Supporting Information

Lactam-stabilized helical analogues of the analgesic μ -conotoxin KIIIA

Keith K. Khoo^{‡§‡}, Michael J. Wilson^{||}, Brian J. Smith[§], Min-Min Zhang^{||}, Joszef Gulyas[#], Doju Yoshikami^{||}, Jean E. Rivier[#], Grzegorz Bulaj[¶], and Raymond S. Norton ^{‡*}

Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), 381 Royal Parade, Parkville VIC 3052, Australia; The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA; The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, USA

Running title: Lactam analogues of the analgesic µ-conotoxin KIIIA

* To whom correspondence should be addressed: Email: <u>ray.norton@monash.edu.au</u> Phone: +61 3 9903 9167. Fax: +61 3 9903 9582.

[§] The Walter & Eliza Hall Institute of Medical Research
[¥] The University of Melbourne
[‡] Monash University
[#] Salk Institute
[¶],[¶] University of Utah

Contents

Table SI-1: Chemical shifts and $J_{NHC\alpha H}$ coupling constants for Peptides $1 - 8$	S2
Table SI-2: Characterization of Peptides $1 - 8$ by MS, CE and RP-HPLC	S3
Fig. SI-1: Summary of NOE connectivities for D9K13 lactam analogue (Peptide 6)	S4
Fig. SI-2: Trajectory snapshots of MD simulations	S5
Fig. SI-3: Percent helical occupancy during MD simulations	. S6

Table SI-1 Chemical shifts (NH and C α H) and ${}^{3}J_{\text{NHC}\alpha\text{H}}$ coupling constants for Peptides **1** - **8** at 5 °C, pH 2.7. ${}^{3}J_{\text{NHC}\alpha\text{H}}$ coupling constants were measured from 1D spectra except in the case of overlapped peaks (^a) which were measured from a DQF-COSY spectrum. Single peak annotation denotes coupling constants too small to be measured from 1D spectra. ^{n.d.} The Asp7 resonance in D7K11 was not observed

Peptide	1	(K5D9)	
---------	---	--------	--

	NH	СаН	${}^{3}J_{NHC\alpha H}$ (Hz)
Lys5*	8.47	4.26	single peak
Ser6	8.75	4.26	2.2
Lys7	8.10	4.03	5.6
Trp8	8.34	4.35	4.2
Asp9*	9.35	4.65	3.6
Arg10	7.94	4.16	5.6
Asp11	7.97	4.53	6.9
His12	7.70	4.51	9.1 ^a
Ser13	8.00	4.47	6.8
Arg14	8.56	4.34	7.5

Peptide 3 (K7D11)

	NH	СаН	$^{3}J_{NHC\alpha H}$ (Hz)
Lys7*	8.54	4.01	single peak
Trp8	8.86	4.22	single peak
Ala9	8.70	4.12	4.2
Arg10	7.88	4.06	5.3
Asp11*	8.35	4.55	6.5
His12	7.61	4.46	9.2
Ser13	7.84	4.44	6.6
Arg14	8.45	4.33	7.3

Peptide 5 (K9D13)

1			
	NH	СаН	$^{3}J_{NHC\alpha H}$ (Hz)
Lys7	8.56	3.91	4.1
Trp8	8.52	4.32	3.9
Lys9*	8.38	3.99	2.9
Arg10	8.10	4.00	2.9
Asp11	8.24	4.40	5.8
His12	8.20	4.17	7.2
Asp13*	8.29	4.71	6.7 ^a
Arg14	7.76	4.23	7.0

Peptide 7 (K9D13 linear)

	NH	СаН	$^{3}J_{NHC\alpha H}$ (Hz)
Lys7	8.47	4.00	overlap
Trp8	8.09	4.60	6.3
Lys9	7.93	4.08	6.5
Arg10	8.18	4.18	6.4
Asp11	8.40	4.58	6.9
His12	8.51	4.58	7.6
Asp13	8.46	4.64	overlap
Arg14	8.45	4.26	overlap

Peptide 2	(D5K9)
-----------	--------

p	(,	
	NH	СаН	${}^{3}J_{NHC\alpha H}$ (Hz)
Asp5*	8.89	4.55	3.5
Ser6	8.95	4.09	single peak
Lys7	8.00	4.06	5.6 ^a
Trp8	7.88	4.38	4.9
Lys9*	9.24	3.96	4.1
Arg10	7.72	4.11	5.6
Asp11	7.96	4.53	7.4 ^a
His12	7.77	4.45	8.6
Ser13	7.98	4.43	6.3 ^a
Arg14	8.50	4.35	7.3

Peptide 4 (D7K11)

	NH	СαН	³ J _{NHCaH} (Hz)
Asp7*	-	-	- ^{n.d.}
Trp8	9.75	4.61	5.9
Ala9	8.64	4.14	5.5
Arg10	8.11	4.14	6.3
Lys11*	8.06	4.14	6.5
His12	8.46	4.63	7.1 ^a
Ser13	8.36	4.42	6.6
Arg14	8.62	4.31	7.1

Peptide 6 (D9K13)

	NH	СαН	$^{3}J_{NHC\alpha H}$ (Hz)
Lys7	8.51	4.01	4.9
Trp8	8.48	4.51	4.6
Asp9*	8.64	4.41	4.6
Arg10	8.30	3.96	5.4 ^a
Asp11	8.13	4.53	6.7
His12	8.09	4.45	7.7 ^a
Lys13*	8.08	4.31	5.9 ^a
Arg14	8.18	4.24	7.3

Peptide 8 (D9K13 linear)

	NH	СаН	${}^{3}J_{NHC\alpha H}$ (Hz)
Lys7	8.35	4.06	5.8
Trp8	8.25	4.68	6.8
Asp9	8.28	4.60	overlap
Arg10	8.28	4.12	overlap
Asp11	8.28	4.57	overlap
His12	8.28	4.59	overlap
Lys13	8.41	4.29	6.7
Arg14	8.57	4.24	7.0

Peptide	Calculated	Observed	% Purity by	% Purity by	Yield ^d (mg)
	[M+H]+	[M+H]+ ^a	HPLC ^b	CE ^c	
1	1337.68	1337.56	99	96	4.9
2	1337.68	1337.59	99	97	17.8
3	1078.56	1078.46	98	98	9.8
4	1078.56	1077.65	NA	77	18.8
5	1163.62	1163.52	98	97	13.5
6	1163.62	1163.77	NA	86	10.6
7*	1181.33	1181.50	99	NA	NA
8*	1181.33	1181.78	99	NA	NA

Table SI-2 Characterization of Peptides 1 - 8 by Mass Spectroscopy, Capillary Electrophoresis and RP-HPLC.

*Commercially available. NA, not available.

^a Mass spectra (MALDI-MS) were measured on an ABI-Perseptive DE-STR instrument in positive reflector mode.

^b Quantitative RP-HPLC was performed using a HP1090 instrument and a Grace Vydac C18 column (2 x 150 mm, 5 μ m particle size, 300 Å pore size). The solvent system was comprised of eluent A = TEAP at pH 2.25, eluent B = 60% CH₃CN, 40% A. A gradient was performed from 5% B to 45% B in 30 min at a flow rate of 0.2 mL/min.

^c Capillary electrophoresis (CE) was performed using a Beckman PACE 5500 instrument. The electrophoresis buffer was 0.1 M sodium phosphate (15% acetonitrile), pH 2.5. Separation was accomplished by application of 20 kV to the capillary (0.75 μ m x 50 cm). Detection was at 214 nm. Impurities in peptides **4** and **6**, which were not analysed by RP-HPLC, were detected by CE; accordingly, the potencies of these analogues could be slightly higher than reported.

^d Yield obtained based on 0.2 mmol scale synthesis as described in Experimental procedures.

Fig. SI-1: Summary of (A) sequential and short-range NOE connectivities and (B) number of short-range (dark grey), sequential (light grey) and intra-residue (white) NOE restraints plotted as a function of residue number following preliminary structure calculations in CYANA for D9K13 lactam-stabilized peptide (6). Intensities of sequential d_{NN} , $d_{\alpha N}$ and $d_{\beta N}$ connectivities are indicated by the height of the bars.

Fig. SI-2: Trajectory snapshots of MD simulation (50 ns) for each lactam analogue and its linear counterpart, taken at 10 ns time intervals.

Fig. SI-3: Percent helical occupancy for each residue of the minimized linear and lactam stabilized analogues of μ -KIIIA for (A) 5-9 analogues, (B) 7-11 analogues and (C) 9-13 analogues through 50 ns of MD simulation. Percentage helicity was calculated using the g_helix function in GROMACS.