SUPPORTING INFORMATION

SUPPLEMENTAL FIGURE LEGENDS

FIG. S1. dnRAG1 mice bred onto a RAG1-deficient background fail to develop mature lymphocytes. Cells prepared from WT, dnRAG1⁺RAG1^{+/-}, dnRAG1⁺RAG1^{-/-}, and RAG1^{-/-} bone marrow (BM), spleen (SPL), or thymus (THY), and identified by the gating parameters shown above each row, were analyzed for the expression of B220 and CD43 (top row), sIgM and sIgD (middle two rows), or CD4 and CD8 (bottom two rows). B cell developmental subsets specified by the staining pattern are indicated below each column with corresponding gates. The percentage of cells within the identified gates is shown for representative animals.

FIG. S2. Summary of data obtained for Fig. 1C and for analysis of T cell populations in the spleen thymus and lymph node. (A) Summary of data obtained for Fig. 1C in bar graph format. (B) Lymphocyte-gated cells prepared from WT or dnRAG1 spleen, thymus, and lymph node (LN) were analyzed for the expression of CD4 and CD8. (C) Summary of data obtained for Fig. S1B in bar graph format. Significance was determined from post-hoc analysis following one-way ANOVA (*, p<0.05; **, p<0.01; ***, p<0.005).

FIG. S3. Comparison of cell cycle status and apoptosis levels between sorted CD19⁺B220^{hi} and CD19⁺B220^{lo} B cells purified from WT and dnRAG1 mice. (A) Sorted CD19⁺B220^{hi} and CD19⁺B220^{lo} B cells purified from WT and dnRAG1 mice were incubated with Vindelov's reagent and propidium iodide (PI) staining was analyzed by flow cytometry. The percentage of cells in the G1, S, and G2 phase of the cell cycle were determined using the ModFit software

(upper panels). Statistical analysis of data obtained from n≥3 animals displayed in bar graph format (lower panels). (B) Sorted CD19⁺B220^{hi} and CD19⁺B220^{lo} B cells purified from WT and dnRAG1 mice were incubated with Annexin V (AV) and PI and analyzed by flow cytometry. The percentage of cells in each quadrant was determined using the FloJo software (upper panels). Statistical analysis of data obtained from n≥3 animals presented as in (A) (lower panels). Significance was determined from post-hoc analysis following one-way ANOVA (*, p<0.05; **, p<0.01; ***, p<0.005).

FIG. S4. Flow cytometric analysis comparing surface expression levels of B220 versus CD43 on BM B cells, and AA4.1 versus B220, IgMa versus IgMb and Ig κ vs Ig λ on splenic B cells from WT, dnRAG1, 56Rki, and DTG mice. (A) Cells prepared from WT, dnRAG1, 56Rki, and DTG bone marrow or spleen and identified by the gating parameters shown above each row were analyzed for the expression of B220, CD43, and AA4.1. B cell developmental subsets specified by the staining pattern are indicated below each column with corresponding gates. The percentage of cells within the identified gates is shown for representative animals. (B) Cells prepared from WT, dnRAG1, 56Rki, and DTG spleen and identified by the gating parameters shown above each row were analyzed for the expression of IgMa, IgMb, Ig κ and Ig λ . The percentage of cells within the identified gates is shown for representative animals. The absolute number of cells in each population is shown in the lower panel (***, *p*<0.005).

Ŕ

Table S1. Primers used for Igk gene sequence analysis.

Primer name	Sequence (5'-3')
MuIgĸVL5'-A	GGGAATTCATGRAGWCACAKWCYCAGGTCTTT
MuIgĸVL5'-B	GGGAATTCATGGAGACAGACACACTCCTGCTAT
MuIgĸVL5'-C	ACTAGTCGACATGGAGWCAGACACACTSCTGYTATGGGT
MuIgĸVL5'-D	ACTAGTCGACATGAGGRCCCCTGCTCAGWTTYTTGGIWTCTT
	ACTAGTCGACATGGGCWTCAAGATGRAGTCACAKWYYCWGG
MuIgĸVL5'-G	ACTAGTCGACATGAAGTTGCCTGTTAGGCTGTTGGTGCT
	ACTAGTCGACATGGATTTWCARGTGCAGATTWTCAGCTT
	ACTAGTCGACATGGTYCTYATVTCCTTGCTGTTCTGG
	ACTAGTCGACATGGTYCTYATVTTRCTGCTGCTATGG
MuIgĸVL3'-1	CCCAAGCTTACTGGATGGTGGGAAGATGGA
B = C or G or T	

B = C or G or TD = A or G or TH = A or C or TI = inosineK = G or TM = A or CR = A or GS = C or GV = A or C or GW = A or TY = C or T

	WT dnRAG1		56Rki DTG		ONE WAY ANOVA ^a	WT vs. dnRAG1 ^b	dnRAG1 vs. DTG ^b	56Rki vs. DTG ^b	
Bone Marrow	(n=9)	(n=8)	(n=12)	(n=10)					
Cellularity $(x10^7)$	1.79±0.25	1.74±0.23	1.87±0.17	1.69±0.21	n.s.	n.s.	n.s.	n.s.	
• • •	(n=4)	(n=3)	(n=4)	(n=4)					
Lymphs	57±3	56±1	61±2	56±3	n.s.	n.s.	n.s.	n.s.	
B220+ CD43 ⁺	2.35±0.34	2.66±0.73	2.29±0.27	2.01±0.21	n.s.	n.s.	n.s.	n.s.	
B220 ⁺ CD43 ⁻	16.02±1.68	14.02±0.25	10.08 ± 0.83	9.56±0.92	+++	n.s.	†	n.s.	
Pre- B (IgM ⁻ IgD ⁻)	9.07±1.10	8.55±0.66	7.47 ± 0.87	8.06 ± 0.80	n.s.	n.s.	n.s.	n.s.	
Imm. B $(IgM^+ IgD^-)$	2.25±0.23	2.34 ± 0.32	0.32 ± 0.07	0.40 ± 0.14	+++	n.s.	+++	n.s.	
Mature B (IgM ⁺ IgD ⁺)	4.43±0.69	2.87 ± 0.14	2.17 ± 0.14	0.98 ± 0.05	+++	+++	+++	Ť	
	(n=9)	(n=8)	(n=12)	(n=10)					
Lymphs	72.8±1.4	71.3±2.5	68.0±2.4	65.0±2.9	n.s.	n.s.	n.s.	n.s.	
$IgMa^+ IgMb^-$	0.15 ± 0.05	0.098 ± 0.021	1.22 ± 0.17	0.99±0.11	+++	n.s.	+++	n.s.	
$IgMa^{-}IgMb^{+}$	5.6 ± 0.5	6.34±0.51	0.34 ± 0.03	0.50 ± 0.14	+++	n.s.	+++	n.s.	
	(n=7)	(n=6)	(n=10)	(n=8)					
$Kappa^+$	4.33±0.85	4.58 ± 0.61	1.35 ± 0.17	0.97 ± 0.0	+++	n.s.	+++	n.s.	
$Lambda^+$	0.43±0.08	0.45 ± 0.02	0.10 ± 0.02	0.13±0.02	† ††	n.s.	+++	n.s.	
Spleen	(n=7)	(n=6)	(n=10)	(n=8)					
Cellularity $(x10^7)$	1.5±0.6	0.99±0.64	0.59±0.22	0.64±0.26	n.s.	n.s.	n.s.	n.s.	
Lymphs	63±5	47±5	29±2	30±2	+++	++	+++	n.s.	
$\text{CD19}^{+}\text{B220}^{\text{lo}}$	2.6±1.3	8.0 ± 1.2	0.61±0.07	0.80 ± 0.12	+++	+++	+++	n.s.	
CD19^+ B220 ^{hi}	11±3	6.2 ± 1.5	3.3±0.5	4.2 ± 0.7	ŧ	n.s.	n.s.	n.s.	
$B220^{+} AA4.1^{+}$	6.3±1.1	3.7±0.7	1.4 ± 0.2	2.0±0.4	+++	†	n.s.	n.s.	
T1	1.8 ± 0.2	1.6±0.3	0.34 ± 0.06	0.77 ± 0.17	+++	n.s.	+++	n.s.	
T2	1.7 ± 0.4	0.41 ± 0.11	0.24 ± 0.04	$0.17 \pm 0.0.3$	+++	+++	n.s.	n.s.	
T3	1.8 ± 0.6	0.38 ± 0.14	0.53 ± 0.11	0.46 ± 0.11	+++	+++	n.s.	n.s.	
B220 ⁺ AA4.1 ⁻	$10{\pm}1.5$	$5.4{\pm}1.0$	2.8 ± 0.3	3.2±0.4	+++	+++	n.s.	n.s.	
MZ	0.62 ± 0.09	0.73±0.19	0.54 ± 0.09	0.78 ± 0.09	+++	n.s.	ns	+++	
FM	8.1 ± 1.5	2.8 ± 0.6	1.8 ± 0.3	1.2 ± 0.2	+++	+++	n.s.	n.s.	
IgMa ⁺ IgMb ⁻	0.081 ± 0.045	0.050 ± 0.038	2.7 ± 0.4	3.5 ± 0.6	+++	n.s.	+++	n.s.	
$IgMa^{-}IgMb^{+}$	15±2	17±2	0.54 ± 0.05	0.75 ± 0.11	+++	n.s.	+++	n.s.	
\mathbf{Kappa}^+	10±2	12±1	2.7 ± 0.2	3.6±0.4	+++	n.s.	+++	n.s.	
$Lambda^+$	0.71±0.14	0.96±0.10	0.033 ± 0.004	0.067 ± 0.011	†††	n.s.	†††	n.s.	
Peritoneal Cavity	(n=7)	(n=6)	(n=10)	(n=8)					
Cellularity (x10 ⁷)	0.12 ± 0.04	0.16±0.03	0.054 ± 0.017	0.10 ± 0.03	n.s.	n.s.	ŧ	n.s.	
Lymphs	2.8 ± 0.5	7.4 ± 1.4	0.90 ± 0.15	3.0±0.4	+++	+++	+++	Ť	
CD19 ⁺ B220 ¹⁰	0.95 ± 0.31	4.2 ± 0.6	0.15 ± 0.03	0.65 ± 0.10	+++	+++	+++	n.s.	
$CD19^{+}B220^{ni}$	0.32±0.09	0.47 ± 0.07	0.46 ± 0.09	0.31±0.04	+++	n.s.	n.s.	+++	

Table S2. Summary of total cell counts of various B cell populations (x 10^5 unless indicated).

^a variance between groups by one-way ANOVA: n.s., not significant; \dagger , p < 0.05; $\dagger \dagger$, p < 0.01; $\dagger \dagger \dagger$, p < 0.005. ^b post-hoc analysis by unpaired *t* test: n.s., not significant; \dagger , p < 0.05; $\dagger \dagger$, p < 0.01; $\dagger \dagger \dagger$, p < 0.005.

Cell Population	Primer Family	Number	Sequence Name	V region	J segment	Mutations	AA substitutions	Transition	Transversion	Insertions	Total del	V del	J del
-1		1	Tg-KA1-M13For_B09_2.ab1	IgVk 19-23	Jk5	5	2	4	1		3	2	1
		6	Tg-6KA-M13For_F02_2.ab1	Vk 19-23	Jk2	1	0	1			7	4	3
		7	Tg-7KA-M13For_G02_3.ab1	Vk 19-15, partial	Jk5	1	1	1			3	3	precise
	Карра А	9	Tg-KA8.1-M13For_C07_3.ab1	Vk 19-17, partial	Jk5	0			<u> </u>		3	3	precise
L Q		10	Tg-KA9-M13For_D07_4.ab1	Vk 19-17, partial	Jk2	1	1	1	<u> </u>	┢────┘	4	3	1
B22		10	Tg-KA10-M13For_E07_1.ab1	VK 19-15, partial	JK5	1	0	1	1		3	3	precise
		12	Tg-L-KB-M13Por_P0/_2.ab1	Vk 19-23	JK5	0			<u> </u>		3	3	precise 2
E E		2	Tg-2-KB-M13For B02 2.ab1	Vk 21A	Jk2	0					4	3	1
	Kappa B	3	Tg-3-KB-M13For_C02_3.ab1	Vk 21 Subgroup	Jk2	2	0	2			4	3	1
		4	Tg-4-KB-M13For_D02_4.ab1	Vk 21A	Jk2	1	insert = frameshift			1	4	3	1
		6	Tg-11KB-M13For_E11_1ab.1	Vk 21C	Jk1	2	1	2			3	precise	3
	Карра С	5	Tg-KC6-M13For_A09_1.ab1	Vk 21C	Jk1	0					3	1	2
Cell Population	Primer Family	Number	Sequence Name	V region	J segment	Mutations	AA substitutions	Transition	Transversion	Insertions	Total del	V del	J del
		3	Tg+HiKA3-M13For_H09_4.ab1	Vk 19-23	Jk5	0					3	2	1
		4	Tg+HiKA4-M13F0r_A10_1.ab1	Vk 19-32	Jk1	0					3	1	2
		5	Tg+Hi5KA-M13For_A03_1.ab1	Vk 19-23	Jk5	1	1	1			3	3	precise
		6	Tg+Hi6KA-M13For_B03_2.ab1	Vk 19-15	Jk4	0					3	3	precise
	Карра А	7	Tg+Hi7KA-M13For_C03_3.ab1	Vk 19-17, partial	Jk1	1	1		1		3	3	precise
		8	1g+Hi8KA-M13For_D03_4.ab1	Vk 19-23	Jk5	0			ł	t	3	2	1
		10	Tg+HiKA10-M13For_A08_1.ab1	Vk 19-15, partial	Jk5 11-2	0					3	2	1
		12	Tg_HiK \$12.M12Eor CO8 2 a=1	Vk 19-23	JK2 [1-5	0			1	<u> </u>	*	,	1
		12	Tg+His1-KB-M13F0r_E02_1ab1	Vk 21B Subgroup	JK3 Ik2	0					4	2 precise	4
		2	Tg+Hi-2-KB-M13For F02 2.ab1	Vk 21D Subgroup	Jk2	1	0	1			4	4	precise
		3	Tg+Hi-3-KB-M13For_G02_3.ab1	Vk 21C	Jk2	0			1		4	3	1
	Varia D	4	Tg+Hi-4-KB-M13For_H02_4.ab1	Vk 21B Subgroup	Jk2	1	0	1			4	precise	4
	карра в	6	Tg+Hi7KB-M13For_G07_3.ab1	Vk 21B Subgroup	Jk1	0					3	1	2
		7	Tg+Hi10KB-M13For_H07_4.ab1	Vk 21B Subgroup	Jk5	1	1	1	L	'	3	3	precise
Ohi		9	Tg+Hi12KB-M13For_B02_2.ab1	Vk 21C	Jk2	0					4	3	1
520		10	Tg+Hi13KB-M13For_C02_3.ab1	Vk 21 Subgroup	Jk1	2	1	2			3	precise	3
B		1	Tg+HiKC1-M13For_G08_3.ab1	Vk 8-21	Jk1	1	1	1			perfect	precise	precise
5		3	Tg+HiKC3-M13For_A09_1.ab1	Vk 21 Subgroup	Jk2	1	0	1	ł		4	3	1
₹		4	Tg+HiKC5-M13For_A04_1.ab1	Vk 21C	Jk2	1	1	1			4	3	1
nR	Kanna C	5	Tg+HiKC6-M13For_B04_2.ab1	Vk 2IG	Jk2	2	2	1	1		4	3	
р	карра С	7	Tg+HiKC8-M13For_C04_5.ab1	VK 8-27 Vk 21 Subgroup	Jk2	4	3	4	1		3	2 precise	3
		8	Tg+HiKC9-M13For E04_1ab1	Vk 8-30	Jk2	0	2				4	3	1
		9	Tg+HiKC10-M13For_F04_2.ab1	Vk 21 Subgroup	Jk2	1	0	1	1		4	3	1
		11	Tg+HiKC12-M13For_H04_4.ab1	Vk 21A	Jk1	0					3	precise	3
		1	Tg+HiKD1-M13For_E03_1.ab1	Vk ba9	Jk5	0					3	3	precise
		2	Tg+HiKD2-M13For_F03_2.ab1	Vk ba9	Jk2	2	2	1	1		4	3	1
		*3	Tg+HiKD3-M13F0r_G03_3.ab1	Vk psi-br9 (9-128)	Jk5	0						3	precise
	Kappa D	4	Tg+HiKD4-M13For_H03_4.ab1	Vk ba9	Jk1	1	1	1			3	3	precise
		5	Tg+HiKD5-M13For_E06_1.ab1	Vk 8-28	Jk5	2	insert=frameshift	1	1	1	3	3	precise
		8	Tg+HiKD9-M13For_G01_3.ab1	Vk bv9	Jk1	2	2	1	1	<u> </u>	3	1	2
		9	Tg+HiKD10-M13For_H01_4.ab1	Vk 8-28	Jk5	0			┥────	l	3	3	precise
		1	Tg+HIKG1-M13For_F04_2.ab1	Vk crl gene	Jk2	0	1		<u> </u>	┣───────────	4	3	1
	Kappa G	5	1g+HiKG7_M13For_C02_2ab1	VK CI1 gene	JK2 [1-5	0	1	1	<u> </u>	'	4	2	I
		6	Te: UEKC0 M12Fee D02 4 eb1	Vk o-19, patial	365	0					3	3	precise
Coll Donulation	Duimon Founily	Number	Segmence Nome	V nonion	Lagramont	Mutations	A A substitutions	Transition	Tronguosion	Incontions	, Total dal	y dol	T dol
Cell Fopulation	Frinter Failing	Number	Sequence Ivanie	V region	J segment	Mutations	AA Substitutions	Transition	Transversion	Insertions	1 otal del	v dei	Juei
1	Карра А	3	Tg+LoKA3-M13For D10 4 ab1	Vk 19-32	Jk1	0			1		3	1	2
		4	Tg+Lo5KA-M13For_E03_1.ab1	Vk 19-32	Jk1	1	1	1	1		3	1	2
		5	Tg+Lo6KA-M13For_F03_2.ab1	Vk 19-32	Jk1	0					3	1	2
ol O		6	Tg+Lo7KA-M13For_G03_3.ab1	Vk 19-32	Jk1	0					3	1	2
4G1 B220		7	Tg+LoKA8-M13For_D08_4.ab1	Vk 19-32	Jk1	1	1	1	L	L	6	6	precise
		8	Tg+LoKA9-M13For_E08_1.ab1	Vk 19-32	Jk1	0				ļ'	3	1	2
		9	Tg+LoKA10-M13For_F08_2.ab1	Vk 19-17	Jk5	0			 	ļ'	3	3	precise
		10	Tg+LoKA11-M13For_G08_3.ab1	Vk 19-32	Jk1	0	stop		L	ļ'	3	1	2
R	Карра В	5	Tg+Lo5KB-M13For_A08_1.ab1	Vk 21A	Jk2	0			───	├ ────	4	3	1
Ę		7	Tg+Lo12KB-M13For_D02_4.ab1	Vk 21C	Jk1	0			───	├ ──── [′]	3	1	2
	Kappa C	2	Tg+LoKC2-M13For_D08_4.ab1	Vk 21C	Jk1	0			╉─────		3	1	2
		6	Tg+LoKC6-M13For B05 2 ab1	Vk 21A	Jk2	0		1	1	1	4	3	1
	Карра С												
	Kappa C	7	Tg+LoKC7-M13For_C05_3.ab1	Vk 19-32	Jkl	0					3	1	2

Table S3. Igk gene sequence analysis.