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ABSTRACT A model of learning by selection is described
at the level of neuronal networks. It is formally related to
statistical mechanics with the aim to describe memory storage
during development and in the adult. Networks with symmetric
interactions have been shown to function as content-address-
able memories, but the present approach differs from previous
instructive models. Four biologically relevant aspects are
treated—initial state before learning, synaptic sign changes,
hierarchical categorization of stored patterns, and synaptic
learning rule. Several of the hypotheses are tested numerically.
Starting from the limit case of random connections (spin glass),
selection is viewed as pruning of a complex tree of states
generated with maximal parsimony of genetic information.

Aside from the inneist, or preformist, point of view, accord-
ing to which experience does not cause any significant
increase of order in an already highly structured brain
organization, two main classes of learning theories have been
proposed and discussed (for review see ref. 1). On the
empiricist side, the initial state is considered as a tabula rasa,
and the whole internal organization results from direct
instructive prints by the environment. Alternatively, selec-
tionist theories postulate that the increase of internal order
associated with experience is indirect (2-8). The organism
generates, spontaneously, variable patterns of connections
(3) at the sensitive period of development, referred to as
“‘transient redundancy’’ (6), or variable patterns of activity
named prerepresentations (7, 8) in the adult. Interaction with
the environment merely selects or selectively stabilizes the
preexisting patterns of connections and/or firings that fit with
the external input, a step named ‘‘resonarce’’ (7, 8). As a
correlate of learning, connections between neurons are
eliminated and/or the number of accessible firing patterns is
reduced.

Several attempts to model learning at the level of large
ensembles or ‘‘assemblies’’ of interconnected neurons have
been made in quantitative terms mostly with the help of
statistical mechanics (9, 10). Their revival is largely due to the
introduction by Hopfield (10) of the conceptual simplification
that (i) if one restricts the interactions between neurons only
to symmetric ones, this allows for the introduction of an
energy function and, as a consequence, the dynamics of
neuronal networks can be viewed as a downhill motion in an
energy landscape and (ii) then, the reallowance for dissym-
metric interactions does not discontinuously upset the pic-
ture.

On the other hand, such models still belonged to the
empiricist mode of learning with the initial state taken as a flat
energy landscape (tabula rasa) that becomes progressively
structured and complex by direct instructions from the
environment.
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The aim of this communication is to propose a model of
learning by selection based on an advance in the statistical
mechanics of disordered systems—namely, the theory of spin
glasses (11-13). In contrast to the empiricist approach, the
initial state is viewed as a complex energy landscape with an
abundance of valleys typical of spin glasses with learning
consisting of the progressive smoothening and gardening of
this landscape. The paper also contains a biological critique
of the standard instructive version of the Hopfield model,
referred to here in short as the instructive model. The main
proposals for a selectionist model of learning are outlined and
preliminary numerical results are reported and discussed.

The Activity of Neuronal Networks Described by Statistical
Mechanics

The all-or-none firing of a neuron is represented by a spin that
can take two values: § = +1 (firing), § = —1 (rest). A pattern
of activity, a, of a network of N neurons is represented by a
spin configuration (S7), i = 1, . . ., N, that lies at one of the
corners of a hypercube in N-dimensional configuration
space. Two patterns of activity, a and B, may then be
compared through their overlap, which is an index of prox-
imity or matching in configuration space:

sl 3 cagp
B = — S¢ SP. 1
q Y=k (1

The neurons interact via binary synapses of synaptic
strength, T;. With the assumption (5) of symmetric interac-
tions Tj; = Tj;, an energy function can be written as follows:

(2]

where A; is a local field acting on spin S; and is often used to
represent an external input (yielding an apparent shift of the
firing threshold of a neuron). The neuron dynamics is such
that, in the absence of probabilistic effects leading to random
spontaneous activity, each spin tends to decrease its energy.
A stable configuration is, therefore, a local minimum of the
energy E. On the other hand, probabilistic effects can be
described by introducing a finite temperature (14).

Synaptic modifications have been hitherto often expressed
by the learning rule:

E= —1 ETUSiSj_EhiSi,
2 i# i

AT; ~ (S; S, 13
where the brackets mean some time average. This expres-
sion, referred to as the ‘‘generalized Hebb rule,”’ differs from
the original Hebb rule (15), which may be written as

(52

2
and exclusively takes into account reinforcements of excita-
tory synapses. Rule 3 has attractive features—it is local and
formally natural—but it also has undesirable ones—for in-
stance, when neuron i makes inhibitory synapses with neuron
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J, rule 3 would predict a modification of synaptic strength T;;
and eventually a reversal from inhibitory to excitatory, if
none of the neurons is firing and the synapses are silent.

Instructive Models of Learning

Instructive models of learning (10) postulate that, in the initial
state, the interactions between neurons are vanishingly small
and the energy landscape is flat (tabula rasa). Storage into
memory of an activity pattern a, where S; = u?, results from
the following synaptic modification,

1
ATy = — ki b 5]

and the network is said to have learned M patterns, a = 1,
., M, when the interactions have been set to

1 M

T; = lel M u, [6]
as a consequence of the successive prints of the M input
patterns. With such interactions 6, the network functions as
a distributed, fault-tolerant, content-addressable memory.
Starting from any input data, the network configuration
rapidly converges toward a local minimum and recognizes the
closest stored memory pattern (provided M is not too large
and no confusion takes place) (10).

Assuming that the learned patterns are random and
uncorrelated, HOpﬁeld (10) has suggested that the maximal
storage capacity is M, = yN (with y < 1/2, since each pattern
corresponds to N bits of information, and the information is
stored in the interactions, with N?/2 of them) and further has
shown that loss of recall occurred around y = 0.15, an
estimate that has been confirmed by subsequent analytical
calculations (16, 17).

Such instructive mode of learning, if legitimate and useful
for artificial intelligence, does not hold for the brain for the
following reasons.

(i) As more and more patterns are stored, according to
formula 6, the synaptic patterns keep changing sign. As was
already stressed by Hopfield (10), it is the signs of the
interactions Tj; together with their absolute values that are
responsible for the proper shaping of the energy landscape
Thus, storing a new memory amounts largely to reversing the
signs of a particular set of synaptlc strengths Yet, no
physiological evidence exists of synaptic sign reversal, such
as a shift of postsynaptic response from excitatory to inhib-
itory, as a cellular correlate of learning (1).

(i7) Up to now, the ultimate organization of stored patterns
in memory space has been viewed as a configuration-space-
filling jardin @ la frangaise, with a regular distribution of the
basins of attraction corresponding to the various stored
patterns (18). A more hierarchical distribution less prone to
confusions, with categorization properties and correlations
between stored patterns, appears more appropriate for higher
brain functions, even if it is wasteful of configuration space.

(iij) The hypothesis of an initial state with vanishing
interactions does not take into account the existence of an
already connected and functional neuronal network at the
moment learning occurs.

Spin Glasses

Spin glasses, by definition, consist of networks of spins with
symmetric random (positive and negative) interactions. The
energy is simply given by

E= —E 2T, S: S; ied]
The mean field theory of spin glasses (valid for a fully
connected network and a mimber of spins N large) is intricate
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but yields a simple physical picture for the energy landscape.
The total number of local minima in configuration space is
exponential in N. However, the dominant valleys (their
importance is weighed by the Boltzmann factor, which favors
low-energy valleys) have positive mutual overlaps. More
precisely, to any spin state, time-reversal symmetry associ-
ates another state with all spins flipped and the same energy,
so that the previous statement holds for each half of the
valleys separately. In geometric terms, the dominant valleys
of a spin glass lie within a cone, centered at the origin and of
right angle in configuration space (one-half of the valleys
within one sector of the cone, the other half within the
opposite sector). Such a right-angle cone spans a very small
fraction of configuration space, which is another way of
stating that the dominant valleys are strongly intercorrelated.

Furthermore, the distribution of these valleys possesses an
ultrametric structure (11)—i.e., a hierarchical organization of
clusters within clusters—in configuration space. A similar
ultrametric distribution occurs in taxonomy when species are
classified, for instance, according to protein sequence ho-
mologies (19).

The spin glass energy landscape thus exhibits, spontane-
ously, a categorized organization. The appearance of ultra-
metricity for large heterogeneous assemblies is a remarkable
feature, which may be partly understood by realizing that
there are fewer bonds (N?/2) than possible spin configura-
tions (2V), and thus that the energy states have to exhibit
some form of correlation. Indeed, if ever random multiple-
spin (ternary, quaternary, etc.) interactions are introduced,
since they occur in larger combinatorial number than ordi-
nary binary interactions, the energy landscape tends to
become more and more rough, and the notion of hills, passes,
and valleys eventually disappears (20).

Spin Glass Model of Learning by Selection

The proposal we make here is that the theory and formalism
of spin glasses appear particularly adequate to model learning
by selection. As discussed (7), selection has been postulated
to operate during development on a variable connective
organization (3, 6) or, in the adult, on variable patterns of
activity named prerepresentations (7, 8). In both cases, a
significant (though limited) randomness characterizes the
initial state. This legitimizes the modeling of this ‘‘fringe’’
state by a network of N neurons with randomly connected
excitatory and inhibitory synapses that would behave as a
spin glass.

In brief, a spin glass has an energy landscape with: (i) an
abundance of valleys and (i) dominant valleys strongly
intercorrelated (positive mutual overlaps) in a tree-like fash-
ion.

Item (i) gives to this network the property of a ‘‘generator
of internal diversity”® (7, 21)—that is, each valley corre-
sponds to a particular set of active neurons and plays the role
of a prerepresentation. Item (ii) further indicates a sponta-
neous categorization of the prerepresentations.

Learning with very small synaptic changes is both advan-
tageous and possible. It is advantageous because it tends to
preserve ultrametricity—i.e., the spontaneous hierarchical
categorization of the prerepresentations. It is possible be-
cause learning by selection involves the stabilization of
preexisting valleys instead of creation of new ones. The
foremost constraint is interdiction of synaptic sign reversals.
Other proposals for the learning rule fall into two categories.
The rule should remain local but avoid the inconsistencies
mentioned above. In addition, a weighted factor is introduced
and contributes to the selection of the input patterns that
match the prerepresentations (resonance). This selective
factor enters naturally as a time average, if one assumes that
the synaptic changes occur during a relaxation time of the
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configuration initiated by the input pattern. More coherent
synaptic modifications will favor input patterns that match
with preexisting valleys. ,

In summary, learning by selection may occur as follows:
An input pattern sets an initial configuration that converges
toward an attractor of the dynamics (bottom of a valley, i.e.,
a prerepresentation). The energy of this selected valley is
lowered by synaptic modifications (particularly if the learning
time is longer than the relaxation time), and its basin of
attraction is shifted and enlarged at the expense of other
valleys. Starting from a hierarchical distribution of valleys,
the learning process can be viewed as pruning of a tree,
analogous to that occurring in the course of phylogenesis. As
a consequence the whole energy landscape evolves during
the learning process, the already stored information influ-
encing the prerepresentations available for the next learning
event. Moreover, the constraints on the synaptic modifica-
tions give internal rigidity to the system. Not every external
stimulus can equally be stored. Selection by the external
stimuli among internal prerepresentations has its counterpart
in selection by the internal network among external inputs. In
a parallel assembly of such networks, one may further
speculate that an input pattern will select its memory loca-
tion, the place where it fits, if any.

A prerequisite of learning by selection is the existence of
a nontrivial valley structure prior to the interaction with the
outside world. There are only two ways whereby a neuronal
network with symmetric binary connectioris can exhibit such
a structure.

One way is via frustration (22). The frustration function
®(c) of a closed loop (c) of interacting spins is the product of
the interactions around the loop:

®0) =T, (8]

If ®(c) > 0, it is possible to find a spin configuration around
the loop such that each bond is satisfied. If ®(c) < 0, this is
not possible, and the spin configurations can be at best
partially satisfactory. In this latter case, the loop is said to be
frustrated. Frustration is a source of metastability and de-
generacy. By definition, an unfrustrated network, where all
loops are unfrustrated, has only two minima, related by
time-reversal symmetry.

The other way to get multiplicity of valleys is via discon-
nection. A network, broken into p disconnected unfrustrated
clusters, has 2”7 minima.

The rich valley structure of a long-range, fully connected
spin glass stems from frustration. It differs sharply from the
valley structure of a set of disconnected clusters, although
intermediate cases are conceivable. Indeed, if all the neurons
are decoupled, the storage capacity is in some sense maxi-
mal, but all the useful properties of a distributed, associative
memory are lost.

Any realistic neuronal network model for biological learn-
ing by selection should inchide both frustration and discon-
nection. Not only is the initial connectivity in central nervous
systems far from maximal (see for instance, the anatomical
evidence for columns) but the occurrence of synaptic elim-
ination during development is well documented (6, 23). The
constrained learning rules, introduced above, preserve frus-
tration because they forbid sign reversals and allow for
synaptic elimination.

Numerical Implementations and Results

Our model contains a set of hypotheses that are precise
enough to be tested numerically, and we have begun a
systematic investigation of their consequences. Some salient
results, for small network sizes ranging from N = 30to N =
200, are reported. A more elaborate discussion will be
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presented elsewhere. For the sake of clarity, we have studied
separately the effects of each of our basic hypotheses and
compared them with the instructive model.

The Tabula Rasa Withdrawn. Inthe initial state, the synapses
are set with random signs and an average strength S. It is
known from spin glass theory that partial learning of an
arbitrary pattern can be obtained with synaptic increments of
order S/VN for a complete graph of N neurons. Keeping
unchanged the form of the generalized Hebb rule, for the sake
of comparison,

eS
AT; = N [T 9]

we have checked that retrieval quality [more precisely, in
notations defined below, a normalized index R = (g — qv)/
(1 — g)] is a function of ¢, independent of network size N.
Furthermore, for £ = 2.5, retrieval quality was found to be
practically perfect.

As more and more patterns are stored, the strength of a
given synapse undergoes a random walk, with steps of length
&S /V N starting from the initial values +S or —S. Whenever
the strength of a synapse hits the value zero (an occurrence
possible after learning p ~ VN /¢ patterns) it is prevented
from changing sign. Two subsequent rules are conceivable,
and both have been examined. Either the synapse is alto-
gether eliminated, which is a strong form of the constraint, or
its strength is temporarily blocked at zero until it eventually
receives an increment of the correct sign, which obviously
constitutes a weaker constraint.

In the case of the strong constraint, ruin theory (24)
predicts that the fraction of surviving synapses will decay as
1/Vp, for p large (where p is the number of memorized
patterns). With the weaker constraint, the fraction of
nonvanishing synapses tends toward a constant.

We have defined a global learning index G and studied its
variation as a function of p. This learning index is the
difference between retrieval overlaps (a retrieval overlap is
the overlap between an input pattern and its attractor)
measured after learning and before learning, summed over all
p patterns. Note that learning an additional pattern modifies
the retrieval of previously stored patterns. Thus, the global
index has to be completely recalculated after each learning
event.

For p small, G(p) is linear in p; for £ = 2.5, the slope is the
same for the tabula rasa condition or the nontabula rasa
condition. Both curves are also asymptotically linear for p
large (with smaller slope) and superimposed, showing a
regime where the influence of the initial state has been lost.
In the intermediate regime, the two curves differ. In addition,
there is a difference between the cases with sign constraints
(under weak or strong form) and the case without, which is
clearly observed even on the smaller samples (N = 30).

Learning Strength and Selectivity. For comparison with
previous studies, the values of & chosen above were so large
as to “‘burn a hole”’ in the energy landscape, for any input
pattern. Such storage is clearly unselective. We have plotted
the statistics of retrieval-overlap-after-learning g, versus
retrieval-overlap-before-learning gy, for various values of «.
Starting from & = 0, for which the curve is obviously along
the diagonal g, = gy, there is a range of values of & for which
marked fluctuations in retrieval quality are observed, before
the hole burning regime sets in, with g, = 1.

These results prove the existence of a diversity and an
incipient selectivity. Note that, in these simulations as in
earlier studies (10, 14, 16, 17), the learned configurations are
the input patterns, because no relaxation effects are taken
into account. The selectivity in the learning process, resulting
from the existence of an initial structured energy landscape,
will be enhanced by averaging over time. A learned config-
uration will then be intermediate between an input pattern
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and its attractor, and the total amount of synaptic modifica-
tion will be larger for a matching pattern than for a nonmatch-
ing one.

Alternatives to the ‘“Generalized Hebb Rule”

Consistent with current models of regulation of synapse
efficacy inspired from the allosteric properties of the acetyl-
choline receptor (25), one may express the change in the
efficacy of a synapse between neurons i and j as a function of
the activities of the other neurons k afferent on j, as

ATy ~ 2 Cf (i S, (10]

the coefficient C being determined by chemical and geomet-
rical factors, such as the relative positions of the synapses (i,
J) and (k, j) on the dendrites of neuron j. Such a general
expression points to the possibility that the printing process
does not stabilizé with exact precision a given imposed
pattern but rather introduces a shift between an input and its
trace. However, at this stage, we limit ourselves to a
modification of the generalized Hebb tule 3, which eliminates
its most obvious flaws while keeping symmetric interactions.
A simple way consists in replacing rule 5§ by

1 a a a a
AT; = ;\IB pi st + (uf + o)) - 10 (1]

Then, no synaptic modification occurs if u; = u; = -1, as
desired. Consequently, every neuron will not be equally
stabilized after the storage of one pattern and any stored
pattern will have some labile spots.

As a first step, we have looked at the consequences of
learning rule 11 in comparison with the generalized Hebb rule
§, within the instructive model. The new rule has been found
to affect the retrieval quality of the Hopfield model signifi-
cantly. The reduction of the performances is comparable in
magnitude to the effect of withdrawing the tabula rasa
hypothesis (with generalized Hebb rule and without synaptic
sign constraints) as described above.

Conclusions

Learning by selection is a generalization to the development
of neuronal networks (3, 6) and to higher brain functions (4,
5, 8) of the selectionist (or Darwinist) mechanisms that have
already been successfully applied to the evolution of species
and antibody biosynthesis (2, 19). The spin glass model
described here creates an additional bridge between statisti-
cal mechanics and theoretical biology and may offer original
theoretical ‘‘tools’’ to quantitatively treat the neuronal bases
of highly integrated brain processes. At this stage the model
contains a severe restriction in scope due to its limitation to
static memory patterns (time sequences and synchronicity
effects are beyond present investigation).

One major neurobiological outcome of our model is the
description of a memory with a hierarchical, ultrametric,
structure which offers possibilities of ‘‘categorization’’ (11)
on a rather simple basis—an initial *‘fringe’’ state of random
synapses yielding a spin glass-like energy landscape and
strong learning constraints at the storage level. This does not
preclude, but rather complements, a hierarchical categoriza-
tion at the encoding level (26) that originates, for instance,
from a more innate organization of the sensory analyzers at
the cortical level with multiple entries of the inputs into a
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layered architecture. In this framework, our study considers
the less genetically determined layers that would then receive
partially precategorized inputs.

In conclusion, this learning process can be epitomized as
pruning (by selection) instead of packing (by instruction). It
is too early yet to predict what will be the most fruitful
implementation of this model, but two ideas appear profound
and worth stressing. The first idea for the physicist is that
selection, par excellence, is pruning of a tree and that the spin
glass supplies the tree with parsitmony of genetic information.
The second idea for the biologist is that random synapses in
a neuronal network cannot be equated with a tabula rasa.
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