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ABSTRACT We have isolated overlapping phage genomic
clones covering an area of 21 kilobases that encodes the human
protein C gene. The gene is at least 11.2 kilobases long and is
made up of nine exons and eight introns. Two regions homol-
ogous to epidermal growth factor and transforming growth
factor are encoded by amino acids 46-91 and 92-136 and are
precisely delimited by introns, as is a similar sequence in the
genes for coagulation factor IX and tissue plasminogen acti-
vator. When homologous amino acids of factor IX and protein
C are aligned, the positions of all eight introns correspond
precisely, suggesting that these genes are the product of a
relatively recent gene duplication. Nevertheless, the two genes
are sufficiently distantly related that no nucleic acid homology
remains in the intronic regions and that the size of the introns
varies dramatically between the two genes. The similarity of the
genes for factor IX and protein C suggests that they may be the
most closely related members of the serine protease gene family
involved in coagulation and fibrinolysis.

Protein C is a two-chain vitamin K-dependent serine protease
that plays a fundamental role in hemostasis by preventing
coagulation and promoting fibrinolysis (1). The anticoagulant
effects of protein C are achieved through cleavage of factors
Va and VIIIa of the intrinsic pathway (2), while clot lysis
appears to result from interaction of protein C with the
inhibitor of plasminogen activator (3). First isolated from
bovine plasma in 1976 by Stenflo (4), the human protein (5)
has since been shown to be a 62-kDa dimer with a heavy chain
that contains the active serine site and a light chain that
contains, at its amino terminus, y-carboxylglutamic acid
residues, which are highly conserved among the vitamin
K-dependent factors (6). The protein circulates as a zymogen
(7), is activated by thrombin coupled with an endothelial
cofactor, thrombomodulin (8), and is inactivated by a specific
plasma protease inhibitor (9). Heterozygous deficiency of
protein C was first identified by Griffin et al. (10) and has been
shown by several workers to be an autosomally dominant
disorder manifested by a markedly increased tendency to clot
(11). Homozygous protein C-deficient patients, with no
detectable antigenic levels of protein C, suffer from massive
venous thrombosis as neonates (12). A deficiency of protein
S, the cofactor for protein C-mediated inactivation of factor
Va, has been reported as also causing increased thrombosis
(13). Partial cDNAs for protein C were characterized by
Foster and Davie (14), and a full length cDNA giving the
complete amino acid sequence of the human protein has been
isolated in our laboratory (36). We report the isolation of
overlapping genomic clones of the protein C gene, analysis of
the gene’s organization, and relationships to other serine
protease genes.
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MATERIALS AND METHODS

Isolation and Mapping of Genomic Clones. Two human
genomic libraries constructed at the EcoRI site of Charon 4a
and Charon 28 were screened by the Benton and Davis
technique (15) using a protein C cDNA (36) corresponding to
amino acids 225-419 plus the 3’ nontranslated region. Ap-
proximately 6 X 10° phage plaques were screened and three
overlapping fragments of human genomic DNA, each of ~20
kilobase pairs (kbp), were mapped using the restriction
enzymes BamHI, EcoRl, HindIll, Pst I, and Sma 1.

DNA Sequencing. Genomic subfragments (see Fig. 1) from
isolated \ phage were ligated into the appropriate restriction
sites of plasmid pBR322, and the resulting chimeric plasmids
were grawn in Escherichia coli strain RR1 using standard
procedures. Plasmid DNA was purified by CsCl banding as
described elsewhere (36).

The strategy utilized to locate the desired regions for
sequencing (intron-exon junctions and all exonic segments)
was detailed Southern mapping (16) with specific radiola-
beled protein C cDNA subfragments which represented the
entire cDNA, By digesting with several different enzymes,
small (=600 bp) hybridizing fragments were identified as
suitable for direct sequencing. For the purpose of identifying
fragments for sequencing, the modified bi-directional South-
ern transfer described by Smith and Summers (17) was used.
Isolated DNA fragments were sequenced by the chemical
modification method of Maxam and Gilbert (18) as outlined
(36).

Southern Blotting. Total human genomic DNA was isolated
as described (19) and subjected to restriction endonuclease
digestion. The DNA fragments were then separated on
agarose gels, transferred to nitrocellulose, and hybridized as
described by Southern (16), using cDNA probes correspond-
ing to several regions of the protein C precursor.

Primer Extension. One microgram of a synthetic oligonu-
cleotide [5' d(GGGGCGGGTCGTGGAGATACTCG)] corre-
sponding to nucleotides 30-53 as shown in Fig. 2 was
hybridized with 3 ug of human liver poly(A)-selected RNA in
60% (vol/vol) formamide, 0.4 M NaCl, 20 mM Pipes (pH6.4),
and 2 mM EDTA, by heating to 85°C for 5 min and allowing
the water bath (=1 liter) to come to room temperature over
a period of about 4 hr. The hybrids were recovered and
primer extension reactions carried out and analyzed on 8%
sequencing gels as described (20).

RESULTS

Organization of the Protein C Gene. From the 6 x 10° phage
genomic clones screened, three phage clones, designated
Apcd, Apcl4, and Apcl7, hybridized to our full length cDNA
probe. By restriction endonuclease mappmg, these clones
were found to overlap as illustrated in Fig. 1. The region
mapped includes the entire gene of 11.2 kbp, as well as 6 kbp
of 5' flanking DNA, and 4 kbp of 3’ flanking DNA.
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FiG. 1. Organization of the human protein C gene. The first line shows the positions of exons as rectangles on the chromosomal DNA.
Numbers above the line indicate the amino acids at which intron/exon junctions occur. Nontranslated regions are shown as cross-hatched areas
and coding areas are in black. The second line gives the positions of restriction endonuclease recognition sites. The straight lines below indicate
the regions of overlap of the three phage clones: Apc4, Apcl4, and Apcl7. For the purpose of DNA sequencing, the 4.6-kbp HindIIl/BamHI,
8.3-kbp BamHI and 1.3-kb BamHI fragments were inserted into plasmid pBR322. The abbreviations used are as follows: X, Xba I; H, HindIII;
Ry, EcoRI; P, Pst I; B, BamHI; S, Sst I; K, Kpn I; R, EcoRv. Note from Fig. 2 that a small 5’ noncoding region is present in the second exon.

The locus mapped in Fig. 1 represents the only locus only those restriction fragments expected from the locus
closely homologous to protein C in the human genome since shown in Fig. 1 (data not shown).
analysis of total human genomic DNA by Southern blotting Sequence Analysis. The sequence of the exons and their
of DNA digested with several restriction enzymes reveals flanking DNA is shown in Fig. 2. The coding sequence and
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-5 5 10 15 20
2980 2990 30c0 3010 3020 3030 3040 3050 3060
G_GAG_GCC ATT TTC CAA AAT GTG GAT GAC ACA GTA AGG CCA CCA TGG GTC CAG AGG ATG AGG CTC AGG GGC GAG CTG GTA ACC AGC
PHE GLU GLU ALA LYS GLU ILE PHE GLN ASN VAL ASP ASP THR
25 30 35
3070 3080 3090 3100 3110 3120 3130 3140 3150 3160
AGG GGC CTC GAG GAG CAG GTG GGA ACT CAA TGC TGA GGC CCT CTT AGG AGT TGT GGG GGT GGC TGA GTG GAG CGA TTA GGA TGC TGG CCC TAT GAT
3170 3180 3190 3200 INTRON €
GTC GAC AGG CAC ATG TGA CTG CAA GAA CAG AAT TCA GGA A-: ==o <o ot soe soe eon iiu on e 4300 bp <ov =ov cor coe cne cen on
4510 4520 4530 4540 4550 4560 4570 4580 4590

-+G CGC GCC CCC TCC GCA CAC CGG CTG CAG GAG CCT GAC GCT GCC CGC TC TCT CCG CAG CTG GCC TTC TGG TCC AAG CAC GTC GGT GAG TGC GTTC
e —————————————
LEU ALA PHE TRP SER LYS WIS VAL

40 45
4600 4610 4620 4630 4640 4650 4660 4670 4680 4690
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F1G. 2. (Figure continues on the opposite page.)
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ACC AGC TGC CCG CGC CCT CCC CTG CCC GCA GAG GTG AGC TTC CTC AAT TGC TCT CTG GAC AAC GGC GGC TGC ACG CAT TAC TGC CTA GAG GAG GTG
GLU VAL SER PHE LEU ASN CYS SER LEU ASP ASN GLY GLY CYS THR HIS TYR CYS LEU GLU GLU VAL
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GAT AGG GIT CCA CGG CAT AGA CAG GTG GCT CCG CGC CAG TGC CTG GGA CGT GTG GGT GCA CAG TCT CCG GGT GAA CCT TCT TCA GGC CCT CTG CCC
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AGG CCT GCT GCA GGA GAG TAT GAC CTG CGG CGC TGS GAG AAG TGG GAG CTG GAC CTG GAC ATC AAG GAG CIC TTC GTC CAC CCC AAC TAC ACC MG
GLY GLU TYR ASP LEU ARG ARG TRP GLU LYS TRP GLU LEU ASP LEU ASP ILE LYS GLU VAL PHE VAL HIS PRO ASN TYR SER LYS
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SER THR THR ASP ASH ASP ILE ALA LEU LEU HIS LEU ALA GLN PRO ALA THR LEU SER GLN THR ILE VAL PRO ILE CYS LEU PRO ASP SER GLY LEU
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PHE VAL LEU ASW PHE ILE LYS ILE PRO VAL VAL PRO HIS ASN GLU CYS SER GLU VAL MET SER ASN WET VAL SER GLU ASW MET LEU CYS ALA GLY.
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ATC CTC GGG GAC CGG CAG GAT GCC TGC GAG GGC GAC AGT GGG GGG CCC ATG GIC GCC TCC TTC CAC GGC ACC TGG TTC CTG GTG GGC CTG GTG AGC
“TLE LEU GLY ASP ARG GLN ASP ALA CYS GLU GLY ASP SER GLY GLY PRO MET VAL ALA SER PHE HIS GLY THR TRP PHE LEU VAL GLY LEU VAL SER.
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10760 10770 10780 10790 10800 10810 10820 10830 10840
766 GGT GAG GGC TGT GGG CTC CTT CAC AAC TAC GGC GTT TAC ACC AAA GTC AGC CGC TAC CTC GAC TGG ATC CTC CAT GGG CAC ATC AGA GAC AAG
TRP GLY GLU GLY CYS GLY LEU LEU HIS ASN TYR GLY VAL TYR THR LYS VAL SER ARG TYR LEU ASP TRP ILE LEU WIS GLY WIS ILE ARG ASP LYS
385 390 395 400 405 410
10850 10860 10870 10880 10890 10900 10910 10920 10930 10940
GAA GCC CCC_CAG AAG AGC TGG GCA CCT TAG CGA CCC TCC CTG CAG GGC TGG GCT TTT GCA TGG CAA TGG ATG GGA CAT TAA AGG GAC ATG TAA CAA
TLU ALA PRO GLN LYS SER TRP ALA PRO sTOP
s 420
10950 10960 10970 10980 10990 11000 11010 11020 11030 11040
GCA CAC CGG CCT GCT GIT CTG TCC TTC CAT CCC TCT TTT GGG CTC TTC TGG AGG GAA GTA ACA TTT ACT GAG CAC CTG TTG TAT GTC ACA TGC CTT
= Tiso 11060 1070 11080 71090 71100 71110 1 7
16 T1A ACT ccT ACT CTG TG GGT GGG GAG GAG CAG ATC CAA GTT TTG CGG GGT CTA AAG CTG TGT GTG TTG AGG GGG ATA
11140 1150 11160 11170 11180 11190 11200 1210 11220 11230
CCA CTA GAG CCT TTT CCA GGG CTT TGG GAA GAG CCT GTG CAA GCC GGG GAT GCT GAA
11240 11250 11260 1270 11280 11290 11300 1310 1320
GGT GAG GCT TGA CCA GCT TTC CAG CTA GCC CAG CTA TGA GGT AGA CAT GTT TAG CTC ATA TCA CAG AGG AGG AAA CTG AGG GGT CTG AAA GGT TTA
11330 11340
CAT GGT GGA GIT =-v =es ss mes oee cor on nn e eee eee een
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FiG. 2. Nucleic acid sequence of the protein C gene. Bases are numbered relative to the proposed transcription initiation site. Exons are
underlined and amino acids are numbered from the amino-terminal residue in the plasma protein. Gaps in the sequence are shown as dashed
lines, with the approximate length of the gap noted. Regions corresponding to a TATA box (—34 to —25), a transcriptional start site (-2 to +6)
and a polyadenylylation recognition site (11,155 to 11,160) are boxed.
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FiG. 3. Comparison of the size of introns and exons in the protein C gene. The length in bp of exons is shown by the horizontal bars while
the length of each intron is proportional to the height of each vertical bar. The horizontal bars have been aligned on the basis of amino acid

sequence homology. Hatched horizontal regions represent noncoding regions of the mRNAs.

5’ and 3’ nontranslated regions are divided into nine exons by
eight introns. There is perfect agreement between the se-
quence of the exons and the full length cDNA sequence (36).
This again indicates that only a single copy of the protein C
gene is present in the human genome. Analysis of the
sequences at the borders of introns is shown in Fig. 3 and
reveals that in every case the GT/AG rule (21) is observed.
The entire length of the gene is 11.2 kbp; hence 83% of the
gene consists of intronic sequences. The 3’ nontranslated
region contains a polyadenylylation signal (AAUAAA) 21
nucleotides from the termination codon and polyadenylyla-
tion occurs on either an adenosine or on the preceding
guanosine.

Transcription Initiation Site. Comparison of the total length
of the cDNA sequence with the mRNA size based upon RNA

2 3

1

]

s> 8-57
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: 79

FI1G. 4. The start-site for transcription of the protein C gene.
Primer extension was carried out. Lanes 1 and 3, M13 sequence
ladders used to obtain size markers. The figures shown on the right
are the length, in bp, from the end of the oligonucleotide used for
primer extension. The cluster of fainter bands at the top of the gel
correspond to 72-85 nucleotides from the end of the oligonucleotide.

blot hybridization (36) suggests that the cDNA is very close
to full length. Analysis of the genomic sequence immediately
upstream from the region corresponding to the mRNA
sequence (underlined in Fig. 2) reveals one potential tran-
scriptional start site, one base upstream from the cloned
cDNA sequence. This proposed start site is based upon
sequence similarity with the transcriptional start site consen-
sus sequence (PyCAPyPyPyPyPy) reported by Corden et al.
(22), and its position 30 bases downstream from a potential
“TATA” box (21). Alternatively, the adjacent upstream
genomic sequence could be a part of a second intron in the 5’
untranslated region.

Analysis of transcripts produced by primer extension using
an oligonucleotide (Fig. 4) corresponding to positions 30-53
of the protein C sequence indicated a start site 54-56
nucleotides from the end of the primer corresponding to the
nucleotides about 1 bp upstream of the cDNA sequence
shown in Fig. 2. In addition, several weaker bands corre-
sponding to longer and shorter transcripts were present on
the gel (Fig. 4), and it is unclear if these longer transcripts
represent additional sites of initiation of transcription or
crosshybridization to other mRNAs.

DISCUSSION

Comparison of the Gene Structures of the Serine Proteases.
Protein C, like many of the blood coagulation proteins, is a
serine protease and exerts its role in blood coagulation by
virtue of an active-site serine in the heavy chain. Neurath et
al. (23) have found that each of these genes is likely to be
derived from the same primitive gene, and chymotrypsin,
trypsin, and elastase are generally felt to be the archetypal
serine proteases. The trypsin gene family can be traced to
prokaryotes by virtue of sequence homology between mam-
malian, invertebrate, and prokaryotic trypsins. In this evo-
lutionary pathway, invertebrate trypsin from crayfish repre-
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sents the link, having homology to mammalian and prokary-
otic trypsins (24).

Evolutionary relatedness between proteins is commonly
established by comparing amino acid homology between the
proteins. However, with the ability to study the structure of
the genes encoding these proteins, it is possible to provide an
independent test of these estimates of relatedness, in that the
number and positions of introns are likely to be a relatively
immutable feature and provide an independent estimate of
the relatedness of two proteins. Several groups have explored
the similarities of serine proteases (see ref. 25) and with the
same objective we have studied the positions of introns in the
genes of some of the members of the serine protease family.
Remarkably, a comparison of the gene region corresponding
to the serine protease domain of protein C with the rat genes
(25) for trypsin (three introns), chymotrypsin (five introns),
and elastase (six introns) reveals that the sole protein C intron
position within this domain aligns only with the first intron of
elastase. In contrast, when homologous amino acids are
aligned, the position of all eight introns of factor IX (26) and
protein C correspond (Fig. 3). This fact attests to the close
evolutionary relationship between the two genes and sug-
gests that they are products of a relatively recent duplication.

Despite the conservation of exon size and sequence be-
tween protein C and factor IX, the sizes of the introns have
diverged remarkably (Fig. 3). Furthermore, no recognizable
homology exists between intron sequences of the two genes
among the 3 kbp of intronic sequences presented in this paper
[compare Fig. 2 of this manuscript with Fig. 4 of Anson et al.
(26)].

Banjai et al. (27) have noted a region within several
coagulation factors with close homology to epidermal growth
factor (28) and, more recently, to the transforming growth
factors produced by retroviral-infected cells (29). Interest-
ingly, these regions (amino acids 46-91 and 92-136 in the
protein C sequence) is sharply delimited by exons in protein
C, factor IX, factor X, and tissue plasminogen activator (30).
The conservation of these regions and its presence on a single
exon in such diverse proteins as tissue plasminogen activator
and protein C suggests that these regions were incorporated
into the structure of the genes before the original duplication
and have maintained a remarkable degree of homology to
transforming growth factor and epidermal growth factor
through several hundred million years of evolution. In
particular, the position of each half cysteine bond remains the
same in this region, suggesting that each of these primary
structures has a similar tertiary structure. Thus it is possible
that these regions have some conserved function, possibly
related to that of the growth factors.

Prothrombin, another vitamin K-dependent serine prote-
ase coagulation factor, does not contain the growth factor
domain but has in its place two ‘‘kringle’’ structures, first
described by Magnusson et al. (31). Prothrombin, however,
does have clear homology with other vitamin K-dependent
coagulation factors in the leader peptide, y-carboxylgluta-
mate or GLA region and serine protease domains (6, 32, 36).

Congenital deficiency of protein C is an autosomally
dominant disease characterized by superficial and deep
venous thrombosis (11) occurring during childhood or early
adulthood. The heterozygous form of the disease has an
incidence of 1 per 16,000 individuals (33). Individuals that
inherit two defective protein C alleles have catastrophic
thrombotic events as neonates that are invariably fatal
without treatment (13). Because individuals with a defective
protein C allele do not always manifest the disease or have
abnormally low levels of the protein (34), a precise genetic
test for the defective allele would be useful. With ‘the
organization of the normal protein C gene defined, the
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feasibility of genetic testing for hereditary protein C deficien-
cy can now be determined.

Note Added in Proof. Since submission of this manuscript, an
additional sequence for the human protein C gene has been published
(35).
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