Supporting Information of "Cosolute Paramagnetic Relaxation Enhancements Detect Transient Conformations of Human Uracil DNA Glycosylase (hUNG)" by Yan Sun, Joshua I. Friedman and James T. Stivers

Figure S1. The ¹H-¹⁵N TROSY spectra of DNA-bound hUNG and the effect of the Gd(HP-DO3A) paramagnetic cosolute. (a) The spectra were obtained with isotropically ²H, ¹⁵N-enriched hUNG-DNA complex samples with no Gd(HP-DO3A) (black) or [Gd(HP-DO3A)] = 2.5 mM (red). (b) Representative 1D slices (f_1 = 123.8 ppm) of the spectra in (a).

DNA-bound hUNG, and the predicted PRE values ($\Gamma_2^{\text{pred}'}$) as a function of calculated depth index for (a) free and (c) DNA-bound hUNG, and the predicted PRE values ($\Gamma_2^{\text{pred}'}$) as a function of accessible surface areas (ASA) for both the (b) free hUNG and (d) its complex with non-target DNA. The radius for the sample sphere centered on each amide was 10 and 9 Å in the calculations for the depth index and ASA, respectively.

	amino	Ι	$\Gamma_2^{\text{Meas}'}$ (s	(1 mM^{-1})	а	$\Gamma_2^{\text{Pred}'}$ ($\times 10^{-4})^{e}$	$\Lambda\delta^{f}$	NM A ^g	k h	depth	index ^{<i>i</i>}	AS	SA ^j
Res.	acid	fun		DNA-		frank	DNA-	(nnm)	$(arb \mu)$	(s^{-1})	fuer	DNA-	fun	DNA-
	acia	Iree	error	bound	error	Iree	bound	(ppm)	(410. 4.)	(3)	Iree	bound	Iree	bound
84	Phe	57.62	2.94	59.44	5.85	61.95	32.51	0.011	0.211	N/A	0.434	0.306	251.5	234.9
85	Phe	29.06	2.17	27.62	0.53	28.83	18.82	0.015	0.214	N/A	0.202	0.092	119.6	62.4
86	Gly	28.92	2.54	32.05	4.36	15.13	11.18	0.004	0.24	N/A	0.079	0.023	46.1	16.6
87	Glu	70	0	70	0	54.09	38.86	0.005	0.317	N/A	0.41	0.227	243.5	134.6
88	Ser	n. a. ^b	n. a.	n. a.	n. a.	36.86	29.20	n. a.	0.348	N/A	0.297	0.215	184.0	139.3
89	Trp	29.11	1.28	27.41	5.27	15.77	14.48	0.006	0.338	N/A	0.059	0.049	34.0	34.2
90	Lys	19.52	1.19	15.16	1.27	15.44	13.38	0.004	0.302	N/A	0.033	0.016	4.4	1.6
91	Lys	17.53	1.04	14.7	0.8	24.28	24.46	0.009	0.346	N/A	0.152	0.148	80.2	96.7
92	His	12.49	1.2	17.58	3.05	20.74	18.91	0.008	0.371	N/A	0.124	0.103	76.9	79.9
93	Leu	8.66	0.31	12.8	1.18	17.60	20.36	0.006	0.316	N/A	0.091	0.142	50.6	108.3
94	Ser	11.46	1	13.74	0.72	30.32	25.36	0.007	0.293	N/A	0.27	0.207	189.8	165.4
95	Gly	13.58	0.41	13.86	0.49	53.76	43.52	0.009	0.403	N/A	0.459	0.377	290.2	252.5
96	Glu	7.79	0.31	11.57	1.17	27.26	26.39	0.006	0.38	N/A	0.215	0.2	148.9	150.4
97	Phe	7.86	0.62	9.23	0.43	25.55	28.62	0.005	0.357	N/A	0.214	0.277	134.0	222.8
98	Glv	11.83	0.89	10.96	0.86	51.45	52.91	0.008	0.563	N/A	0.458	0.49	281.6	323.7
99	Lvs	7.37	0.4	10.15	0.98	36.39	44.38	0.007	0.475	N/A	0.337	0.403	229.2	281.9
100	Pro	c	_	_		_			0.376		0.596	0.507	404.0	387.5
101	Tvr	14.03	0.23	14.34	0.39	58.95	47.32	0.004	0.282	N/A	0.451	0.384	264.4	262.6
102	Phe	4.99	0.54	15.12	1.39	23.40	23.01	0.005	0.316	N/A	0.111	0.08	76.9	49.2
103	Ile	6.81	1.03	9.35	0.65	25.64	28.03	0.004	0.529	N/A	0.153	0.193	62.5	114.9
103	Lys	7 58	0.37	8 55	0.03	31.78	31.86	0.02	0.709	N/A	0.135	0.264	170.0	184.2
105	Leu	4 76	0.01	7 31	0.74	21.16	19 77	0.02	0.68	N/A	0.116	0.1	66.9	64.7
106	Met	$n o^d$	n o	n o	n o	19.01	19.70	n 0	0.00	N/A	0.108	0.127	65.8	94.8
107	Gly	12 18	0.93	12.08	0.97	36.43	36.45	0.007	1 1 5 5	N/A	0.100	0.127	185.5	214.9
108	Phe	10.64	0.49	13.16	0.82	31.83	32.62	0.005	1.135	N/A	0.23	0.239	140.4	154.7
100	Val	n o	n o	n o	n o	16.22	15 56	n o	1.370	N/A	0.069	0.068	30.8	40.5
110	Ala	n. o	n. o	n. o	n. o	24.94	26.64	n. o	1.527	N/A	0.005	0.000	140.4	154.1
111	Glu	13.7	0.33	14 33	0.36	31.57	30.99	0.008	2.042	N/A	0.170	0.263	198.9	207.2
112	Glu	n o	n o	n o	n o	21.56	20.08	n o	1.86	N/A	0.091	0.079	50.5	52.4
112	Arg	13 71	0.26	14 19	0.73	21.30	21.25	0.012	1.60	N/A	0.091	0.075	62.5	68.1
114	Lvs	n o	n o	n o	n o	33.88	34.73	n o	2 283	N/A	0.107	0.103	176.8	198.8
115	His	n. o	n. 0	n. 0	n. 0	37.04	35 30	n. 0	2.205	N/A	0.339	0.201	234.2	240.5
116	Tyr	60.1	7	55 59	0.7	33.74	35.01	0.007	2.096	N/A	0.308	0.303	207.5	270.3
117	Thr	70	0.05	70	0.7	48.63	45.89	0.007	1 532	N/Δ	0.300	0.305	268.5	256.5
117	Val	28.97	1.81	40.97	5 14	27.81	24.08	0.007	0.923	N/Δ	0.417	0.375	1200.5	130.8
110	Tyr	20.77	n.01	n 0	D.14	9.74	24.00	0.015	0.525	N/Δ	0.200	0.100	1 1	0.0
120	Dro	11. 0	11. 0	n. 0	n. 0	7.74	0.50	n. 0	0.5	N/A	0.000	0.002	0.0	26.0
120	Pro								0.170	N/Λ	0.028	0.037	1/8 2	158.1
121	Dro								0.234	N/A	0.230	0.233	100.8	146.2
122	Hic Lic					27.65	28 77		0.490	N/A N/A	0.148	0.107	240.8	280.6
123	Glp	12 72	0.65	1/ 26	0.40	16.62	17 12	0.007	0.407	N/A N/A	0.37	0.399	17.6	209.0
124	Vol	12.73	0.03	14.20	0.49	10.05	17.42	0.007	0.317	IN/A N/A	0.083	0.134	1/.0	19.1
125	V al Dho	0.05	0.72	1.55	0.05	<u>204</u>	Q 57	0.000	0.100	N/A N/A	0.003	0.002	1.1	0.0
120	The	7.55	0.1	0.40	0.55	0.94	0.37	0.011	0.203	IN/A N/A	0.001	0.003	1.1	0.0
12/	Trr	1.13	0.34	1.01	0.0	7.44	1.20	0.000	0.302	IN/A	0.007	0.01	1.1	3.2
120	The	4.17	1.0	52.14	6.54	J.90 7 52	5.40	0.000	0.338	IN/A N/A	0.002	0.004	0.0	0.0
129	Cln	29.93	1.0	25 70	2.50	12.00	0.77	0,002	0.347	IN/A N/A	0.002	0.004	10.0	20.7
121	Met	19.92	1.39	23.19	2.00	12.00	7.40	0.002	0.203	IN/A N/A	0.074	0.04	40.3	29.1 60.0
131	wiet	21.9	0.05	21.83	2.02	15.39	15.25	0.005	0.551	1N/A	0.090	0.084	03.7	00.8

Table S1. Summary of experimentally measured and calculated parameters for hUNG backbone amides.

amino		$\Gamma_2^{\text{Meas}'}(\text{s}^{-1} \text{ mM}^{-1})$				$\Gamma_2^{\text{Pred}'}(\times 10^{-4})$ $\Lambda\delta$		NMA k _{ex}		depth index		ASA		
Res.	acid	fraa		DNA-	orror	fraa	DNA-	(nnm)	$(arb \mu)$	(s^{-1})	fraa	DNA-	fraa	DNA-
	ueru	nee	enor	bound	enor	nee	bound	(ppm)	(uit). u.)		nee	bound	nee	bound
132	Cys	28.52	1.6	28.87	1.8	16.01	14.81	0.004	0.296	N/A	0.112	0.105	70.3	69.5
133	Asp	30.94	4.19	61.33	9.06	40.32	54.26	0.006	0.319	N/A	0.297	0.402	174.5	245.5
134	Ile	15.87	1.53	28.77	1.83	16.33	16.48	0.01	0.387	N/A	0.088	0.118	51.6	107.3
135	Lys	15.24	1.04	27.29	1.75	21.16	23.35	0.007	0.389	N/A	0.156	0.195	83.1	140.2
136	Asp	16.6	2.18	26.17	2.12	16.75	20.15	0.006	0.397	N/A	0.115	0.19	51.4	148.8
137	Val	12.35	0.56	12.95	1.28	11.27	12.42	0.005	0.408	N/A	0.025	0.045	13.8	32.1
138	Lys	5.33	0.09	6.16	0.43	6.68	7.64	0.006	0.479	N/A	0.001	0.007	0.0	2.6
139	Val	n. o	n. o	n. o	n. o	5.72	5.94	n. o	0.361	N/A	0	0	0.0	0.0
140	Val	n. o	n. o	n. o	n. o	4.49	4.35	n. o	0.369	N/A	0	0	0.0	0.0
141	Ile	n. o	n. o	n. o	n. o	3.57	3.61	n. o	0.415	N/A	0	0	0.0	0.0
142	Leu	n. o	n. o	n. o	n. o	4.58	3.67	n. o	0.588	N/A	0	0	0.0	0.0
143	Gly	11.33	0.33	9.26	0.45	4.05	3.22	0.023	0.565	N/A	0	0	0.0	0.0
144	Gln	56.8	1.83	50.24	9.78	7.02	3.30	0.024	0.74	900	0.028	0	17.5	0.0
145	Asp	70	2.82	54.44	2.65	11.05	3.47	0.013	0.666	900	0.053	0	28.7	0.0
146	Pro	_	_	_					0.6	N/A	0.011	0	5.5	0.0
147	Tyr	9.58	0.2	11.77	0.83	7.47	4.29	0.023	0.608	N/A	0.017	0	13.2	0.0
148	His	26.36	1.77	17.77	3.55	18.32	7.02	0.015	0.889	900	0.148	0.003	96.6	0.0
149	Glv	15.23	1.03	15.94	2.38	20.65	10.70	0.024	0.86	N/A	0.169	0.029	107.5	21.8
150	Pro			_					0.607	N/A	0.314	0.329	211.6	242.3
151	Asn	13.97	0.16	13.89	0.42	27.97	41.61	0.002	0.394	N/A	0.257	0.33	175.7	219.3
152	Gln	8 40	0.66	9.09	0.43	17.20	16.01	0.008	0.62	N/A	0.06	0.095	25.3	66.8
152	Ala	6.13	0.00	6 50	0.45	9 50	8 24	0.000	0.572	900	0.00	0.003	0.0	0.0
154	His	4 58	0.10	5.41	1.45	6.41	6.24	0.012	0.572	N/A	0	0.005	0.0	0.0
155	Gly	6.64	0.32	12 15	1.45	6.00	5.41	0.021	0.333	N/Δ	0	0	0.0	0.0
155	Leu	636	0.24	5 10	0.00	5.24	5.50	0.021	0.431	900	0	0.002	0.0	0.0
157	Cys	4 17	0.91	3.10	0.77	3.76	3.41	0.001	0.611	N/Δ	0	0.002	0.0	0.0
158	Dhe	12 64	1.23	11 74	0.4	5.05	3.48	0.005	0.011	N/Δ	0.011	0	6.6	0.0
150	Ser	n o	n.o	n o	n o	4 65	4 24	n o	0.808	N/A	0.011	0	0.0	0.0
160	Val	3.02	0.51	5.92	1.0	7.01	6.95	0	0.884	N/Δ	0	0	0.0	0.0
161	Gln	5.02 n 0	0.51 n 0	5.72 n 0	n.0	12.00	13.6	n 0	0.004	N/A	0.020	0.028	0.0	12.1
162	Arg	13.64	0.35	14.5	0.56	33.56	20.40	0.000	1.21	N/A	0.029	0.028	9.0	12.1
162	Dro	15.04	0.55	14.5	0.50	55.50	29.49	0.009	1.21	N/A N/A	0.203	0.231	201 0	169.0
164	Vol	<u> </u>	0.20	0.57	0.55	29.14	40.15	0.006	1.497	IN/A N/A	0.308	0.721	104.0	220.6
164	Val	0.49	0.29	9.37	0.55	20.14	40.15	0.000	1.302	IN/A	0.285	0.407	194.0	267.7
165	PIO								1.555	IN/A	0.363	0.371	15.9	207.7
167	PIO								1.079	IN/A	0.045	0.030	13.0	20.0
167	PIO								1.055	IN/A	0.34	0.115	215.0	70.7
100	FIO	26.06		26.20	1 72	20.42	5.07	0.015	1.233	N/A	0.575	0.031	233.1	29.5
109	Ser	20.90	0.99	20.39	1.75	20.45	5.97	0.013	1.170	900 NI/A	0.175	0.011	107.2	11.3
170	Leu	9.14	0.4	12.89	1.12	10.98	5.72	0.012	0.91	N/A	0.035	0.007	14.3	0.8
1/1	Giù	8.80	0.26	8.51	0.28	15.52	8.98	0.015	0.774	N/A	0.069	0.028	38.4	16.8
172	Asn	12.18	1.07	8.97	0.55	13.63	8.12	0.019	0.928	N/A	0.043	0.01	18.6	5.3
173	lle	n. o	n. o	n. o	n. o	8.77	7.18	n. o	0.717	N/A	0	0	0.0	0.0
174	Tyr	n. o	n. o	n. o	n. o	9.50	8.16	n. o	0.507	N/A	0.003	0.005	0.0	1.0
175	Lys	n. o	n. o	n. o	n. o	15.78	14.70	n. o	0.645	N/A	0.076	0.045	43.9	32.8
176	Glu	n. o	n. o	n. o	n. o	13.57	11.95	n. o	0.828	N/A	0.039	0.022	14.3	9.5
177	Leu	n. o	n. o	n. o	n. o	10.82	9.73	n. o	0.646	N/A	0.004	0.002	0.0	0.0
178	Ser	14.66	0.94	25.37	2.84	20.68	17.40	0	0.652	N/A	0.121	0.097	83.5	70.4
179	Thr	8.95	0.35	9.68	0.24	30.85	26.17	0.001	0.96	N/A	0.295	0.248	240.5	212.9
180	Asp	9.70	0.66	13.05	1.25	22.06	19.34	0.008	1.002	N/A	0.161	0.127	100.9	86.0
181	Ile	6.79	0.19	8.55	0.38	17.63	15.09	0.005	0.897	N/A	0.086	0.048	31.1	23.2

amino		1	$\Gamma_2^{\text{Meas}'}$ (s ⁻¹ mM ⁻¹)			$\Gamma_2^{\text{Pred}'}(\times 10^{-4})$ $\Lambda\delta$		NMA $k_{\rm ex}$		depth index		ASA		
Res.	acid	fraa		DNA-		fraa	DNA-	(nnm)	$(arb \mu)$	(s^{-1})	frag	DNA-	frag	DNA-
	aciu	Iree	error	bound	error	Iree	bound	(ppm)	(aro. u.)	(3)	Iree	bound	Iree	bound
182	Glu	14.2	0.34	15.35	1.41	43.99	40.50	0.008	1.11	N/A	0.372	0.264	208.6	157.2
183	Asp	14.52	0.52	15.24	1.27	37.36	39.49	0.011	0.999	N/A	0.376	0.411	257.0	318.6
184	Phe	9.87	0.64	9.65	0.29	31.21	25.44	0.007	0.704	N/A	0.247	0.164	161.3	119.7
185	Val	13.46	0.5	4.36	0.38	27.79	31.00	0.014	0.39	N/A	0.236	0.295	163.6	241.8
186	His	13.42	0.48	14.13	0.3	67.67	66.10	0.007	0.11	N/A	0.522	0.498	315.5	311.4
187	Pro	_							0.4	N/A	0.479	0.322	277.6	208.5
188	Gly	12.93	1.17	25.59	3.1	39.61	40.48	0.002	0.737	N/A	0.371	0.411	248.8	298.0
189	His	11.26	0.52	9.52	0.34	26.89	28.05	0.008	0.872	N/A	0.21	0.257	158.2	214.4
190	Gly	5.83	0.23	8.62	0.63	14.55	15.95	0.009	0.903	N/A	0.023	0.058	4.4	37.3
191	Asp	6.79	0.5	8.14	0.65	12.34	13.59	0.009	0.85	N/A	0.024	0.014	9.9	0.0
192	Leu	13.23	0.99	15.83	1.91	7.85	7.88	0	0.668	N/A	0.007	0.004	0.0	0.0
193	Ser	12.68	1.2	14.78	0.96	13.65	12.14	0	0.689	N/A	0.088	0.054	59.3	38.7
194	Gly	15.42	1.25	15.18	1.47	19.23	16.47	0.006	0.675	N/A	0.13	0.107	78.9	75.2
195	Trp	7.27	0.16	10.52	0.37	9.84	8.92	0.005	0.528	N/A	0.027	0.006	12.1	0.8
196	Ala	n. o	n. o	n. o	n. o	8.11	7.29	n. o	0.487	N/A	0.008	0	0.0	0.0
197	Lys	13.01	0.88	13.07	0.9	15.09	13.72	0.011	0.533	N/A	0.107	0.077	68.0	57.3
198	Gln	13.54	0.43	13.36	0.82	14.20	15.37	0.003	0.6	N/A	0.082	0.092	57.2	66.0
199	Gly	13.33	0.59	13.6	0.98	10.69	11.03	0.006	0.54	N/A	0.044	0.055	29.7	42.6
200	Val	n. o	n. o	n. o	n. o	6.73	7.09	n. o	0.429	N/A	0.001	0.004	0.0	0.0
201	Leu	n. o	n. o	n. o	n. o	4.26	4.56	n. o	0.437	N/A	0	0	0.0	0.0
202	Leu	3.40	0.25	2.85	0.3	3.99	3.94	0.012	0.532	N/A	0	0	0.0	0.0
203	Leu	n. o	n. o	n. o	n. o	3.52	3.13	n. o	0.523	N/A	0	0	0.0	0.0
204	Asn	5.42	0.42	2.85	0.7	3.79	3.23	0.005	0.518	N/A	0	0	0.0	0.0
205	Ala	13.48	0.75	11.6	0.9	5.28	3.55	0.011	0.5	N/A	0	0	0.0	0.0
206	Val	n. o	n. o	n. o	n. o	5.50	4.35	n. o	0.443	N/A	0.001	0	0.0	0.0
207	Leu	n. a.	n. a.	n. a.	n. a.	5.51	4.99	n. a.	0.27	N/A	0	0	0.0	0.0
208	Thr	n. o	n. o	n. o	n. o	5.75	5.14	n. o	0.303	N/A	0	0	0.0	0.0
209	Val	n. o	n. o	n. o	n. o	7.26	6.31	n. o	0.579	N/A	0	0	0.0	0.0
210	Arg	12.27	1.57	11.67	2.41	11.87	7.33	0.003	1.114	N/A	0.008	0.004	0.0	1.1
211	Ala	14.5	0.47	14.73	0.8	18.27	16.77	0.012	1.124	N/A	0.062	0.072	31.3	46.0
212	His	14.61	0.56	22.3	1.09	24.03	14.79	0.016	1.248	N/A	0.178	0.083	90.2	49.5
213	Gln	14.87	0.83	20.18	1.69	25.61	12.67	0.011	1.551	N/A	0.195	0.075	135.9	59.7
214	Ala	17.77	3.12	30.59	3.51	65.66	10.05	0.017	1.551	N/A	0.556	0.042	346.4	20.5
215	Asn	32.34	4.87	29.56	1.79	18.62	4.78	0.002	1.326	N/A	0.173	0.006	126.9	6.6
216	Ser	14.7	0.66	25.75	3.01	22.21	6.48	0.009	1.418	N/A	0.158	0.01	97.6	4.7
217	His	13.57	0.41	13.73	0.73	13.68	6.16	0.015	1.197	N/A	0.048	0.005	27.5	3.2
218	Lys	15.19	0.95	15.04	1.07	18.34	7.08	0.016	0.978	N/A	0.1	0.006	61.9	2.1
219	Glu	14.01	0.24	24.99	3.21	18.65	12.30	0.019	0.979	N/A	0.117	0.08	60.2	53.4
220	Arg	13.64	0.34	14.69	2.15	18.15	14.68	0.005	0.89	N/A	0.11	0.1	75.6	80.0
221	Gly	13.53	0.56	13.9	1.77	21.17	19.59	0.004	0.591	N/A	0.146	0.147	92.2	101.8
222	Trp	9.45	0.83	12.1	1.67	10.64	8.96	8E-04	0.269	N/A	0.022	0.035	9.9	24.4
223	Glu	12.48	0.8	12.86	1.22	12.28	10.18	0.007	0.352	N/A	0.042	0.047	19.7	33.6
224	Gln	6.04	0.49	7.22	0.95	18.64	18.82	0.011	0.356	N/A	0.192	0.146	154.8	98.9
225	Phe	n. o	n. o	n. o	n. o	11.90	11.09	n. o	0.248	N/A	0.039	0.04	13.2	22.4
226	Thr	n. o	n. o	n. o	n. o	7.95	7.36	n. o	0.389	N/A	0.006	0.006	0.0	0.0
227	Asp	8.79	0.42	9.33	0.5	12.86	10.91	0.004	0.485	N/A	0.082	0.06	50.5	43.9
228	Ala	n. o	n. o	n. o	n. o	16.62	13.97	n. o	0.471	N/A	0.109	0.079	66.9	49.8
229	Val	n. o	n. o	n. o	n. o	9.34	8.31	n. o	0.461	N/A	0.023	0.014	10.9	8.4
230	Val	n. o	n. o	n. o	n. o	8.20	8.18	n. o	0.541	N/A	0.015	0.015	2.2	10.5
231	Ser	8.55	0.14	9.09	0.54	14.61	14.02	0.006	0.591	N/A	0.097	0.086	68.0	59.2

	amino		$\Gamma_2^{\text{Meas}'}$ (s	$s^{-1} \mathrm{mM}^{-1}$)	$\Gamma_2^{\text{Pred}'}$	$(\times 10^{-4})$	48	ΝΜΔ	k	depth	index	A	SA
Res.	acid	fraa		DNA-	orror	fraa	DNA-	(nnm)	$(arb \mu)$	(s^{-1})	fraa	DNA-	fraa	DNA-
	uera	nee	enor	bound	enor	nee	bound	(ppm)	(uio. u.)		nee	bound	nee	bound
232	Trp	10.05	0.75	8.98	0.74	15.24	12.86	0.002	0.543	N/A	0.088	0.061	54.9	53.1
233	Leu	n. o	n. o	n. o	n. o	9.41	9.10	n. o	0.532	N/A	0.006	0.002	1.1	0.0
234	Asn	n. o	n. o	n. o	n. o	10.87	11.07	n. o	0.543	N/A	0.008	0.008	0.0	0.5
235	Gln	12.6	0.96	13.6	0.55	19.07	20.08	0.002	0.63	N/A	0.112	0.121	46.1	80.4
236	Asn	n. o	n. o	n. o	n. o	20.47	22.79	n. o	0.637	N/A	0.15	0.169	77.2	121.7
237	Ser	11.66	0.75	13.67	0.31	19.77	24.85	0.006	0.554	N/A	0.124	0.202	83.0	147.5
238	Asn	14.31	0.27	15.7	1.53	30.78	46.51	0.008	0.495	N/A	0.249	0.334	151.1	209.9
239	Gly	59.99	5.79	58.32	3.95	22.35	30.70	0.003	0.336	N/A	0.163	0.278	103.0	199.7
240	Leu	11.93	0.33	14.05	0.29	11.23	12.69	0.002	0.296	N/A	0.027	0.039	6.5	19.2
241	Val	n. o	n. o	n. o	n. o	6.94	7.28	n. o	0.181	N/A	0	0	0.0	0.0
242	Phe	n. o	n. o	n. o	n. o	7.59	7.78	n. o	0.171	N/A	0.004	0.004	0.0	0.5
243	Leu	n. o	n. o	n. o	n. o	5.05	4.84	n. o	0.23	N/A	0	0	0.0	0.0
244	Leu	n. o	n. o	n. o	n. o	8.34	8.24	n. o	0.297	N/A	0.003	0.01	0.0	0.0
245	Trp	n. o	n. o	n. o	n. o	6.78	5.05	n. o	0.54	900	0	0	0.0	0.0
246	Gly	70	6.72	54.69	2.22	14.90	7.94	0.064	0.805	900	0.078	0.021	42.5	14.5
247	Ser	n. a.	n. a.	n. a.	n. a.	36.46	11.60	n. a.	0.728	N/A	0.285	0.061	168.9	47.3
248	Tyr	n. a.	n. a.	n. a.	n. a.	26.48	8.92	n. a.	0.649	N/A	0.218	0.031	133.5	24.2
249	Ala	70	0	59.57	6.07	11.96	6.13	0.018	0.585	900	0.037	0.007	21.3	0.0
250	Gln	31.07	4.24	30.26	2.49	14.87	10.78	0.049	0.569	N/A	0.067	0.063	30.7	41.0
251	Lys	n. o	n. o	n. o	n. o	24.84	15.60	n. o	0.638	N/A	0.205	0.125	126.1	90.2
252	Lys	20.89	0.98	14.73	1.06	18.86	12.89	0.006	0.599	N/A	0.125	0.076	75.7	58.9
253	Gly	13.38	0.54	13.25	0.76	14.18	17.88	0.016	0.54	N/A	0.06	0.131	28.6	90.0
254	Ser	15.27	1.07	24.8	1.7	29.64	41.78	0.01	0.613	N/A	0.273	0.444	188.8	308.5
255	Ala	14.88	0.76	26.02	2.36	32.64	31.72	0.016	0.65	N/A	0.355	0.358	256.9	303.0
256	Ile	11.99	0.35	13.68	0.67	22.91	22.86	0.003	0.569	N/A	0.195	0.192	131.6	157.5
257	Asp	13.63	0.44	14.28	0.55	22.26	24.45	0.007	0.509	N/A	0.152	0.172	97.6	116.5
258	Arg	15.51	1.28	26.79	2.64	58.93	53.05	0.004	0.375	N/A	0.456	0.402	273.3	251.7
259	Lys	28.36	1.38	28.53	3.63	52.08	42.11	0.006	0.333	N/A	0.477	0.431	297.4	322.5
260	Arg	n. o	n. o	n. o	n. o	31.42	45.57	n. o	0.354	N/A	0.286	0.428	194.5	313.3
261	His	26.94	1.21	27.8	1.13	20.20	22.25	0.007	0.292	N/A	0.132	0.134	67.6	93.3
262	His	12.06	0.53	14.3	0.39	12.43	11.90	0.015	0.109	N/A	0.048	0.034	21.7	18.4
263	Val	14.11	0.24	14.85	0.82	31.08	27.42	0.009	0.156	N/A	0.228	0.189	135.0	119.7
264	Leu	n. o	n. o	n. o	n. o	11.42	11.78	n. o	0.219	N/A	0.054	0.07	40.6	59.7
265	Gln	15.3	1.21	25.14	1.84	38.53	45.72	0.015	0.421	N/A	0.302	0.337	185.4	203.6
266	Thr	15.11	0.99	15.06	1.01	17.38	13.52	0.032	0.713	N/A	0.126	0.108	85.6	86.8
267	Ala	15.86	1.81	14.89	1.43	26.85	23.70	0.031	1.127	N/A	0.223	0.206	144.9	135.8
268	His	70	0	58.06	3.5	17.48	7.30	0.029	1.276	N/A	0.097	0.011	60.3	8.1
269	Pro	_	—		—	_			1.161	N/A	0.001	0	0.0	0.0
270	Ser	70	0	55.44	0.95	13.06	4.34	0.076	1.563	N/A	0.06	0	42.8	0.0
271	Pro	_	—	—	—				1.971	N/A	0.273	0	165.4	0.0
272	Leu	59.89	9.03	51.18	8.2	41.37	6.27	0.098	2.537	900	0.426	0	277.9	0.0
273	Ser	26.69	1.32	27.19	1.26	25.22	6.32	0.07	2.363	N/A	0.159	0	81.4	0.0
274	Val	54.33	2.36	53.75	3.83	22.26	6.77	0.016	1.999	900	0.09	0	51.6	0.0
275	Tyr	27.65	0.52	28.35	1.48	32.70	12.07	0.065	2.149	N/A	0.255	0.037	154.1	20.3
276	Arg	28.42	1.35	27.8	2.14	33.29	16.37	0.014	2.289	N/A	0.317	0.122	215.9	84.9
277	Gly	25.99	1.91	26.52	1.68	45.55	24.72	0.06	1.963	N/A	0.434	0.242	284.2	179.4
278	Phe	14.78	0.71	16.19	2.2	22.55	15.68	0.013	1.458	N/A	0.16	0.123	112.0	92.9
279	Phe	13.65	0.35	13.75	0.75	23.10	15.95	0.037	1.449	N/A	0.149	0.111	93.2	83.9
280	Gly	13.07	0.75	13.87	0.56	34.75	31.06	0.025	1.438	N/A	0.282	0.273	181.1	179.6
281	Cys	12.94	0.84	13.55	0.67	25.49	24.01	0.011	1.263	N/A	0.21	0.214	162.3	175.9

amir	amino	-	$\Gamma_2^{\text{Meas}'}$ (s	s ⁻¹ mM ⁻¹)	$\Gamma_2^{\text{Pred}'}$	$(x10^{-4})$	Δδ	NMA	<i>k</i>	depth	index	A	SA
Res.	acid	free	error	DNA- bound	error	free	DNA- bound	(ppm)	(arb. u.)	(s^{-1})	free	DNA- bound	free	DNA- bound
282	Arg	9.27	0.52	12.55	1.22	19.21	18.10	0.006	1.013	N/A	0.137	0.138	96.5	112.8
283	His	3.36	0.64	2.81	0.42	11.37	11.07	0.015	0.757	N/A	0.007	0.025	0.0	15.8
284	Phe	4.65	0.27	5.83	0.53	9.43	7.79	0.006	0.572	N/A	0	0	0.0	0.0
285	Ser	7.50	0.29	8.39	0.39	13.67	12.25	0.001	0.737	N/A	0.04	0.028	27.4	21.6
286	Lys	12.65	0.46	13.58	0.61	16.26	15.03	0.011	0.768	N/A	0.085	0.044	50.6	23.9
287	Thr	n. o	n. o	n. o	n. o	10.37	9.76	n. o	0.595	N/A	0.012	0.008	0.0	3.7
288	Asn	6.12	0.34	5.87	0.07	12.29	10.44	0.003	0.638	N/A	0.039	0.028	28.5	24.2
289	Glu	12.36	0.82	13.37	0.73	20.83	20.75	0.004	0.861	N/A	0.122	0.125	73.6	86.5
290	Leu	n. o	n. o	n. o	n. o	17.61	16.75	n. o	0.735	N/A	0.067	0.073	23.0	48.2
291	Leu	n. o	n. o	n. o	n. o	12.86	14.26	n. o	0.651	N/A	0.002	0.01	0.0	1.3
292	Gln	8.64	0.51	10.82	1.28	23.07	22.11	0.005	0.919	N/A	0.153	0.125	73.0	86.3
293	Lys	13.22	0.64	14.84	0.91	34.22	37.48	0.005	1.032	N/A	0.306	0.318	190.7	212.8
294	Ser	14.24	0.24	15.01	0.99	32.97	36.49	0.007	0.908	N/A	0.324	0.355	236.9	268.3
295	Gly	14.18	0.36	19.62	1.99	59.08	76.45	0.006	1.078	N/A	0.602	0.694	403.8	450.8
296	Lys	13.46	0.43	14.16	0.25	37.64	45.04	0.004	0.98	N/A	0.383	0.479	287.3	359.2
297	Lys	28.9	1.57	29.36	2.69	48.92	53.30	0.007	0.989	N/A	0.387	0.395	232.7	256.4
298	Pro	—	—	—	—	_	_	—	0.864	N/A	0.094	0.078	67.7	66.3
299	Ile	5.44	0.48	6.22	0.16	12.48	11.59	0.005	0.582	N/A	0.043	0.023	25.3	14.2
300	Asp	7.76	0.12	9.49	0.21	17.44	17.75	0.007	0.685	N/A	0.104	0.096	63.8	60.0
301	Trp	6.81	0.06	6.93	0.39	13.16	13.52	0.01	0.501	N/A	0.05	0.058	30.5	41.6
302	Lys	8.07	0.58	9.15	0.78	16.46	17.88	0.006	0.478	N/A	0.056	0.124	23.2	89.2
303	Glu	9.46	0.57	12.55	1.49	18.20	20.40	0.006	0.594	N/A	0.085	0.164	19.7	128.4
304	Leu	23.83	1.43	20.95	2.31	30.40	38.47	0.005	0.61	N/A	0.262	0.315	167.8	198.6

^a The PRE values were measured using samples with $[Gd^{3+}] = 1.0, 2.5, 5.0, 10.0$ mM. The linear slopes of the PRE values at different Gd^{3+} concentrations were obtained as the molar relaxivity (Γ_2^{Meas}). Errors in the relaxation rates were propogated from the estimated errors in the peak intensities by measuring corresponding variances in the duplicated spectra acquired.

^b n. a. \equiv no assignment.

^c No amide protons because they are proline residues.

^{*d*} n. o. \equiv not observable. For ²H labeled hUNG, these residues exchange with water extremely slowly, so they show either no or very weak signals in the ¹H-¹⁵N HSQC spectra.

^{*e*} The predicted PREs (Γ_2^{Pred}) were calculated using the grid-based approach (1, 2) and the atom coordinates obtained from the crystal structures of the free enzyme (1AKZ) and its non-specific DNA complex (2OXM).

^{*f*} Heteronuclear (¹H, ¹⁵N) weighted chemical shift perturbations.

^{*g*} Amide nitrogen displacement using the lowest frequency normal mode analysis for the free hUNG (pdb code 1AKZ).

^h Exchange constants that describes dynamic exchange between two states. The exchange rates were evaluated using NMR relaxation experiments previsouly (3)

^{*ij*} Depth index and accessible surface area (ASA) calculated using SADIC program and Gd³⁺ probe size in the form of ProHance (3.5 Å)(1, 4).

Amino			Structure	Conservation	Depth	Index ^c	$\Gamma_2^{\text{Meas}}/\Gamma_2^{\text{Pred }d}$		
Res.	acid	polarity	feature ^a	score ^b	free	DNA-	Free	DNA-	
	aciu		icature	score	nee	bound	Tiee	bound	
95	Gly	nonpolar	h	2.431	0.459	0.377	0.25	0.31	
96	Glu	negative	h	-0.78	0.215	0.2	0.29	0.43	
97	Phe	nonpolar	h	-0.357	0.214	0.277	0.30	0.32	
98	Gly	nonpolar	h	2.428	0.458	0.49	0.23	0.20	
99	Lys	positive	с	-0.025	0.337	0.403	0.20	0.22	
100	Pro	nonpolar	h	0.838	0.596	0.507	N/A	N/A	
101	Tyr	polar	h	-0.862	0.451	0.384	0.23	0.30	
102	Phe	nonpolar	h	-0.319	0.111	0.08	0.21	0.65	
103	Ile	nonpolar	h	2.401	0.153	0.193	0.26	0.33	
104	Lys	psotive	h	2.433	0.276	0.264	0.23	0.26	
105	Leu	nonpolar	h	-0.516	0.116	0.1	0.22	0.36	
106	Met	nonpolar	h	0.62	0.108	0.127	N/A	N/A	
107	Gly	nonpolar	h	2.434	0.297	0.315	0.33	0.33	
108	Phe	nonpolar	h	0.699	0.23	0.239	0.33	0.40	
182	Glu	negative	с	2.323	0.372	0.264	0.32	0.37	
183	Asp	negative	с	-0.148	0.376	0.411	0.38	0.38	
184	Phe	nonpolar	с	0.366	0.247	0.164	0.31	0.37	
185	Val	nonpolar	с	2.434	0.236	0.295	0.48	0.14	
186	His	polar	с	0.38	0.522	0.498	0.2	0.21	
187	Pro	nonpolar	с	-0.881	0.479	0.322	N/A	N/A	
188	Gly	nonpolar	с	2.409	0.371	0.411	0.32	0.63	
292	Gln	polar	h	2.434	0.153	0.125	0.37	0.48	
293	Lys	positive	h	2.433	0.306	0.318	0.38	0.39	
294	Ser	polar	h	0.892	0.324	0.355	0.43	0.41	
295	Gly	nonpolar	с	-0.428	0.602	0.694	0.24	0.25	
296	Lys	positive	с	2.227	0.383	0.479	0.35	0.31	
297	Lys	positive	с	2.434	0.387	0.395	0.58	0.54	

Table S2. Summary of structural and dynamic properties of residues in the protected sites

^{*a*} h \equiv helical; c \equiv coil

 b Lower conservation score indicates the functionally important amino acids on the protein surface which have slow evolution rates and was calculated through the web server http://consurf.tau.ac.il/based on the phylogenetic relations between its close sequence homologues. ^c Depth index calculated using SADIC program and Gd^{3+} probe size in the form of ProHance (3.5 Å). ^d The ratios between the measured and predicted PRE values across the protein sequence for free hUNG and its complex

with DNA.

	Amino		Structure	Concernation	Depth	index ^c	$\Gamma_2^{\text{Meas}}/$	$\Gamma_2^{\text{Pred }d}$
Res.	Amino	polarity	Easture a		fraa	DNA-	fraa	DNA-
	aciu		reature	score	free	bound	free	bound
129	Thr	polar	h	-0.385	0.002	0.004	3.97	7.70
130	Gln	polar	h	0.596	0.074	0.04	1.66	2.72
131	Met	nonpolar	h	2.374	0.096	0.084	2.05	2.11
132	Cys	polar	с	-0.765	0.112	0.105	1.78	1.95
144	Gln	polar	с	-0.952	0.028	0	8.09	15.23
145	Asp	negative	с	-0.952	0.053	0	6.34	15.68
169	Ser	polar	h	-0.955	0.173	0.011	1.32	4.42
170	Leu	nonpolar	h	-0.945	0.035	0.007	0.83	2.25
214	Ala	nonpolar	с	-0.715	0.556	0.042	0.27	3.05
215	Asn	polar	с	-0.578	0.173	0.006	1.74	6.18
216	Ser	polar	с	-0.937	0.158	0.01	0.66	3.97
246	Gly	nonpolar	с	-0.945	0.078	0.021	4.7	6.89
247	Ser	polar	h	0.04	0.285	0.061	N/A	N/A
248	Tyr	polar	h	-0.382	0.218	0.031	N/A	N/A
249	Ala	nonplar	h	-0.954	0.037	0.007	5.85	9.71
250	Gln	polar	h	-0.412	0.067	0.063	2.09	2.81
268	His	polar	с	-0.953	0.097	0.011	4.00	7.95
269	Pro	nonpolar	с	-0.947	0.001	0	N/A	N/A
270	Ser	polar	с	-0.955	0.06	0	5.36	12.76
271	Pro	nonpolar	с	-0.913	0.273	0	N/A	N/A
272	Leu	nonpolar	с	-0.682	0.426	0	1.45	8.16
273	Ser	polar	с	-0.921	0.159	0	1.09	4.30
274	Val	nonpolar	с	-0.712	0.09	0	2.44	7.94

Table S3. Summary of structural and dynamic properties of residues in the hyper-reactive sites

^{*a*} h \equiv helical; c \equiv coil; s \equiv strand

^b The lower conservation score indicates the functionally important amino acids on the protein surface which have slow evolution rates and was calculated through the web server <u>http://consurf.tau.ac.il/</u> based on the phylogenetic relations between its close sequence homologues.

^c Depth index calculated using SADIC program and Gd³⁺ probe size in the form of ProHance (3.5 Å).

^d The ratios between the measured and predicted PRE values across the protein sequence for free hUNG and its complex with DNA.

Supplementary References

1. Hernández G.; Teng C-L; Bryant R. G.; LeMaster D. M. (2002) O₂ Penetration and Proton Burial Depth in Proteins: Applicability to Fold Family Recognition *J. Am. Chem. Soc 124*, 4463–4472.

2. Iwahara, J.; Zweckstetter, M.; Clore, G. M. (2006) NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA, *Proc. Natl. Acad. Sci. USA*, *103*, 15062–15067.

3. Friedman, J. I.; Majumdar, A. and Stivers, J. T. (2009) Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage, *Nucleic Acids Res* 2009, *37*, 3493–3500.

4. Varrazzo1, D.; Bernini, A.; Spiga O.; Ciutti, A.; Chiellini, S.; Venditti, V.; Bracci, L.; Niccolai, N. (2005) Three-dimensional computation of atom depth in complex molecular structures, *Bioinformatics*, *12*, 2856–2860.