Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver catalase

(peroxisomes/recombinant DNA/heme site/organelle biogenesis)

Shuichi Furuta*, Hiroaki Hayashi[†], Makoto Hijikata*, Shoko Miyazawa*, Takashi Osumi*, and Takashi Hashimoto*

*Department of Biochemistry, Shinshu University School of Medicine, Matsumoto, Nagano 390, Japan; and †Department of Protein Chemistry, Institute of Endocrinology, Gunma University, Maebashi, Gunma 371, Japan

Communicated by N. E. Tolbert, September 16, 1985

ABSTRACT We have isolated five cDNA clones for rat liver catalase (hydrogen peroxide:hydrogen peroxide oxidoreductase, EC 1.11.1.6). These clones overlapped with each other and covered the entire length of the mRNA, which had been estimated to be 2.4 kilobases long by blot hybridization analysis of electrophoretically fractionated RNA. Nucleotide sequencing was carried out on these five clones and the composite nucleotide sequence of catalase cDNA was determined. The 5' noncoding region contained 83 bases and was followed by 1581 bases of an open reading frame that encoded 527 amino acids. The 3' noncoding region was 831 bases long and contained long repeats of the unit AC. The amino acid sequence deduced from the nucleotide sequence of the cDNAs showed about 90% homology with the reported primary structure of bovine liver catalase. The molecular weight of rat liver catalase was calculated to be 59,758 from the predicted amino acid sequence. The amino acid residues in contact with the heme group are completely identical for bovine liver and rat liver catalases. The amino acid sequence at the COOH terminus was confirmed by the results of carboxypeptidase P treatment of the protein purified from rat liver in the presence of leupeptin. Rat liver catalase has no cleavable signal peptide for translocation of the enzyme into peroxisomes.

Catalase (hydrogen peroxide:hydrogen peroxide oxidoreductase, EC 1.11.1.6) is a characteristic enzyme of rat liver peroxisomes. The biosynthesis of the following peroxisomal enzymes of animal tissues have been studied in vitro: catalase (1, 2), three enzymes of peroxisomal β -oxidation (3-6), uricase (urate:oxygen oxidoreductase, EC 1.7.3.3) (2), and carnitine octanoyltransferase (7). In all cases, no cleavable signal peptides for transport of the enzymes into peroxisomes were found. The amounts of the enzymes for peroxisomal β -oxidation and of their translatable mRNA in rat liver are increased >10-fold by the administration of di(2-ethylhexyl)-phthalate, a peroxisome proliferator (8). Under similar conditions, the level of catalase is increased only slightly. We started cloning of cDNAs for peroxisomal enzymes to predict the amino acid sequence of each protein and to find out the mechanisms that regulate gene expression of peroxisomal enzymes. We have already reported cloning of cDNA for rat liver acyl-CoA oxidase (9), the complete nucleotide sequence encoding the bifunctional peroxisomal enzyme enoyl-CoA hydratase [(S)-3-hydroxyacyl-CoA hydro-lyase, EC 4.2.1.17]/ 3-hydroxyacyl-CoA dehydrogenase [(S)-3-hydroxyacyl-CoA: NAD⁺ oxidoreductase, EC 1.1.1.35] (10), and a partial nucleotide sequence of cDNA for rat liver catalase (11).

The cloning and nucleotide sequences of cDNAs for catalase were reported for rat liver (11) and human fibroblast (12), but the two cDNAs lack the nucleotide sequences encoding the NH₂-terminal region of the enzyme. The complete primary structure of bovine liver catalase (13) and partial amino acid sequence of human erythrocyte catalase (14) were determined by amino acid sequencing of the enzyme. However, COOH-terminal amino acids predicted from the nucleotide sequence of cDNAs (11, 12) were not found in the purified preparations of bovine liver (20 amino acids) and human erythrocyte (6 amino acids) catalases (13, 14). When rat liver catalase was purified without any protection from possible proteolytic modification during the procedure, the preparation had somewhat lower molecular weight than that of the *in vitro* translation product (1).

In this paper, we report the entire nucleotide sequence of cDNA for rat liver catalase and its amino acid sequence and provide evidence that proteolytic modification occurs at the COOH terminus of rat liver catalase during purification.

MATERIALS AND METHODS

Materials. Restriction endonucleases and other nucleic acid-modifying enzymes were from Bethesda Research Laboratories and Takara Shuzo (Kyoto, Japan); radioactive nucleotides and nick-translation kit, from Amersham; M13 sequencing kits, from Amersham and Takara Shuzo; carboxypeptidase P and leupeptin, from Peptide Institute (Osaka, Japan).

Construction of Catalase cDNA Clones. cDNA clones of rat liver catalase were constructed and screened as described (11). The cDNA clones that correspond to the 5'-terminal region of catalase mRNA were constructed by the method of Land *et al.* (15).

Purification of Catalase. Catalase was purified from rat liver according to the method of Price et al. (16). This preparation was designated as modified catalase, because in the absence of a protease inhibitor during the purification, catalase was subjected to cleavage by proteases (1, 17). In order to protect against proteolytic modification of catalase, purification was carried out in the presence of leupeptin throughout the procedure. Livers of rats were perfused and homogenized with five volumes of a solution containing 0.25 M sucrose, 0.1% ethanol, 20 mM glycylglycine (pH 7.5), and 0.04 mM leupeptin. The homogenate was centrifuged at $700 \times g$ for 5 min, and the supernatant was centrifuged at $22,000 \times g$ for 15 min. The precipitate was suspended in 50 mM potassium phosphate, pH 7.5/0.4 mM leupeptin. Catalase was purified from this fraction according to the method described (17), except that all buffers for dissolving the precipitates contained 0.4 mM leupeptin. This preparation was designated as unmodified catalase.

Digestion of Catalases by Carboxypeptidase P. Catalase (1.2 mg) was dialyzed against water, lyophilized, and dissolved in

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

400 μ l of 0.1 M acetic acid. The reaction was started by addition of 40 μ g of carboxypeptidase P in 40 μ l of 0.1 M acetic acid. The reaction mixture was incubated at 37°C. Samples were removed at appropriate intervals and boiled for 5 min to stop the digestion. The boiled samples were lyophilized, dissolved in 0.02 M HCl, and subjected to amino acid analysis. As controls, catalase and carboxypeptidase P were incubated separately under the same conditions and their amino acid compositions were analyzed.

Other Methods. DNA sequencing was carried out by the procedure of Maxam and Gilbert (18) or by the dideoxy chain-termination method of Sanger *et al.* (19), after subcloning of restriction fragments in pUC9 vector instead of M13 phage vector (20). NaDodSO₄/PAGE (21) and polyacrylamide gel isoelectric focusing (22) were carried out as described. Amino acid composition of catalase was determined after hydrolysis at 110°C for 24 hr in 6 M HCl.

RESULTS AND DISCUSSION

Isolation of cDNA Clones for Rat Liver Catalase. Besides the partial cDNA clones for rat liver catalase, pMJ501 and pMJ504 (11), new clones with inserts containing the 5'terminal sequence of the catalase mRNA were selected from our original cDNA library (9). A clone, pMJ512, was selected (Fig. 1). This clone extended about 100 nucleotides further in the 5' direction than pMJ504 and contained the entire 3' noncoding sequence, but it did not cover the complete 5'-terminal region. We attempted to synthesize new cDNAs using a Pst I-Pst I restriction fragment (nucleotides 1116-1281) of pMJ512 as a primer. This fragment was hybridized with rat liver mRNA according to the method of Fujii-Kuriyama et al. (23). cDNA was synthesized according to the method described by Land et al. (15) and inserted into the Pst I site of pBR322 by the dG·dC-tailing method. Escherichia coli strain χ 1776 was transformed with the recombinant plasmids and the transformants were screened with a ³²P-labeled probe derived from a Rsa I-Pst I fragment (nucleotides 692-1115) of pMJ512. We screened about 2400

colonies and selected two clones, pMJ1005 and pMJ1010 (Fig. 1), which had the longest inserts among the hybridization-positive colonies. Fig. 1 shows the restriction maps of the cDNAs and the strategy used to determine their nucleotide sequences.

Nucleotide Sequences of Rat Catalase cDNAs. Fig. 2 shows the composite nucleotide sequence of catalase cDNA. The 5' noncoding region consisted of 83 nucleotides. From the first ATG codon to the TAA termination codon (nucleotides 1582-1584), 1581 base pairs of an open reading frame coding for 527 amino acids were determined. The 3' noncoding region contained 831 base pairs. A consensus polyadenylylation signal, AATAAA (nucleotides 2394-2399), is located 14 residues upstream of the poly(A) tract. Long repeats of the AC unit are found between nucleotides 1974 and 2162. Korneluk et al. (12) determined the nucleotide sequence of a cDNA clone of human fibroblast catalase. This clone, pCAT 1, encoded 451 amino acids and lacked the sequence corresponding to the NH₂-terminal 75 amino acids when compared with the primary structure of human erythrocyte catalase reported by Schroeder et al. (14). The 1353 base pairs of coding sequence of pCAT 1 show 85.1% homology to the corresponding parts of the nucleotide sequence of cDNA for rat liver catalase. No deletion or insertion was observed between the two cDNAs.

Deduced Amino Acid Sequence. Based on the nucleotide sequence of the cDNA, 527 residues of the amino acid sequence of rat liver catalase were deduced (Fig. 2). The molecular weight of the enzyme was calculated to be 59,758. The homology of amino acid sequences among three catalases was about 90%. Murthy *et al.* (24) have examined the structure of bovine liver catalase by x-ray analysis. The polar amino acid residues that participate in ionic interactions within bovine liver catalase were highly conserved in the rat liver and human enzymes. Only 4 of 49 residues of bovine liver catalase were changed in rat (Glu-437, Asp-488, and Gln-499) and in human (Glx-13). Complete conservation was found for 39 residues that are in contact with heme (Fig. 2). No difference was detected in the heme-environment residues the set of the se

FIG. 1. Restriction map and sequencing strategy of the cDNAs for rat liver catalase. Only the restriction sites used for sequence analysis are shown. Direction and extent of sequence determinations are indicated by arrows; short vertical bars and open circles represent the sites of 5' and 3' end labeling for sequencing by the chemical-degradation method (18); closed circles represent the starting points of dideoxy chain-termination sequencing (19); double slash marks mean that the labeled end was located on the vector DNA. The protein-coding region of the mRNA is indicated by the thick line. The open bar in pMJ501 indicates sequence that does not code for any amino acids related to catalase (11). bp, Base pairs.

-83 ATTGCCTACCCCGGGTGGAGACCGTGCTCGGCCCTCTGCCGCAGCTCCGCAATCCTACACC														ACC																
1	ATG Met	GCG Ala	GAC Asp	AGC Ser	CGG Arg	GAC Asp	CCA Pro	GCC Ala	AGC Ser	GAC Asp	CAG Gln	ATG Met	AAG Lys	CAG Gln	TGG Trp	AAG Lys	GAG Glu	CAG Gln	CGG Arg	GCC Ala	CCT Pro	CAG Gln	AAA Lys	CCC Pro	GAT Asp	GTC Val	CTG Leu	ACC Thr	ACC Thr	GGA G1y
•				Asn Asn									Glx	His His							Ala Ala			Ala						
91	GGC	GGG	AAC	CCA	ATA	GGA	GAT	AAA	CTT	AAT	ATC	ATG	ACT	GCG	GGG	CCC	CGA	GGG	CCC	CTC	CTC	GTT	CAA Gln	GAT	GTG	GTT Val	TTC	ACC	GAC	GAG Glu
31	Gly Ala	Gly	Asn	Pro	Val	GIY	ASP	Lys	Leu	ASI	Val	Ile	1111	Val	019	110	AL B	01,		Leu	Deu		0111	лэр				••••		• • •
181	ATG	GCA	CAC	TTT	GAC	AGA	GAG	CGG	ATT	сст	GAG	AGA	GTG	GTA	CAT	GCA	AAG	GGA	GCA	GGT	GCT	TTT	GGA	TAC	TTT	GAG	GTC	ACC	CAC	GAT
61	Met	Ala	His	Phe	Asp	Arg	Glu	Arg	Ile	Pro	Glu	Arg	Val	Val	His	Ala	Lys	Gly	Ala	Gly	Ala	Phe	Gly	Tyr	Phe	Glu	Val	Thr	His	Asp
					T CC					***	CAC	CAT	ATT			ACC	АСТ	сст	ATT	600	GTC		TTC	тсс	AC A	GTC	сст	CGA	GAG	TCA
271 91	All Ile	ACC	AGA	Tyr	Ser	AAG Lys	Ala	Lys	Val	Phe	GAG Glu	His	Ile	Gly	Lys	Arg	Thr	Pro	Ile	Ala	Val	Arg	Phe	Ser	Thr	Val	Ala	Gly	Glu	Ser
			Lys	-												Lys											_			
361	GGC	TCA	GCT	GAC	ACA	GTT	CGT	GAC	CCT	CGT	GGG	TTT	GCA	GTG	AAA	TTC	TAC	ACT	GAA	GAT	GGT	AAC	TGG	GAC	CTC	GTG	GGA	AAC	AAC	ACC
121	GIY	Ser	AIa	ASP	Inr	vai	Arg	Asp		AIg	GIY	rne	<u></u>	Val	Lys	rne	1 y 1	1111	014	лэр	019	ASI	пp	<u></u>	Leu		<u></u>			
451	сст	ATT	ттс	TTC	ATC	AGG	GAT	GCC	ATG	TTG	TTT	CCA	тсс	TTT	ATC	CAT	AGC	CAG	AAG	AGA	AAC	CCA	CAA	ACT	CAC	CTG	AAG	GAC	сст	GAC
151	Pro	Ile	Phe	Phe	Ile	Arg	Asp	Ala	Met	Leu	Phe	Pro	Ser	Phe	Ile	His	Ser	Gln	Lys	Arg	Asn	Pro	Gln	Thr	His	Leu	Lys	Asp	Pro	Asp
.	ATC	ст с	TCC		TTC	TCC	ACT	PFO CTT	Leu			тст	<u>стс</u>	CAT	CAC	стт	АСТ	TTC	TTC	ттс	ACC	C & C		ccc	ATT		CAT	CC 4	CAT	CGG
54 I 181	Met	Val	Trp	Asp	Phe	Trp	Ser	Leu	Cys	Pro	Glu	Ser	Leu	His	Gln	Val	Thr	Phe	Leu	Phe	Ser	Asp	Arg	Gly	Ile	Pro	Asp	Gly	His	Arg
									Å ₽₿								Ser													
631	CAC	ATG	AAT	GGC	TAT	GGC	TCA	CAC	ACC	TTC	AAG	CTG	GTT	AAT	GCG	AAT	GGA	GAG	GCA	GTG Val	TAC	TGC	AAG	TTC	CAT	TAC	AAG	ACT	GAC	CAG Gln
211	<u> </u>	net		01,	1,11	01,	561	1113		1	2,3	Deu		ASI	110		01,	010	A10		.,.	0,3	2,3	i ne		.,.	2,5		nop	01
721	GGC	ATC	ASP AAA	AAC	TTG	сст	GTT	GAA	GAG	GCA	GGA	AGA	стт	GCA	CAG	Asp GAA	GAC	CCG	GAT	TAT	GGC	стс	CGA	GAT	стт	TTC	AAT	GCC	ATC	GCC
241	Gly	lle	Lys	Asn	Leu	Pro	Val	Glu	Glu	Ala	Gly	Arg	Leu	Ala	Gln	Glu	Asp	Pro	Asp	Tyr	Gly	Leu	Arg	Asp	Leu	Phe	Asn	Ala	Ile	Ala
811	AGT	660		ТАС	CCA	Ser	TGG	ACT	Asp	ТАС	Ala	CAG	GTC	ATG	His Act	ттс	AAG	GAG	GCA	GAA	۸CC	TTC	• • • •	ттт	ΔΔΤ		ттт	GAC	CTG	ACC
271	Ser	Gly	Asn	Tyr	Pro	Ser	Trp	Thr	Phe	Tyr	Ile	Gln	Val	Met	Thr	Phe	Lys	Glu	Ala	Glu	Thr	Phe	Pro	Phe	Asn	Pro	Phe	Asp	Leu	Thr
	Thr Thr		Lys						Leu								Asn Ser	Gln			Ile									
901 301	AAG	GTT	TGG	CCT	CAC	AAG	GAC	TAC	CCT	CTT	ATA	CCA	GTT Val	GGC	AAA	CTG	GTC	TTA	AAC	AGA	AAT	CCT	GCT	AAT	TAT	TTT	GCT	GAA	GTT	GAA
501	2,3	vui				<i>C</i> 1.	лэр	.,.		Leu	110		• 4 1	019	Lys	Leu	101	Leu	ASI	AI B	ASI	110	Val	ASII	1 9 1	rne	A14	010	Vai	010
991	CAG	ATG	GCT	TTT	GAC	CCA	AGC	AAC	ATG	ссс	сст	GGC	ATT	GAG	ссс	AGC	CCG	GAC	AAG	ATG	стс	CAG	Val GGC	CGC	стт	TTT	GCT	TAC	CCA	GAC
331	Gln	Met	Ala	Phe	Asp	Pro	Ser	Asn	Met	Pro	Pro	Gly	Ile	Glu	Pro	Ser	Pro	Asp	Lys	Met	Leu	Gln	<u>G1y</u>	Arg	Leu	Phe	<u>Ala</u>	Tyr	Pro	Asp
081	ACT	Leu CAC	cGC	CAC	CGC	ста	GGA	CCA	AAC	TAT	CTG	CAG	ΑΤΑ	сст	GTG	۵۵۲	TGT		тас	T D D	сст	191	GTG	600	***	тас	C A G		CAT	
361	Thr	His	Arg	His	Arg	Leu	Gly	Pro	Asn	Tyr	Leu	Gln	Ile	Pro	Val	Asn	Cys	Pro	Tyr	Arg	Ala	Arg	Val	Ala	Asŋ	Tyr	Gln	Arg	Asp	Gly
												His																		
391	Pro	Met	: Cys	, AlG Met	His	GAC 6 Asp	AAC Asn	CAG G1n	GGI G1v	GGT	GCT Ala	CCC Pro	AAC Asn	TAC	TAC	CCC Pro	AAC Asn	AGC	TTC	AGC	GCA	CCA Pro	GAG Glu	CAG Gln	CAG G1n	GGC	TCG	GCC	CTG	GAG
					Gln Met				,	,				-,-	-,-					Gly			•••		•1	Pro			Leu	010
261	CAC	CAT	AGO	CAG	TGC	TCT	GCA	GAT	GTG	AAG	CGC	TTC	AAC	AGT	GCT	AAT	GAA	GAC	AAC	GTC	ACT	CAG	GTG	CGG	ACA	TTC	TAT	ACG	AAG	GTG
421	nis	Ser	· <u>I</u> le	GIN	Tyr Tyr	s Ser •	Gly	Asp Glu	Val	Lys	Arg	Phe	Asn	Ser Thr	Ala	Asn	Glu	Asp	Asn	Val	Thr	Gln	Val	Arg	Thr	Phe	Tyr	Thr	Lys	Val
1351	TTG	Arg	GAC	· His G GAG	Phe GAC	AGG	GI y	CGC	CTG	G1 H TGT	GAG	AAC	ATT	GCC	AAC	CAC	Asp	AAA	GAT	GCT	CAG	стт	ттс	ATT	CAG	AGG	A AA	Leu	GTC	AAG
451	Leu	Asr	n G11	ı Glu	Glu	ı Arg	Lys	Arg	Leu	Cys	Glu	Asn	Ile	Ala	Asn	His	Leu	Lys	Asp	Ala	Gln	Leu	Phe	Ile	Gln	Arg	Lys	Ala	Val	Lys
441	ΔΔΤ	110	• AC1						TAC					~ • •	Gly Gly			• • •				Ile				Lys Lys				
481	Asn	Phe	Th:	Asp	val	l His	Pro	Asp	Tyr	Gly	Ala	Arg	Val	Gln	Ala	Leu	CTG Leu	GAC	CAG Gln	TAC	AAC Asn	TCC Ser	CAG G1n	AAG Lvs	CCT	AAG	AAT Asn	GCA	ATT	CAC
			Ser	Glu	1			G1 u			Ser Ser	His	Ile Ile					•	Lys	- , -		Ala	Glu	_,_		-,-				
1531	ACC	TAC	C GT/	A CAG	GCC	GGC	TCT	CAC	ATA	GCT	GCC	AAG	GGA	AAA	GCT	AAC	CTG	TAA	AGC	ACGG	GTGC	TCAG	CCTC	CTCA	GCCT	GCAC	TGAG	GAGA	rccci	TCAT
511		Phe	• • •		Ser	- 019	Ser	n1S	Leu	AIA	AIa	Lys Arg	Glu	Lys	Ala	Asn	Leu													
1632	GAA	GCAG	GGGC/		ссто	CACCA	GTAA	TCAT	CGCT	GGAT	GGAG	TCTC	 ссст	GCTG	AAGC	GCAG	ACTC	ACGC	TGAC	GTCT		AACG		TCCA	AGCT	TCTA	GAGT	-		
1751	TGC	TTT	GAT	GACAT	ттс	CCGAG	GGGGG	AAAT	τάαα	GATT	AGGG	CTTA	GCAA	- TC∆C	TTAA	C & G &	0	TGCA	TCTO			u							an i Al	AUG
1870	AAG	GTTI	птоти		GAA		ΔΤΤΤ	GATT	AC AT	ATCA		TC						- GGA			GGAC	HU	9110	uu A f	IAI	LAIT	IAAA	AIGA'	I TAC/	AGA
1020	C A C									A 1 GA		IGAL	нааа	ICT I	GGIG	AIIT	IACT	ATAG	TCTT	ATGT	TACC	TCAC	AGCC	TGGT	ATAT	ATAC	AACA	CACA	CACAG	CACA
1909	CAL	.AUA(LACAL		CAAA	ALA(ACAT	ACAC	TATA	CACA	CACA	CACA	CACA	CACA	СТАА	AACA	CACA	TACA	CAAC	ACAC	ACAT	ACAC	TACA	CACA	CAGA	ACAC	ACAA	CACA	ACAT	ГАСА
2108	CAC	, A í A(GCA	LACAC	ACAC	CACAC	ACAC	ACAC	ACAC	ACAC	ACAC	ACAC	ACAC	ACAC	ATGA	ATGA	AGGG	ATTA	TAAA	GATG	GCCC	ACCC	AGAA	TTTT	TTTT	TATT	TTTC	TAAG	STCC	TAT
2227	AAG	GAAA/	AACC	ATACI	TGG	ATCAT	GTCT	TCCA	AAAA	TAAC	TTTA	GCAC	TGTT	GAAA	CTTA	ATGT	TTAT	тсст	GTGT	AGTT	GATT	GGAT	тсст	тттс	ссст	TGAA	ATTA	TGTT	TATG	CTGA
2346	TAC	CACA	GTGA	TTTC	ACAT	AGGG1	GATT	TGTA	TTTG	CTTA	CATT	TTTA	CAAT		TGAT	сттс	ATGG		2412											

FIG. 2. Composite nucleotide sequence of the cDNA for rat liver catalase and its deduced amino acid sequence. Nucleotides are numbered in the 5' to 3' direction, beginning with the first residue of the initiator codon ATG. Nucleotides on the 5' side of residue 1 are designated by negative numbers. Amino acids are numbered from the initiator methionine. The amino acids of human catalases [residues 2–74 determined by amino acid sequencing of erythrocyte catalase (14), and residues 75–527 predicted from the nucleotide sequence of cDNA for fibroblast catalase (12)] are shown below the rat sequence only where different from the corresponding residue of rat enzyme. Amino acids of bovine catalase (13) that are different from the corresponding rat residues are given in italics below the human sequence. Initiator methionine was not present in bovine and human catalases, where the NH₂-terminal amino acid is a blocked alanine at position 2 (13, 14). Underlined residues are in contact with heme in bovine liver catalase (24). Boxes indicate the sequences Asn-Xaa-Thr (Asn-148, -439, and -481) which are the potential asparagine-linked glycosylation sites. Dots (Arg-492, Asn-507, Gln-514) indicate the COOH-terminal residues predicted from the analyses of carboxypeptidase P digestion of modified catalase. Polyadenylylation signal in the 3' noncoding region is indicated by a wavy line. In pMJ501, one nucleotide was different from the corresponding residue of other clones (at position 1301, A instead of G).

dues between rat and bovine liver catalases. Only one difference was found, at residue 158, which is alanine in rat

and bovine catalases and is proline in the human enzyme. Thus, the amino acid sequences essential for structure and catalytic activity of catalase are well conserved in these three mammalian species.

Catalases from many sources give multiple protein bands following native gel electrophoresis and exhibit different pIs following native isoelectric focusing (25, 26). Both catalases shown in Fig. 3 (subunits of unmodified and modified rat liver catalases) had multiple protein bands when examined by native polyacrylamide gel isoelectric focusing (data not shown). Jones and Masters (27) proposed that catalase includes sialic acid and that the multiple forms of catalase are due to the degree of sialylation. Catalase from Aspergillus niger has been reported to be a glycoprotein (28, 29), and Furuta et al. (30) reported the presence of a sugar moiety in a purified preparation of mouse liver catalase. In Fig. 2, three potential asparagine-linked glycosylation sites were indicated (asparagines at positions 148, 439, and 481). Phosphorylation or acetylation of the protein might also be considered as the cause for the multiple molecular forms of catalase.

COOH-Terminal Amino Acids of Purified Catalase. Fig. 3 shows the NaDodSO₄/polyacrylamide gel electropherogram of unmodified catalase and modified catalase. The unmodified catalase clearly showed lower mobility than that of modified catalase. Robbi and Lazarow (1) reported that the in vitro translation product of rat liver catalase was about 4000 daltons larger than the enzyme purified in a conventional manner (16). Crane et al. (31) also observed that mouse liver catalase purified in the absence of protease inhibitors was somewhat smaller than that purified in the presence of the inhibitors. Moreover, the reported primary structure of bovine liver catalase (13) lacks 20 amino acids of its COOH terminus that were predicted from the nucleotide sequence of cDNA for rat liver catalase (11) and human fibroblast catalase (12). Purified preparations of bovine and human erythrocyte catalase lack 6 and 9 amino acids of their COOH termini, respectively (13, 14).

In order to identify the amino acid sequence of the COOH termini of the unmodified catalase and modified catalase, both forms of the enzyme from rat liver were digested with carboxypeptidase P. Carboxypeptidase P is an exopeptidase that liberates amino acids sequentially from the COOH end of a protein (32). Fig. 4 shows the time course of release of free amino acids from the two catalases incubated with carboxypeptidase P. The time course for the unmodified catalase (Fig. 4A) matched reasonably well the predicted COOH-terminal sequence: -Ala-Ala-Lys-Gly-Lys-Ala-Asn-Leu. On the other hand, the result of carboxypeptidase P digestion of the modified catalase was more complicated (Fig. 4B). The main amino acids liberated after 15 min were

FIG. 3. NaDodSO₄/10% PAGE of the purified catalases (0.2 μ g per lane). Lane a: catalase purified from rat liver in the presence of leupeptin (unmodified catalase). Lane b: catalase purified from rat liver in the absence of leupeptin (modified catalase). Gels were stained with 0.25% Coomassie brilliant blue R.

FIG. 4. Rate of release of amino acids from unmodified catalase (A) and from modified catalase (B) by carboxypeptidase P. +, Asn; •, Leu; \bigcirc , Ala; \blacktriangle , Lys; \triangle , Gly; \blacksquare , Thr + Gln; \Box , Pro; \blacktriangledown , Arg; \bigtriangledown , Val; •, Ser; •, Tyr. Asparagine was not determined quantitatively, because of the limitation of our system of amino acid analysis. Therefore, the relative height of peaks are represented as + < ++< +++.

asparagine, lysine, and proline. Based on this result, it is possible that the COOH-terminal residue of modified catalase is asparagine at position 507 and that the sequence is -Gln-Lys-Pro-Lys-Asn. This asparagine is coincident with the reported COOH-terminal residue, asparagine at position 507, of bovine liver catalase (13). The amino acid-release pattern suggests that this modified enzyme preparation is heterogeneous, containing catalase molecules with different COOH ends. These COOH termini could be attributed to Arg-492 and Gln-514. In Fig. 3, a faint protein band is visible below the main band in the electropherogram of the modified catalase (lane b). This is probably due to a minor component of catalase which has a different COOH terminus.

We also tried to identify the NH_2 -terminal amino acid residue by the Edman degradation method for both the unmodified and modified enzymes. However, we could not detect a significant amount of amino acid after several cycles of analysis for either form of the enzyme, suggesting that their NH_2 termini are masked. The NH_2 -terminal amino acid of bovine liver and erythrocyte (13) and human erythrocyte (14) catalase was determined to be a blocked alanine, corresponding to Ala-2 of the deduced amino acid sequence of rat liver catalase (Fig. 2). From these results, we propose that the NH_2 -terminal residue of rat liver catalase is a blocked alanine at position 2 (Fig. 2), for both the unmodified and modified forms.

The modified rat liver catalase described in this paper had no difference in its catalytic properties and absorption spec-

Biochemistry: Furuta et al.

trum compared with those of the unmodified catalase. According to the three-dimensional structure of bovine liver catalase determined by Murthy et al. (24), the COOHterminal amino acids are not buried in the protein molecule and thus do not participate in subunit association or interaction with heme. Therefore, it is probable that the COOHterminal amino acids of catalase are attacked easily and removed from the enzyme by proteases during its purification but that this change has no significant effect on the structure and function of the enzyme.

From these results, we conclude that after its synthesis, catalase is transported into and accumulated within peroxisomes without any proteolytic removal of its NH₂- and COOH-terminal amino acids.

We thank Dr. S. Hattori for the protocol of nucleotide sequencing by the chain-termination method using pUC plasmid and Dr. Y. Yabusaki for advice in NH2-terminal amino acid sequencing. This work was supported in part by research grants from the Ministry of Education, Science and Culture of Japan.

- 1. Robbi, M. & Lazarow, P. B. (1978) Proc. Natl. Acad. Sci. USA 75, 4344-4348.
- Goldman, B. M. & Blobel, G. (1978) Proc. Natl. Acad. Sci. 2. USA 75, 5066-5070.
- Furuta, S., Hashimoto, T., Miura, S., Mori, M. & Tatibana, 3 M. (1982) Biochem. Biophys. Res. Commun. 105, 639-646.
- Miura, S., Mori, M., Takiguchi, M., Tatibana, M., Furuta, S. 4. Miyazawa, S. & Hashimoto, T. (1984) J. Biol. Chem. 259, 6397-6402.
- 5. Rachubinski, R. A., Fujiki, Y., Mortensen, R. M. & Lazarow, P. B. (1984) J. Cell Biol. 99, 2241-2246.
- Fujiki, Y., Rachubinski, R. A., Mortensen, R. M. & Lazarow, 6. P. B. (1985) Biochem. J. 226, 697-704.
- 7. Ozasa, H., Miyazawa, S. & Osumi, T. (1983) J. Biochem. (Tokyo) 94, 543-549.
- Furuta, S., Miyazawa, S. & Hashimoto, T. (1982) J. Biochem. 8 (Tokyo) 92, 319-326.
- 9. Osumi, T., Ozasa, H. & Hashimoto, T. (1984) J. Biol. Chem. **259**, 2031–2034.
- 10. Osumi, T., Ishii, N., Hijikata, M., Kamijo, K., Ozasa, H., Furuta, S., Miyazawa, S., Kondo, K., Inoue, K., Kagamiyama, H. & Hashimoto, T. (1985) J. Biol. Chem. 260, 8905-8910.
- 11. Osumi, T., Ozasa, H., Miyazawa, S. & Hashimoto, T. (1984)

Biochem. Biophys. Res. Commun. 122, 831-837.

- Korneluk, R. G., Quan, F., Lewis, W. H., Guise, K. S., 12. Willard, H. F., Holmes, M. T. & Gravel, R. A. (1984) J. Biol. Chem. 259, 13819-13823.
- 13. Schroeder, W. A., Shelton, J. R., Shelton, J. B., Robberson, B., Apell, G., Fang, R. S. & Bonaventura, J. (1982) Arch. Biochem. Biophys. 214, 397-421.
- 14. Schroeder, W. A., Shelton, J. R., Shelton, J. B., Apell, G., Evans, L., Bonaventura, J. & Fang, R. S. (1982) Arch. Biochem. Biophys. 214, 422-424.
- 15. Land, H., Grez, M., Hauser, H., Lindenmaier, W. & Schutz, G. (1981) Nucleic Acids Res. 9, 2251-2266.
- 16. Price, V. E., Sterling, W. R., Tarantola, V. A., Hartley, R. W., Jr., & Rechcigl, M., Jr. (1962) J. Biol. Chem. 237, 3468-3475.
- 17. Mainferme, F. & Wattiaux, R. (1982) Eur. J. Biochem. 127, 343-346.
- Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol. 65, 18. 499-560.
- 19. Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463–5467.
- Messing, J., Crea, R. & Seeberg, P. H. (1981) Nucleic Acids 20. Res. 9, 309-321.
- 21. Laemmli, U. K. (1970) Nature (London) 227, 680-685.
- Doi, Y. & Nishida, T. (1983) J. Biol. Chem. 258, 5840-5846. 22.
- Fujii-Kuriyama, Y., Taniguchi, T., Mizukami, Y., Sakai, M., 23. Tashiro, Y. & Muramatsu, M. (1981) J. Biochem. (Tokyo) 89, 1869-1879
- Murthy, M. R. N., Reid, T. J., III, Sicignano, A., Tanaka, N. 24. & Rossman, M. G. (1981) J. Mol. Biol. 152, 465-499.
- Holmes, R. S. & Masters, C. J. (1972) Arch. Biochem. 25. Biophys. 148, 217-223.
- Jones, G. L. & Masters, C. J. (1974) Arch. Biochem. Biophys. 26. 161, 601-609.
- 27. Jones, G. L. & Masters, C. J. (1975) Arch. Biochem. Biophys. 169, 7-21.
- Wasserman, B. P. & Hultin, H. O. (1981) Arch. Biochem. 28 Biophys. 212, 385-392.
- 29. Kikuchi-Torii, K., Hayashi, S., Nakamoto, H. & Nakamura, S. (1982) J. Biochem. (Tokyo) 92, 1449-1456.
- 30. Furuta, S., LeDonne, N. & Tolbert, N. E. (1984) in International Cell Biology, eds. Seno, S. & Okada, Y. (Jpn. Soc. Cell Biol., Tokyo, Japan), p. 284.
- 31. Crane, D., Holmes, R. & Masters, C. (1982) Biochem. Biophys. Res. Commun. 104, 1567–1572. Yokoyama, S., Oobayashi, A., Tanabe, O., Sugawara, S.,
- 32. Arai, E. & Ichishima, E. (1974) Appl. Microbiol. 27, 953-960.