frequencies of the respective cells in the total number of cells (n = 3).


Fig. S4. GC-mediated suppression of AIA and IL-17 in mice with a fully established disease requires the GR in T cells. (*A*) Treatment scheme of AIA induction and Dex application. Mice were immunized s.c. twice at day -21 and -14 with 100 µg mBSA before arthritis induction by intraarticular injection of 100 µg mBSA at day 0. At day 1 (and day 2) after arthritis induction when the disease is already established, mice were treated with either 1.25 mg/kg Dex or PBS i.v. (*B*) GR^{LckCre} mice and their respective littermate control (GR^{flox}) mice were subjected to AIA and treated with PBS or Dex as described in *A*. Knee joint swelling was measured mechanically at indicated time points. (*C*) The serum IL-17 level was measured by ELISA in GR^{flox} and GR^{LckCre} mice before arthritis induction (day 0) and at day 2. Animals were treated as described in *A*. In *B* and *C*, *n* = 5–6; **P* < 0.05; ***P* < 0.01; n.s., not significant.


Fig. S5. Serum cytokine levels in PBS- and Dex-treated arthritic WT and GR^{dim} mice 8 h after AIA induction. IL-6 (A) and IFN- γ (B) were determined in WT and GR^{dim} animals treated as described in Fig. 1A 8 h after AIA induction. In A and B, n = 5-6; *P < 0.05, **P < 0.01; n.s., not significant.

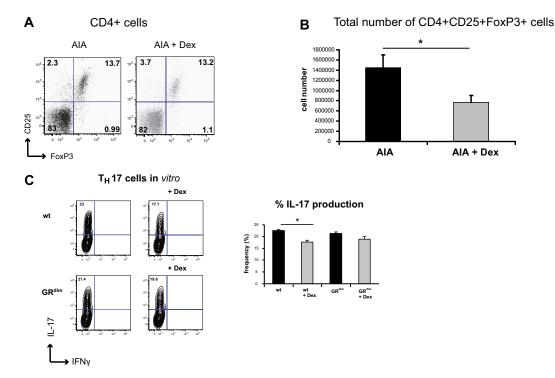

Fig. S6. G6PI-IA in WT and GR^{dim} mice. (A) WT and GR^{dim} mice were immunized with G6PI and treated from day 9 until day 15 with PBS or 1 mg/kg Dex. Paw swelling was scored from day 0 to day 30 at indicated time points. (B) Severity of G6PI-IA at day 12. In both panels, n = 5; *P < 0.05; **P < 0.01; n.s., not significant.

Fig. 57. Apoptosis and proliferation of total lymph node cells from PBS- and Dex-treated WT mice at day 1 after AIA induction. (A) Apoptosis was determined by annexin V-positive cells by flow cytometry analysis of CD4⁺ cells (n = 5). (B) Proliferation was measured by determination of BrdU incorporation after 24 h. Single cell suspensions of draining lymph nodes were analyzed by flow cytometry for BrdU-positive cells (n = 5).

Fig. S8. Gating strategy and FACS analysis of activated CD154⁺ cells in the draining lymph nodes of mice. (A) Cells from draining lymph nodes were isolated at day 1 after AIA induction and restimulated for 6 h with 25 μ g mBSA. Cells were subsequently stained for CD4 and intracellularly for CD154, IFN- γ , TNF- α , and IL-17. Cells were gated for singlet cells, followed by a lymphocyte gate. T helper cells were identified through CD4, mBSA-specific T cells through CD154 expression. Cytokine analysis was performed by creating gates for IFN- γ , TNF- α , and IL-17. (B) Cells of the draining lymph nodes derived from arthritic PBS- and Dex-treated WT and GR^{dim} mice were restimulated ex vivo for 6 h with mBSA and further analyzed for CD154 expression by intracellular flow cytometry analysis. The frequencies of total for CD154 expression are shown (n = 18-24). (C) Intracellular flow cytometry analysis for TNF- α , IFN- γ , and IL-17 in restimulated draining lymph node cells with the gating strategy described in A. The bars show the frequencies of the respective cytokines within the CD154⁺ cells (n = 18-24).

Fig. S9. Regulatory T cells in the draining lymph nodes from PBS- and Dex-treated WT mice at day 1 after AIA induction and influence of GCs on IL-17 production in T_H17 cells. (*A*) FACS analysis of restimulated (6 h with 25 μ g mBSA) lymph node cells stained for CD25, CD4, and FoxP3. A representative plot of CD25⁺FoxP3⁺ cells of the CD4⁺ gate is shown. Numbers indicate the mean of frequencies. (*B*) Total number of regulatory T cells in draining lymph nodes of mice (*n* = 5; **P* < 0.05). (*C*) Naïve T cells from WT and GR^{dim} mice were sorted for CD4⁺TCRβ⁺CD62L^{high}CD44^{low} cells and differentiated for 7 d under T_H17-promoting conditions. After 7 d, T_H17 cells were restimulated for 6 h and treated with a pharmacological dose (10⁻⁶ M) of Dex. Representative FACS images with mean values of frequencies are shown. The graph shows the mean and SD of IL-17 frequencies (*n* = 3; **P* < 0.05).