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ABSTRACT We have isolated overlapping phage genomic
clones covering an area of 21 kilobases that encodes the human
protein C gene. The gene is at least 11.2 kilobases long and is
made up of nine exons and eight introns. Two regions homol-
ogous to epidermal growth factor and transforming growth
factor are encoded by amino acids 46-91 and 92-136 and are
precisely delimited by introns, as is a similar sequence in the
genes for coagulation factor IX and tissue plasminogen acti-
vator. When homologous amino acids of factor IX and protein
C are aligned, the positions of all eight introns correspond
precisely, suggesting that these genes are the product of a
relatively recent gene duplication. Nevertheless, the two genes
are sufficiently distantly related that no nucleic acid homology
remains in the *ntronic regions and that the size of the introns
varies dramatically between the two genes. The similarity of the
genes for factor IX and protein C suggests that they may be the
most closely related members of the serine protease gene family
involved in coagulation and fibrinolysis.

Protein C is a two-chain vitamin K-dependent serine protease
that plays. a fundamental role in hemostasis by preventing
coagulation and promoting fibrinolysis (1). The anticoagulant
effects of protein C are achieved through cleavage of factors
Va and Villa of the intrinsic pathway (2), while clot lysis
appears to result from interaction of protein C with the
inhibitor of plasminogen activator (3). First isolated from
bovine plasma in 1976 by Stenflo (4), the human protein (5)
has since been shown to be a 62-kDa dimer with a heavy chain
that contains the active serine site and a light chain that
contains, at its amino terminus, y--carboxylglutamic acid
residues, which are highly conserved among the vitamin
K-dependent factors (6). The protein circulates as a zymogen
(7), is activated by thrombin coupled with an endothelial
cofactor, thrombomodulin (8), and is inactivated by a specific
plasma protease inhibitor (9). Heterozygous deficiency of
protein C was first identified by Griffin et al. (10) and has been
shown by several workers to be an autosomally dominant
disorder manifested by a markedly increased tendency to clot
(11). Homozygous protein C-deficient patients, with no
detectable antigenic levels of protein C, suffer from massive
venous thrombosis as neonates (12). A deficiency of protein
S, the cofactor for protein C-mediated inactivation of factor
Va, has been reported as also causing increased thrombosis
(13). Partial cDNAs for protein C were characterized by
Foster and Davie (14), and a full length cDNA giving the
complete amino acid sequence ofthe human protein has been
isolated in our laboratory (36). We report the isolation of
overlapping genomic clones of the protein C gene, analysis of
the gene's organization, and relationships to other seine
protease genes.

MATERIALS AND METHODS
Isolation and Mapping of Genomic Clones. Two human

genomic libraries constructed at the EcoRI site of Charon 4a
and Charon 28 were screened by the Benton and Davis
technique (15) using a protein C cDNA (36) corresponding to
amino acids 225-419 plus the 3' nontranslated region. Ap-
proximately 6 x 101 phage plaques were screened and three
overlapping fragments of human gqnomic DNA, each of -20
kilobase pairs (kbp), were mapped using the restriction
enzymes BamHI, EcoRI, HindIII, Pst I, and Sma I.
DNA Sequencing. Genomic subfragments (see Fig. 1) from

isolated X phage were ligated into the appropriate restriction
sites of plasmid pBR322, and the resulting chimeric plasmids
were grown in Escherichia coli strain RR1 using standard
procedures. Plasmid DNA was purified by CsCl banding as
described elsewhere (36).
The strategy utilized to locate the desired regions for

sequencing (intron-exon junctions and all exonic segments)
was detailed Southern mapping (16) with specific radiola-
beled protein C .cDNA subfragments which represented the
entire cDNA. By digesting with several different enzymes,
small (5600 bp) hybridizing fragments were identified as
suitable for direct sequencing. For the purpose of identifying
fragments for sequencing, the modified bi-directional South-
ern transfer described by Smith and Summers (17) was used.
Isolated DNA fragments were sequenced by the chemical
modification method of Maxam and Gilbert (18j as outlined
(36).

Southern Blotting. Total human genomic DNA was isolated
as described (19) and subjected to restriction endonuclease
digestion. The DNA fragments were then separated on
agarose gels, transferred to nitrocellulose, and hybridized as
described by Southern (16), using cDNA probes correspond-
ing to several regions of the protein C precursor.
Primer Extension. One microgram of a synthetic oligonu-

cleotide [5' d(GGGGCGGGTCGTGGAGATACTCG)I corre-
sponding to nucleotides 30-53 as shown in Fig. 2 was
hybridized with 3 ,ug ofhuman liver poly(A)-selected RNA in
60% (vol/vol) formamide, 0.4M NaCl, 20mM Pipes (pH 6.4),
and 2 mM EDTA, by heating to 850C for 5 min and allowing
the water bath (-1 liter) to come to room temperature over
a period of about 4 hr. The hybrids were recovered and
primer extension reactions carried out and analyzed on 8%
sequencing gels as described (20).

RESULTS
Organization of the Protein C Gene. From the 6 x 105 phage

genomic clones screened, three phage clones, designated
Xpc4, Xpc14, and Xpc17, hybridized to our full length cDNA
probe. By restriction endonuclease mapping, these clones
were found to overlap as illustrated in Fig. 1. The region
mapped includes the entire gene of 11.2 kbp, as well as 6 kbp
of 5' flanking DNA, and 4 kbp of 3' flanking DNA.

Abbreviation: bp, base pair(s).
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FIG. 1. Organization of the human protein C gene. The first line shows the positions of exons as rectangles on the chromosomal DNA.
Numbers above the line indicate the amino acids at which intron/exon junctions occur. Nontranslated regions are shown as cross-hatched areas
and coding areas are in black. The second line gives the positions of restriction endonuclease recognition sites. The straight lines below indicate
the regions of overlap of the three phage clones: Xpc4, Xpc14, and Xpc17. For the purpose of DNA sequencing, the 4.6-kbp HindIII/BamHI,
8.3-kbp BamHI and 1.3-kb BamHI fragments were inserted into plasmid pBR322. The abbreviations used are as follows: X, Xba I; H, HindIII;
R1, EcoRI; P, Pst I; B, BamHI; S, Sst I; K, Kpn I; R, EcoRv. Note from Fig. 2 that a small 5' noncoding region is present in the second exon.

The locus mapped in Fig. 1 represents the only locus only those restriction fragments expected from the locus
closely homologous to protein C in the human genome since shown in Fig. 1 (data not shown).
analysis of total human genomic DNA by Southern blotting Sequence Analysis. The sequence of the exons and their
of DNA digested with several restriction enzymes reveals flanking DNA is shown in Fig. 2. The coding sequence and
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TRP GLY ILE SER GLY THR PRO ALA PRO LEU
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55 60 65 70 75 80
4790 4800 4810 4820 4830 4840 4850 4860 4870 4880

TGG GAG GGC CGCC TI TGC CA CCGC GGT GAG GGG GAG AGG TGG ATG CTG GCG GGC GAC GGG GCG GGG CTG GGG CCG GGT TGG GGG CGC GGC ACC AGC
TRP 0LU GLY ARG PHE CYS GLN ARG I8TRON E

85 90

FIG. 2. (Figure continues on the opposite page.)
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ACC AGC TGC CCG CGC CCT CCC CTG CCC GCA GAG GTG ABC TTC CTC MAT TGC TCT CTG SAC MAC GGC SOC TGC ACG CAT TAC TGC CTA SAG SAG GIG

GLU VAL SERt POE LEU ASH CYS SER LEU ASP ASH SLY GLY CYS THR HIS TYR CYS LEU GIG GLU VAL
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SGC TSG COB CGC TGT ABC 151 GCG CCT SOC TAC MAG CTG GOB SAC SAC CTC CTG CAG TOT CAC CCC GCA GGT GAG 660 CCC CCA ATA CAT CGC CCA
GLY TRP ASS MRG CYS SER CTS ALA PRO SLY TYR ITS LEU SLY ASP ASP LEU LEU GLN CTS HIS PRO ALA
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ASA ATC ACG CYS GGT OCG SOB TSO GCA GGC CCC CYS ACG SOB CSA CBB COC 000 000 CTC 600 AGO STY TCT AGO SAG 506 GCG AGG AAC 606 GT'
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SABCCT TGG GC AGCSGC ASACGC GCC CCA ACA CCG GGGCCA CTG TTA GCG CMATTC AGCCCG .--------2480 bp ..........
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-BG GA0 SAG TOC CYG 006 GOC CCC TCA CCA CCT CTG CCT ACC TCA GYG MBG TTC CCT TST SOB 600 CCC TSO MOG COG ATG SAG MAG MAG CGC AGY
VAL IYS PHE PRO CYS BIT MRG PRO TRP ITS 600 HEY GIG IYS ITS ARO SER
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HIS LEE 115 680 ASP THR OLE ASP SIN OLU ASP SIN 961 ASP PRO ARG IOU 11E ASP OLY LTS NET THE ARB 680 G~L ASP SEE PRO TRP GIN
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BOA SSC SAG GCA GCA CCG OCT GCT CAC GTG CTG GGY CCG SMA 106 CTG AGT CCA ICC ISO CAB CTA TGC TCA 555 TGC ASA MAC CGA SAG GSA AGC
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OCT OCC ATT OCG ITT 000 GSA TSA ISA 600, lOB GOB 616 CTT CAG BSA MAG ATG SAC OCA ACC TGA 000 SAG AGO AGC AOC CAG GOT 000 ISA 000
8100 8110 8120 MYTRON 0 8660 8670 8680 8690 8700

GAGBGGG CT GGG GC ATG GASSGG TCTOGC . - 530 bp .----CCC AGT GGGACC ACAGCC AGGACGOGCC CTT CMAAATAGG GGC TSA GG
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600 CCC MAG 000 MAC ATC CAG GCA OCC TGG GOB CCA CMA AGT CYT CCI GSA 606 CAC MAG OCC TOG CCA AGC CTC TMA 006 TGA GAG 060 CTC OCT
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000 CSA TOT TGG GIG TOG CTG AGG 010 6CC 066 ACA 016 106 ACA GIG CAG 066 060 CAT 000 CMA 600 CAG GMA SAC 6CC CTG GSA CAG OCT GAC
8900 8910 0920 8930 8940 0950 8960 0970 09800

ACT GTA AMA TOG GCA MAA 616 CMA MC 0CC AGA MAG 0GC CTA AGC CIA TGC CCA TAT SAC CAG 006 6CC CAG GAA 601 GCA 161 GMA 6CC CAG GTG
8990 9000 9010 9020 9030 9040 9050 9060 9070 9080

CCC ISO ACT GSA GGC TOT 060 SAG GCA 0CC CTG TGA TOY CAY CAY CCC 6CC CCA TIC CAG GIG GTC CTG CIC SAC 106 MAG MCG MO ClO 0CC TGC
961 061 LEU LEU ASP SER 110 110 ITS LEU ALA CYS
185 190 195
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GBG 006 010 CTC ATC CAC CCC ICC TOB 010 CTG 606 OCG OCC CAC TOC 610 061 060 ICC MSG MG CTC CII SIC 600 CTT 001 610 0CC 100 AGC
SLY 616 VAL LEE 11E HIS PRO SER TOP 961 LEE 168 616 ALA HIS CYS H4EY ASP GLE SER ITS ITS LEE LEG 961 600 LEU
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060 006 GMA 000 GGC TGC 060 600 CII 000 TAG 000 SAC TAO GCA SOC TOT 106 001 TIC 000 SAC CCC OCT CCC 060 GIG CII MAG CMA 060 OCT
9280 9290 9300 9310 9320 9330 9340 9350 9360 9370

ICY 106 OCT CCA 060 MAG GIG TTT 000 000 MCG 600 CCI 610 TOC CCC CAC CCI OCC CAC CCA TOY ACA CCC 601 611 ITO CAG 160 000 011 CTC
9380 9390 9400 9410 9420 9430 9440 9450 9460

YGG TOC CCI CTI CGA ATC ISO OCA CGG TAC CIGCA0C 606 CAC 610 ITT 010 600 GGC TAC 606 SAC CII CAC CTC TCC ACT CCC ACT CAT SAG SAC
9470 9480 9490 9500 9510 9520 9530 9540 9550 9560

CMG OCT 010 YSO OCC 106 006 CCC 110 SOT 006 060 6CC AGC MOG 0CC 160 CCI 060 SOC 1ST OCC TCC CAC 606 CYC ACA 000 610 060 CTG TAC
9570 9580 9590 9600 9610 9620 9630 9640 9650 9660

ASA SOB AOC CCY AOC AIC TOC CMA AOC CAC MOG CTG CIT CCC TAG 060 OCT 000 GGC 6CC TAY GCA TIS OCC CCG ATC TAT GOC MIT TIC 100 AGO
9670 9680 9690 9700 9710 9720 9730 9740 9750

560 GGY CTG OCT CMA CTC ITT 610 CCA AMA 606 AGG CMA GCA TAT ISA GMA 600 CC MIT 106 CA1 TTC CIA 060 061 MlT CIA 100 CCA 010 OCC
9760 9770 9780 9790 9800 9810 9820 9030 9840 INTRON H

CCC CGT SOB OCT 100 CII 606 611 CCC 600 TGC TCT ICC 060 GSA ACC ATC ASI CTG SAC TSA 060 SAC CII CTC ICY 066 015 GGo - 240 bp..
10090 10100 10110 10120 10130 10140 10150 10160 10170

-CT CAC SAC ICC 010 ACT CCI GMA MC CMA CCA 006 ICC TAC CCC TTT 000 611 SAC 6CC TOT 100 CCA CTC CII CTG 006 GGA AMA GTC 6CC 011
10180 10190 10200 10210 10220 10230 10240 10250 10260 10270

GAY 600 SIT CCA CGG CA1 606 060 010 OCT CCG COC 060 TOC CTG BOA COY GIG 001 006 060 ICY CCG 001 GMA CCI TCT 106 GGC CCI CTG CCC
10280 10290 10300 10310 10320 10330 10340 10350 10360

AGG CCI OCT SCA GSA GMG TAT SAC CTGCOBCOC TGG 060AAMS GlO GAO CTG SAC CTG SAC ATC MOG SAG GTC TIC GTC CAC CCC MAC TAC ABC MOG
SLY SLU 110 ASP LEE 680 680 TOP GLE ITS IMP 610 IOU ASP LEE ASP I10 ITS OLE 961 PHE V61 HIS PRO ASH 11R 000 LYS

225 230 235 240 245 250
10370 10380 10390 10400 10410 10420 10430 10440 10450 10460
ABC 6CC 6CC SAC MYT SAC AIC 606 CTG CTG CAC CTG 0CC 00CCC 0GCC 6CC CTC TCG CAB 6CC AlA GIG CCC ATC TOC CTC CCG SAC AOC GGC CIT
SEA THE MHA ASP ASM ASP ILE ALA LEE LEE HIS LEE ALA GLH PRO ALA INN IOU 500 GLN THR ILE VAL PRO ILE CYS LEE PRO ASP SEE GLY LEE

255 260 265 278 275 280
104710 10480 10490 10500 10510 10520 10530 10540 10550 10560

GCA SAG CGC GMG CTC MYT CAG 6CC SOC 065 SAG ACC CTC SIB ACG GBC ISO BOC TAC CAC ABC AOC CGA SAG MOG GAS OCC MOG 606 MC COC 6CC
ALA 610 MBG G10 IRE ASN SLN ALA SLY SIN BLU THE IOEU VAL YHI SLY TRP SLY ITOR HIS SER SERAR60051 LYS OLE ALA ITS 600 ASH 680 TNR

285 290 295 300 305 310 315
10570 10500 10590 10600 10410 10620 19630 10640 10650

TIC CIC CTC MAC TIC ATC MCG All CCC 010 GTC CCC CAC MAT SAG TGC ABC SAG SIC 610 ABC MAC 610 010 ICY SAC MC 610 CTG TOT OCG GGC
P6E 961 LEG ASH PRE ILE ITS ILE PRO 961 961 PRO HIS ASH OLU CYS 000 OLE V61 HEY 000 600 HEY 161 000 GIU ASH H4ET LEE CYS ALA SIT

320 325 330 335 340 345
10660 10470 10680 10690 10700 10710 10720 10730 10740 10750

ATC CTC 000 SAC COG 060 061 GCC TOC SAC 0CC SAC AGT 500 000 CCC 610 GTC 0CC ICC TIC CAC GGC 6CC 100 TIC CTG 010 GGC CTG 010 ABC
ILE LEE 011 ASP ARG GIN ASP ALA CYS 010 011 ASP SER SIT 011 PRO HEY 961 616 000 PHE HIS 011 THE TOP POE IOU 961 CLI LEE 961 SEE

350 355 360 365 370 375
10760 10770 10780 10790 10800 10010 10820 10030 10800

100 GGT SAG GGC TGT 000 CTC CIT CAC MAC TAC GGC SIT TAC 6CC AMA GTC ABC COC TAC CIC SAC 100 ATC CTC CA1 000 CAC ATC 606 SAC MOG
IMP CLI 010 011 CYS 011 LEE LEU HIS ASH 11R 011 961 110 160 ITS V61 500 680 ITOR LEU ASP TOP 110 IOU HIS 011 HIS ILE MG ASP ITS
380 385 390 395 400 405 410
10850 10860 10870 10880 10890 10900 10910 10920 10930 10940
GMA GCC CCC 060 MAG AGC 100 006 CCI 160 CGA CCC ICC CTG 060 GGC 100 OCT 111 006 100 CMA 100 610 GSA CA1 TMA 600 SAC 616 TMA CM
GIG ALA PRO GIN LYS 500 TOP ALA PRO STOP

415 420
10950 10960 10970 10980 10990 11000 11010 11026 11030 11040

GCA CAC CGG CCI GCT OTT CTG ICC TTC CAT CCC ICY TTT GOB CTC TIC 100 600 GMA 016 606 TTT ACT GMG CAC CTG 115 161 SIC 606 TGC CII
11050 11060 11070 11080 11090 1110 1111 11120 11130

ATG MIT 606 ATC 116 ACT CCI 606 006 ACT CTG 100 GG1 000 SAG GMG 060 ATC CMA 511 110 COB 001 CIA MSG CTG 101 GIG 115 600 666 616
11140 11150 11160 11170 11180 11190 11200 11210 11220 11230

CTC 151 11TIA_ AMA Adr ~r MC 606 6CC ACG MAG CCA CIA SAG CCI TTT C06 GBB CII 100 GMA 060 CCI GTG CMA OCC 000 SAT OCT GMA
11240 11250 11260 11270 11280 11290 11300 11310 11320

SOT SAG GC- ISA C-- OC- TIC 060 CIA 060 CIA 106 --1 606 --1 -11 TAG C-C 616 106 600 6-- AM- C-- 600 --Y C-- AM- --T 116
11330 11340
CAT GGT GSA GTT011..- -- --................

FIG. 2. Nucleic acid sequence of the protein C gene. Bases are numbered relative to the proposed transcription initiation site. Exons are
underlined and amino acids are numbered from the amino-terminal residue in the plasma protein. Gaps in the sequence are shown as dashed
lines, with the approximate length of the gap noted. Regions corresponding to a TATA box (-34 to -25), a transcriptional start site (-2 to +6)
and a polyadenylylation recognition site (11,155 to 11,160) are boxed.
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FIG. 3. Comparison of the size of introns and exons in the protein C gene. The length in bp of exons is shown by the horizontal bars while
the length of each intron is proportional to the height of each vertical bar. The horizontal bars have been aligned on the basis of amino acid
sequence homology. Hatched horizontal regions represent noncoding regions of the mRNAs.

5' and 3' nontranslated regions are divided into nine exons by
eight introns. There is perfect agreement between the se-
quence of the exons and the full length cDNA sequence (36).
This again indicates that only a single copy of the protein C
gene is present in the human genome. Analysis of the
sequences at the borders of introns is shown in Fig. 3 and
reveals that in every case the GT/AG rule (21) is observed.
The entire length of the gene is 11.2 kbp; hence 83% of the
gene consists of intronic sequences. The 3' nontranslated
region contains a polyadenylylation signal (AAUAAA) 21
nucleotides from the termination codon and polyadenylyla-
tion occurs on either an adenosine or on the preceding
guanosine.

Transcription Initiation Site. Comparison ofthe total length
ofthe cDNA sequence with the mRNA size based upon RNA

1 2 3

-57

FIG. 4. The start-site for transcription of the protein C gene.

Primer extension was carried out. Lanes 1 and 3, M13 sequence

ladders used to obtain size markers. The figures shown on the right
are the length, in bp, from the end of the oligonucleotide used for

primer extension. The cluster of fainter bands at the top of the gel

correspond to 72-85 nucleotides from the end of the oligonucleotide.

blot hybridization (36) suggests that the cDNA is very close
to full length. Analysis of the genomic sequence immediately
upstream from the region corresponding to the mRNA
sequence (underlined in Fig. 2) reveals one potential tran-
scriptional start site, one base upstream from the cloned
cDNA sequence. This proposed start site is based upon
sequence similarity with the transcriptional start site consen-
sus sequence (PyCAPyPyPyPyPy) reported by Corden et al.
(22), and its position 30 bases downstream from a potential
"TATA" box (21). Alternatively, the adjacent upstream
genomic sequence could be a part of a second intron in the 5'
untranslated region.

Analysis oftranscripts produced by primer extension using
an oligonucleotide (Fig. 4) corresponding to positions 30-53
of the protein C sequence indicated a start site 54-56
nucleotides from the end of the primer corresponding to the
nucleotides about 1 bp upstream of the cDNA sequence
shown in Fig. 2. In addition, several weaker bands corre-
sponding to longer and shorter transcripts were present on
the gel (Fig. 4), and it is unclear if these longer transcripts
represent additional sites of initiation of transcription or

crosshybridization to other mRNAs.

DISCUSSION

Comparison of the Gene Structures of the Serine Proteases.
Protein C, like many of the blood coagulation proteins, is a

serine protease and exerts its role in blood coagulation by
virtue of an active-site serine in the heavy chain. Neurath et
al. (23) have found that each of these genes is likely to be
derived from the same primitive gene, and chymotrypsin,
trypsin, and elastase are generally felt to be the archetypal
serine proteases. The trypsin gene family can be traced to
prokaryotes by virtue of sequence homology between mam-
malian, invertebrate, and prokaryotic trypsins. In this evo-
lutionary pathway, invertebrate trypsin from crayfish repre-
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sents the link, having homology to mammalian and prokary-
otic trypsins (24).

Evolutionary relatedness between proteins is commonly
established by comparing amino acid homology between the
proteins. However, with the ability to study the structure of
the genes encoding these proteins, it is possible to provide an
independent test of these estimates of relatedness, in that the
number and positions of introns are likely to be a relatively
immutable feature and provide an independent estimate of
the relatedness oftwo proteins. Several groups have explored
the similarities of serine proteases (see ref. 25) and with the
same objective we have studied the positions of introns in the
genes of some of the members of the serine protease family.
Remarkably, a comparison of the gene region corresponding
to the serine protease domain of protein C with the rat genes
(25) for trypsin (three introns), chymotrypsin (five introns),
and elastase (six introns) reveals that the sole protein C intron
position within this domain aligns only with the first intron of
elastase. In contrast, when homologous amino acids are
aligned, the position of all eight introns of factor IX (26) and
protein C correspond (Fig. 3). This fact attests to the close
evolutionary relationship between the two genes and sug-
gests that they are products of a relatively recent duplication.

Despite the conservation of exon size and sequence be-
tween protein C and factor IX, the sizes of the introns have
diverged remarkably (Fig. 3). Furthermore, no recognizable
homology exists between intron sequences of the two genes
among the 3 kbp of intronic sequences presented in this paper
[compare Fig. 2 of this manuscript with Fig. 4 of Anson et al.
(26)].

Banjai et al. (27) have noted a region within several
coagulation factors with close homology to epidermal growth
factor (28) and, more recently, to the transforming growth
factors produced by retroviral-infected cells (29). Interest-
ingly, these regions (amino acids 46-91 and 92-136 in the
protein C sequence) is sharply delimited by exons in protein
C, factor IX, factor X, and tissue plasminogen activator (30).
The conservation of these regions and its presence on a single
exon in such diverse proteins as tissue plasminogen activator
and protein C suggests that these regions were incorporated
into the structure of the genes before the original duplication
and have maintained a remarkable degree of homology to
transforming growth factor and epidermal growth factor
through several hundred million years of evolution. In
particular, the position of each half cysteine bond remains the
same in this region, suggesting that each of these primary
structures has a similar tertiary structure. Thus it is possible
that these regions have some conserved function, possibly
related to that of the growth factors.

Prothrombin, another vitamin K-dependent serine prote-
ase coagulation factor, does not contain the growth factor
domain but has in its place two "kringle" structures, first
described by Magnusson et al. (31). Prothrombin, however,
does have clear homology with other vitamin K-dependent
coagulation factors in the leader peptide, y-carboxylgluta-
mate or GLA region and serine protease domains (6, 32, 36).

Congenital deficiency of protein C is an autosomally
dominant disease characterized by superficial and deep
venous thrombosis (11) occurring during childhood or early
adulthood. The heterozygous form of the disease has an
incidence of 1 per 16,000 individuals (33). Individuals that
inherit two defective protein C alleles have catastrophic
thrombotic events as neonates that are invariably fatal
without treatment (13). Because individuals with a defective
protein C allele do not always manifest the disease or have
abnormally low levels of the protein (34), a precise genetic
test for the defective allele would be useful. With the
organization of the normal protein C gene defined, the

feasibility of genetic testing for hereditary protein C deficien-
cy can now be determined.
Note Added in Proof. Since submission of this manuscript, an
additional sequence for the human protein C gene has been published
(35).
We wish to thank Dr. Philip Leder for the phage genomic libraries,

Kathy Shaw for editorial assistance, and Rama M. Belagaje for
synthesis of the oligonucleotide. We also thank John Shephard of
Lilly Research Laboratories for technical assistance in DNA se-
quencing. These studies were supported in part by a grant from the
Lilly Research Laboratories to G.R.C. and Grant HL33942-01 from
the National Institutes of Health.

1. Stenflo, J. (1984) Semin. Thromb. Hemostasis 10, 109-121.
2. Kisiel, W., Canfield, W. M., Ericsson, L. H. & Davie, E. W.

(1977) Biochemistry 16, 5824-5831.
3. Sakata, Y., Curriden, S., Lawrence, D., Griffin, J. H. & Loskutoff,

D. J. (1985) Proc. Natl. Acad. Sci. USA 82, 1121-1125.
4. Stenflo, J. (1976) J. Biol. Chem. 251, 355-363.
5. Kisiel, W. (1979) J. Clin. Invest. 64, 761-769.
6. Ferniund, P. & Stenflo, P. (1982) J. Biol. Chem. 257, 12170-12179.
7. Esmon, N. L., Owen, W. G. & Esmon, C. T. (1982) J. Biol. Chem.

257, 859-864.
8. Esmon, C. T. & Owen, W. G. (1981) Proc. Natl. Acad. Sci. USA

78, 2249-2252.
9. Marlar, R. A. & Griffin, J. H. (1980) J. Clin. Invest. 66, 1186-1189.

10. Griffin, J. H., Evatt, B., Zimmerman, T. S., Kleiss, A. J. &
Wideman, C. (1981) J. Clin. Invest. 68, 1370-1373.

11. Bertina, R. M., Broekmans, A. W., Van der Linden, I. K. &
Mertens, K. (1982) Throm. Hemostasis Gen. Inf. 48, 1-5.

12. Branson, H. E., Katz, J., Marble, R. & Griffin, J. H. (1983) Lancet
ii, 1165-1168.

13. Comp, P. E. & Esmon, C. T. (1984) N. Engl. J. Med. 311,1525-1528.
14. Foster, D. & Davie, E. W. (1984) Proc. Natl. Acad. Sci. USA 81,

4766-4770.
15. Benton, W. D. & Davis, R. W. (1977) Science 196, 180-182.
16. Southern, E. M. (1975) J. Mol. Biol. 98, 503-517.
17. Smith, G. E. & Summers, M. D. (1980) Anal. Biochem. 109,

123-129.
18. Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol. 65,

499-560.
19. Crabtree, G. R. & Kant, J. K. (1982) Cell 31, 159-166.
20. Crabtree, G. R., Comeau, C. M., Fowlkes, D. M., Fornace, A. J.,

Malley, J. D. & Kant, J. A. (1985) J. Mol. Biol., in press.
21. Breathnach, R., Benoist, O., O'Hare, K., Gannon, F. & Chambon,

P. (1978) Proc. Natl. Acad. Sci. USA 75, 4853-4857.
22. Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P.,

Kedinger, C. & Chambon, P. (1980) Science 209, 1406-1414.
23. Neurath, H. (1984) Science 224, 350-357.
24. Titani, K., Sasagawa, T., Woodbury, R. G., Ericsson, L. H.,

Dorsam, H., Kraemer, M., Neurath, H. & Zwilling, R. (1983)
Biochemistry 22, 1459-1464.

25. Craik, C. S., Rutter, W. J. & Fletterick, R. (1983) Science 220,
1125-1129.

26. Anson, D. S., Choo, K. H., Rees, D. J. G., Giannelli, F., Gould,
K., Huddleston, J. A. & Brownlee, G. G. (1984) EMBO J. 3,
1053-1060.

27. Banjai, L., Varadi, A. & Patthy, L. (1983) FEBS Lett. 163, 37-41.
28. Gregory, H. & Preston, B. M. (1977) Int. J. Pept. Protein Res. 9,

107-118.
29. Marquardt, H., Hunkapiller, M. W., Hood, L. E., Twardzik,

D. R., De Larco, J. E., Stephenson, J. R. & Todaro, G. J. (1983)
Proc. Natl. Acad. Sci. USA 80, 4684-4688.

30. Ny, T., Elgh, F. & Lund, B. (1984) Proc. NatI. Acad. Sci. USA 81,
5355-5359.

31. Magnusson, S., Sottrup-Jensen, L. & Peterson, T. E. (1976) in
Proteolysis and Physiological Regulation, eds. Ribbons, D. W. &
Brew, K. (Academic, New York), pp. 203-238.

32. Stenflo, J. & Fernlund, P. (1982) J. Biol. Chem. 257, 12180-12185.
33. Brockmans, A. N., Van der Linden, I. K., Veltkamp, J. J. &

Bertina, R. M. (1983) Thromb. Hemostasis Gen. Inf. 50, 1096.
34. Seligsohn, U., Berger, A., Abend, M., Rubin, L., Atties, D.,

Zivelin, A. & Rapaport, S. I. (1984) N. Engl. J. Med. 310, 559-562.
35. Foster, D. C., Yoshitake, S. & Davie, E. W. (1985) Proc. Natl.

Acad. Sci. USA 82, 4673-4677.
36. Beckmann, R. J., Schmidth, R. J., Santerre, R. F., Plutzky, J.,

Crabtree, G. R. & Long, G. L. (1985) Nucleic Acids Res. 13,
5233-5247.

550 Biochemistry: Plutzky et al.


