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Figure S1. Flowcharts of Pyicos protocols.  We propose three protocols for the analysis of high-throughput sequencing 

data:  a) Callpeaks protocol for genome-wide peak calling using punctuated ChIP-Seq data. b) Clipseq to detect significant 

clusters within a gene or transcript, for CLIP-Seq datasets. c) Enrichment analysis, to detect  regions with significant changes 

in read density between two conditions. Alternatively, Pyicos architecture allows easy creation of new protocols using the 

already existing operations.



Protocol files

Pyicos protocol  files  follow the INI  file  format  (http://en.wikipedia.org/wiki/INI_file).  In  order  to  be identified as a  Pyicos 

Protocol file, all Pyicos Protocols should start with a header line that reads [Pyicotrocol]. Semicolons (;) indicate the start of a 

comment.  Everything between the semicolon and the end of  the line is  ignored.  The operations to  execute should be 

specified in the operation line, separated by commas. For instance: operations=extend, subtract, normalize. We provide 

below example protocol files for Chip-Seq punctuated data (Callpeaks.ptcl), CLIP-Seq data (Clipseq.ptcl) and for enrichment 

analysis of RNA-Seq or ChIP-Seq data (Enrichment.ptcl)

Callpeaks.ptcl

[Pyicotrocol]

; This is a comment

experiment          = kidney1.bed
control             = liver1.bed
region              = blacklist.bed

experiment_format   = bed
control_format      = bed
region_format       = bed

open_experiment     = true
open_control        = true
open_region         = true

output              = significant_peaks.bedpk

operations          = remove_duplicates, remove, extend, normalize, subtract, trim, poisson, filter, split

duplicates=0            ; Number of duplicates that are tolerated
frag_size=150           ; Estimated fragment size
correction=0.8          ; Fraction of the genome that is mappable
trim_proportion=0.1     ; Fraction of the cluster height below which the peak is trimmed
split_proportion=0.1    ; Fraction of the lower maximum; if the read coverage between two maxima falls 
below it the peak will be split
height_limit=100        ; After this value the poisson calculation will not assign lower p-values to the peaks 
anymore
poisson_test=height     ; alternatively you can use numtags for broad peaks



Clipseq.ptclC

[Pyicotrocol]

; This is a comment

experiment=kidney1.bed
output=peaks_called.pk

experiment_format=bed
output_format=bed_spk
; stranded format is recommended for clipseq experiment analysis in order to merge overlapping reads with 
the same orientation in a cluster.
; ! Still clusters made up of either plus or minus reads are detected in a region independet of its strand !

region=regions.bed
; if the region is not provided, regions of interest will be infered from the data.
; Required BED format.

operations=  modfdr

Enrichment.ptcl

[Pyicotrocol]

; This is a comment

experiment=liver1.bed       ; experiment and experiment_b are the conditions / cell lines you want to 
compare
experiment_b=kidney2.bed
replica_a=liver2.bed        ; if replica_a is not provided, a theoretical background model will be calculated

output=result_counts.bed
; output_format not necessary here,
; the enrichment test always outputs a BED like counts file

experiment_format=bed

region=regions.bed
; if the region is not provided, regions of interest will be inferred from the data.
; Required BED format.

operations= enrichment, zscore, plot



Figure S2. Length distribution of the top 3000 NRSF peaks selected by each method. The peaks were ranked for each 

method as described in Methods. Pyicos peaks were ranked according to the peak read-count score. 

Figure S3. Distance of peak centre and summit from motif centre.  We compared the distributions of distances between 

the motif centre and the peak-centre (left boxplot), and between the motif centre and the peak summit (right boxplot). Peak 

summit is defined as the point with highest read pile-up. The motif centre was measured as the midpoint of the motif found in 

the peak. In this calculation the NRSF ChIP-Seq data and the Pyicos predictions were used.



Enrichment analysis

The enrichment analysis is used to detect regions that are enriched in signal between two conditions, or cell-

lines. We calculate a Z-Score as a measure of the significance of this enrichment, based on the assumption that 

cases of non-significant enrichment between two conditions 1 and 2 will appear with a similar distribution as the 

enrichment  between the  sample  1 and  its  replicate  1'.  If  no  such  replicate  1' is  provided,  we  create  two 

theoretical replicates, 1' and 2', with the same sizes as 1 and 2, by mixing the reads from 1 and 2 randomly and 

assigning them with to 1' and 2' with either equal probability or with probability proportional to their relative sizes 

(this  is  an  option  in  Pyicos).  Differences  between  these  theoretical  replicates  are  considered  to  be  non-

significant. Accordingly, the Z-Score is calculated for each of the M and A values of the comparison between the 

signals C1 and C2 , from conditions 1 and 2, respectively:

M=log2
C1

C2

  , and   

A=1
2

log2C1⋅C2
 

where the signals  C are expressed in terms of the read-count, the RPKM (Reads per kilobase per Million of 

mapped reads), the TMM normalized read-count (Robinson and Oshlack 2010), or the TRPK density as defined 

below. 

The Z-Score of a region r is calculated based on the distribution of M values for the replicas within a window 

of size Sw on the A axis. This window is assigned to a region according to the proximity of the A  values: given 

the A value of the region A(r), we assign r to the window that has a mean A value closest to A(r). This window 

describes  the null  distribution of  M values  (also referred to as background) against  which we compare the 

observed M value for r. If we define as μMB  the mean and as σ MB the standard deviation of the M values 

from the background window B, and M(r) is the M value for region r  under conditions 1 and 2, the Z-Score of r is 

calculated as follows:

 Z score r=
M r−μ MB

σ MB

The resolution can be adjusted by changing the window size and the window step through the parameters 

binsize and binstep, respectively. By default, the binsize is set to 0.3 and binstep is 3, which means 

that each window contains 30% of the regions, and the difference between one window and the next is just 3 

data points. The  binstep is the resolution at which the window slides through the background data,  i.e. at 

every background window we remove three points and add three points according their ordering along the  A 

axis.  We  compared  the  performance  of  Pyicos  on  the  benchmarking  microarray  dataset  using  different 

parameters of binsize and binstep and found that the highest AUC is achieved with a the values that we use 

as default. 



As mentioned above, the signal can be expressed in terms of the read-count, the RPKM (Reads per kilobase per 

Million of mapped reads), the TMM normalized read-count (Robinson and Oshlack, 2010), or the TRPK density. 

The RPKM density is defined as (Mortazavi et al., 2006):

RPKM=109 n S ,r
N S⋅Lr

Where n S , r  is the read count from sample S that fall in region r , N S is the total number of reads in 

sample S  and Lr is the length of the region r. Alternatively, one can define the area described by the reads 

in a given region and redefined the signal as a read-density per kilobase and per million of units of read density 

(RdPKM):

RdPKM=109 a S , r 
A S⋅Lr

Where a S , r   is the area defined by the reads from sample S that fall within region r , AS s the total 

area of the reads in sample S and Lr is the length of the region r. The areas are defined by the number of 

bases occupied by a read. The RdPKM measure is convenient when the reads have different lengths or when 

the reads do not fall entirely in the selected regions. 

The Trimmed Mean of M-values (TMM) normalization factor for counts was proposed in (Robinson and Oshlack 

2010). We implemented the calculation of the TMM normalization factor, trimming a fraction of the regions with 

the highest absolute M values, i.e. regions with great difference in the number of reads between samples, and 

discarding a fraction of the lowest A values, i.e. regions with very low average numbers of reads from both 

samples. The fraction of discarded regions are parameters that can be specified by the user. The values used for 

the enrichment analysis liver vs. kidney are mentioned below. The normalization factor TMM is calculated as 

follows:

log2(TMM )=
∑
r∈R

wr M ' (r )

∑
r∈R

wr

where R is the set of regions analysed after trimming for extreme M and A values; and where the weight factors 

wr are defined as:

w r=
N 1−n1, r

N1⋅n 1, r


N 2−n 2, r

N 2⋅n 2, r
; n 1, r , n2, r0

with n 1,r  and n 2,r  the read counts  that  fall  in  region r from sample 1 and 2,  respectively,  with

n(1, r) , n(2, r )> 0 ;  and  where N1  and  N2  are  the  total  number  of  reads  in  sample  1  and  2, 

respectively. Moreover, the modified M value M'(r) is:



M ' (r)= log2

n (1,r )
N 1

n (2,r )
N 2

We combined the TMM normalization with the normalization by region length:

TRPK=103 TMM⋅n S ,r 
Lr

Where TMM is the normalization factor,  n S , r   is the read count from sample S within region r and 

Lr  is the length of the region r .

Validation of the MA calculation
In order to test tour implementation of the differential expression analysis, we decided to try to replicate the same 

results as using edgeR with the TMM normalization. We used the same read-count table from  (Robinson and 

Oshlack, 2010) with data from (Marioni  et al. 2008) and applied  Pyicos EA and edgeR, both with the TMM 

normalization. Our implementation, gives a TMM factor of 0.66 using the trimming proportions of  M_trim = 0.25 

and A_trim = 0.05. Moreover, the calculated M and A values for each gene after applying the TMM normalization 

from either method were identical. 

Normality test on the MA plots
When calculating the enriched regions from the  M-A distributions, we calculate a z-score locally per subset of 

background data points within a sliding window of A. This relies in the assumption that the distribution of M 

values within this window are normally distributed. We verified this by using the D'Agostino's K-squared test of 

normality on the sliding windows. Starting from a distribution of M-A values for  16,915 regions, we used sub-

windows including 846 regions at every step, i.e. 5%. Moreover, at every step, we slid the window one region at 

a time according to the order of regions along the A  axis from left to right. We then observed that all distributions 

of M contained in a window were normal (p-value >0.01) (Supplementary Image S4). We also observed that the 

bigger the value of A, the lower the p-value of the normality test, which is due to the decreasing dispersion of the 

M distribution in the windows for large values of A. 



Figure S4. Normality test on the enrichment windows. a) The MA plot for 2 of the liver replica samples from (Marioni et 

al., 2008). b) Distribution of -log10(p-value) for the sliding windows of data points along the A axis using the D'Agostino's K-

squared test of normality. All p-values are above 0.01; hence the distribution in each window is normal. 



Figure S5. Results of Pyicos protocol callpeaks with different numbers of tolerated duplicates on a) PR b) NRSF c) 

CEBPA and d) CTCF ChIP-Seq data. To rank the peaks along the x axis, we use the peak height score for PR and CTCF and 

the peak read-count score for NRSF and CEBPA, as these are the scores the give best peak detection (see Supplementary 

Figure S10) and Methods. The y-axis shows the fraction of peaks with the corresponding motif, calculated as explained in 

Methods.



Figure S6. Results of Pyicos protocol callpeaks subtracting or not subtracting the control on a) PR and b) CTCF. On 

the x-axes we ranked the peaks according to the appropriate score for the dataset (height score or read count score as in 

Methods)  (see  also  Supplementary  Figure  S10).  The  y-axes  show the  fraction  of  peaks  with  the  corresponding  motif, 

calculated as explained in Methods. 



Figure S7. Maintenance of spatial resolution after subtraction  on a)  NRSF  b) PR c)  CTCF and d)  CEBPA ChIP-Seq 

data. Pyicos protocol callpeaks was run with and without subtracting the control. Spatial resolution is defined as the distance 

between motif centre and peak summit. On the x-axes we ranked the peaks according to the appropriate score for each 

dataset as explained in Methods (see also Supplementary Figure S10). The y-axes show the fraction of peaks with the 

corresponding motif, calculated as explained in Methods. 



a) b)

Figure S8. Results of Pyicos protocol callpeaks when CTCF peaks where split using different parameters. a) Fraction 

of peaks with motifs along peaks ranked by height score. b) Spatial resolution, defined as distance between motif centre and 

peak summit (as in Figure S3), for each split parameter along the same ranking of peaks. 



Figure S9. P-values from Pyicos Poisson analysis along the ranking of peaks for a) NRSF b) PR c) CEBPA and d) CTCF 

ChIP-Seq data. On the x-axes we ranked the peaks according to the appropriate score for the dataset (height score or read 

count score) as explained in Methods. The y-axes show the fraction of peaks with the corresponding motif, calculated as 

explained in Methods.



Figure S10. Ranking according to height score or read count score, as explained in Methods, for a) PR b) CTCF c) 

CEBPA and d) NRSF ChIP-Seq data.  On the x-axes we ranked the peaks according to each scoring system. The y-axes 

show the fraction of peaks with the corresponding motif, calculated as explained in Methods. 



Figure S11. Comparing the four peak-calling methods in terms of fraction of peaks with motif on a) NRSF ranked by 

read count score and b) CEBPA ranked by height score. On the x-axes we ranked the peaks according to the appropriate 

score for the dataset (height score or read count score) as described in Methods. The y-axes show the fraction of peaks with 

the corresponding motif, calculated as explained in Methods.



Figure S12. Comparing the four methods in terms of spatial resolution  on  a)  PR b) NRSF c) CTCF and  b) CEBPA 

ChIP-Seq data. On the x-axes we ranked the peaks according to the appropriate score for the dataset (height score or read 

count score) as described in Methods. The y-axes show the spatial resolution, defined as the distance between motif centre 

and peak summit (as in Figure S3).



Figure S13. Distance between peak summit and peak centre for each peak-calling method on NRSF ChIP-Seq data. 

Peak summit and centre as defined in Figure S3.

Figure S14. CPU time performance of peak calling on CEBPA.  Time of execution of different methods. Methods have 

been run on conditions as similar as possible (see in Methods), all producing wiggle files.



a) b)

c) d)



e) f)

Figure S15. Prediction of differentially expressed genes. ROC curves (as in Methods) for the accuracy assessment on 

the array benchmarking set (as in Methods) for a) not replicated count data b) replicated RPKM data, and c) not replicated 

RPKM data; and precision-recall curves (as in Methods) on the same benchmarking set for d) not replicated count data e) 

replicated RPKM data, and f) not replicated RPKM data.

Figure S16. CPU time performance of enrichment analysis on CEBPA. Methods have been run on conditions as similar 

as possible (see below in this Supplementary Material). 



a) b)

c) d)

Figure S17. Correction of M-medians by TMM normalization. MA plots (explained in Supplementary Material) for the liver 

versus kidney comparison using a) not normalized count data b) TMM normalized count data c) RPKM and d) TRPK, defined 

as Tmm-normalized Read Per Kilobase (see definition in this Supplementary Material). The median of the M-values is shown 

as a red line.



a) b)

c) d)



e)

Figure S18. Length-bias of differentially expressed (DE) genes. Distributions of average transcript lengths of differentially 

expressed (DE) and non-DE genes between liver and kidney, predicted based on a) count data b) TMM normalized count 

data c) RPKM and d) TRPK and e) microarray.



Table S1. Overlap of the top 3,000 NRSF peaks from the four different methods considering the 100nt region centred on 

summit.

Table S2. Spearman correlation coefficients for the comparison of the scores from the top 3,000 NRSF peaks calculated by 

the four methods. 

Table S3. Spearman correlation coefficients from the comparison of the Z-scores (as in Supplementary Material) calculated 
by Pyicos and DEGseq on the  RNA-Seq data from  (Marioni et al.,  2008), for different configurations of input: RPKM or 
counts; and with or without replica.

Pyicos MACS FindPeaks USeq
Pyicos 3000 2537 2423 2413
MACS 3000 2373 2340

FindPeaks 3000 2283
USeq 3000

CC
RPKMs with replica 0.75
Counts with replica 0.77
RPKMs no replica 0.7
Counts no replica 0.76

Pyicos MACS FindPeaks Useq
Pyicos 1 0.97 0.87 0.98
MACS 1 0.93 0.97

FindPeaks 1 0.96
USeq 1



Benchmarking of Pyicos results against other methods

Definition of peak summit

MACS, FindPeaks and Pyicos provide the summit position in their results. For USeq, we considered the summit 
as the centre of the sub-window in which the signal along the peak is the strongest.

Commands used for the peak calling benchmarking:

Method Command line

Pyicos pyicos protocol NRSF.ptl*

MACS python /soft/bin/macs -t 

GSM327023_chipFC1592_uniq_hg17.bed -c 

GSM327024_mockFC1592_uniq_hg17.bed --name NRSF.macs 

FindPeaks java -jar SeparateReads.jar bed GSM327023_chipFC1592_uniq_hg17.bed 
chip/

java -jar SeparateReads.jar bed GSM327024_mockFC1592_uniq_hg17.bed 
mock/

java -jar SortFiles.jar bed chip_sorted chip/*gz

java -jar SortFiles.jar bed mock_sorted mock/*gz

java -jar FindPeaks.jar -aligner bed -alpha 1 -eff_frac 0.7 

-duplicatefilter -minimum 1 -dist_type 1 80 100 60 -input 

chip/chr*.part.bed.gz -control mock/chr*.part.bed.gz -output 

findpeaks_results/ -name NRSF

USeq java -Xmx1500M -jar USeq_7.2/Apps/Tag2Point -f 

NRSF/GSM327023_chipFC1592_uniq_hg17.bed -v H_sapiens_May_2004 -b

java -Xmx1500M -jar USeq_7.2/Apps/Tag2Point -f 

NRSF/GSM327024_mockFC1592_uniq_hg17.bed -v H_sapiens_May_2004 -b

java -Xmx1500M -jar USeq_7.2/Apps/PeakShiftFinder -t 

NRSF/GSM327023_chipFC1592_uniq_hg17_Point/ -c 

NRSF/GSM327024_mockFC1592_uniq_hg17_Point/ -s USeq_NRSF/

java -Xmx1500M -jar USeq_7.2/Apps/ScanSeqs -t 

NRSF/GSM327023_chipFC1592_uniq_hg17_Point/ -c 

NRSF/GSM327024_mockFC1592_uniq_hg17_Point/ -s USeq_NRSF/ -w 200 -p 

78 -r /soft/bin/R

java -Xmx1500M -jar USeq_7.2/Apps/EnrichedRegionMaker -f 

USeq_NRSF/windowData200bp.swi -i 0,2,4 -s 10,10,1 -t 

NRSF/GSM327023_chipFC1592_uniq_hg17_Point/  -c 

NRSF/GSM327024_mockFC1592_uniq_hg17_Point/ -p /soft/bin/R



* protocol file:  NRSF.ptl :

[Pyicotrocol]

experiment=GSM327023_chipFC1592_uniq_hg17.bed

experiment_format=bed

open_experiment=true

control=GSM327024_mockFC1592_uniq_hg17.bed

control_format=bed

open_control=true

output=NRSF_pyicos.pk

operations=remove_duplicates, extend, normalize, subtract, poisson, filter

frag_size=100 

correction=0.8

duplicates=0

poisson_test=numtags



Comparison of memory usage and CPU time performance

Commands used to compare time and memory performance of peak calling

Pyicos:

pyicos  all  experiment_file.bed  result_file.wig  --frag-size  100  -f  bed  -F  bed_wig  -O 

--control  control_file.bed  --control-format bed --normalize  --extend --subtract --filter 

--poisson

Useq:

java -jar USeq_7.2/Apps/Tag2Point -f file.bed -v H_sapiens_Mar_2006 -b (for both experiment and 

control files)

java -jar USeq_7.2/Apps/PeakShiftFinder -t experiment_Point -c control_Point -s Useq_result/

java  -Xmx10G  -jar  USeq_7.2/Apps/ScanSeqs  -t  experiment_Point  -c  control_Point  -s 

USeq_result/ -w 200 -p 69 -r /soft/bin/R (values come from previous commands)

java -Xmx10G -jar USeq_7.2/Apps/EnrichedRegionMaker -f USeq_result/windowData200bp.swi -i 

0,2,4 -s 10,10,1 -t experiment_Point  -c control_Point -p /soft/bin/R

FindPeaks:

java -jar SeparateReads.jar bed file.bed result/ (per experiment and control)

java -jar SortFiles.jar bed result/ file.part.bed.gz  (Now files are separated by chromosome, so per 

chromosome and experiment/control)

java -jar FindPeaks.jar -aligner bed -eff_frac 0.7 -duplicatefilter -minimum 1 -dist_type 1 

80  100  60  -input   experiment_chrN.part.bed.gz  -control  control_chrN.part.bed.gz  -output 

findpeaks_results/ -name result

MACS:

macs  -t  experiment  -c  control  --pvalue=0.01  --wig  --space  1  --name   result  --nomodel 

--verbose 1 --tsize 36



Commands used to compare time and memory performance of the enrichment analysis

Pyicos:

pyicos enrichment file_a.bed file_b.bed result. -f bed -O --replica-a replica_a.bed --region 

refgenes_stranded_sorted_promoters.bed

Note: Count and RPKM files were calculated by Pyicos.

DEGSeq:

library(DEGseq)
geneExpFile <- commandArgs(TRUE)[1]

geneExpMatrix1 <- readGeneExp(file = geneExpFile, geneCol = 1, valCol = c(2, 4))
geneExpMatrix2 <- readGeneExp(file = geneExpFile, geneCol = 1, valCol = c(3, 5))

layout(matrix(c(1, 2, 3, 4, 5, 6), 3, 2, byrow = TRUE))
par(mar = c(2, 2, 2, 2))

outputDir =file.path(".","DEGseq_liver_kidney_all")

DEGexp(
geneExpMatrix1 = geneExpMatrix1, expCol1 = 2, groupLabel1 = "Liver",
geneExpMatrix2 = geneExpMatrix2, expCol2 = 2, groupLabel2 = "Kidney",
replicateExpMatrix1 = geneExpMatrix1, expColR1 = 3,
replicateExpMatrix2 = geneExpMatrix2, expColR2 =  3,
replicateLabel1 = "L1", replicateLabel2 = "L2",
method = "MATR", outputDir=outputDir) 

DESeq:

library( DESeq )
print(commandArgs(TRUE)[1])
countsTable1 <- read.delim(commandArgs(TRUE)[1], header=FALSE, stringsAsFactors=TRUE)
countsTable <- countsTable1[ , -1 ]
conds <- c("L","K","L","L")
cds <- newCountDataSet( countsTable, conds )
cds=estimateSizeFactors(cds)
cds <- estimateVarianceFunctions( cds )
resTbvsN <- nbinomTest( cds, "L", "K" )
plot(
 resTbvsN$baseMean,
 resTbvsN$log2FoldChange,
 log="x", pch=20, cex=1,
 col = ifelse( resTbvsN$padj < .1, "red", "black" ) )
resTbvsN$gene <- countsTable1[,1]
x= resTbvsN$pval
write.table(x,file="DEseq_simplecounts")
x= resTbvsN$padj
write.table(x,file="DEseq_simplecounts_padj")



EdgeR:

library(edgeR)
###  replica
raw.data <- read.delim(commandArgs(TRUE)[1], header=FALSE)
D = as.matrix(raw.data[, 2:5])
f <- calcNormFactors(D)
f <- f/exp(mean(log(f)))
lib.sizes  <-  c(commandArgs(TRUE)[2],commandArgs(TRUE)[2],commandArgs(TRUE)
[2],commandArgs(TRUE)[2])
 g <- c("L","K","L","K")
 d <- DGEList(counts = D, group = g, lib.size = colSums(D) * f)
#rownames(D)=raw.data[, 1]
d$gene=raw.data[, 1]
par(mfrow=c(1,2))
maPlot(D[, 1], D[, 2], normalize = TRUE, pch = 19, cex = 0.2,ylim = c(-8, 8))
abline(h = log2(f[2]), col = "red", lwd = 4)
maPlot(d$counts[, 1]/d$samples$lib.size[1], d$counts[, 2]/d$samples$lib.size[2],normalize = 
FALSE, pch = 19, cex = 0.2, ylim = c(-8, 8))
d <- estimateCommonDisp(d)
de.com <- exactTest(d)
#x=topTags(de.com)
write.table(de.com$table,file="EdgeR_simplecounts")



The bedpk format

Pyicos has its own compressed format for peaks, the bedpk. This is also used as an internal representation for 
peaks, which can be used as input and output formats.  It follows the same starting fields “chromosome/tag start 
end” but it uses some of the original optional fields to include extra information. It is a cluster oriented format that 
aims to recollect information of a cluster of reads in a single comprehensive line:

Column description:

1. Chromosome 

2. Start coordinate 

3. End coordinate 

4. Profile: This field summarizes the read-count per nucleotide of the cluster. It is written as an 
array of 2-tuples, where the first number of the tuple is the number of bases covered and the 
second number of the tuple is the number of reads that cover those bases (see example below) 

5. Height: The maximum height of the cluster (3 in the example below). 

6. Strand: “+” if ALL reads in the cluster are positive strand, and “-” if they are all negative; 
“.” otherwise. 

7. Summit: The coordinate position where the maximum height is found. If there is more than one 
position, the midpoint is taken.

8. Area: The area covered by the cluster. 

9. p-value: The significance of the cluster calculated by the Poisson operation based on peak 
heights or numbers of reads. 

Furthermore, Pyicos can handle other various formats, providing converter capabilities. It can read eland, SAM, 
BED, and wiggle (fixed and variable step); and write to SAM, BED, wiggle (fixed and variable step). Some 
formats are obligatory for some of the operations, which is specified in the corresponding command help. Pyicos 
default format is a derivative of UCSC BED format.

Figure S19. Illustration of the bedpk format. See description in the text. This notation can be applied to any read-count 
data on any coordinate system. 



ModFDR method for the CLIP-Seq analysis

CLIP-Seq reads can be mapped to the genome when the RNA binding protein (RBP) acts at the pre-mRNA 

level,  or  to the mature transcripts when the RBP acts on the mRNA. The reads are clustered according to 

position overlap. A particular type of enrichment analysis applicable to CLIP-Seq reads is the modified FDR, 

introduced in (Yeo et al., 2009). This operation is implemented in Pyicos and, as for the enrichment analysis; it 

can be applied using as coordinate system any regions in the genome, genic regions (i.e. exons and introns) or 

mature transcripts, where the reads are mapped to the genome or to the mRNA sequences, respectively. 

When there is a control available, one can perform in general an FDR analysis over pre-defined regions. These 

regions can be entire chromosomes, windows along chromosomes, genic regions or mRNA lengths. We classify 

all positions of the region according to the read-count per position. Accordingly, we define  n(i) as the number of 

positions with a coverage of i reads, such that the total number of reads in the region N is the sum of all n(i). We 

can then define the probability of obtaining a particular coverage h as:

P (h)=
1
N ∑

h> i

n(i )

Calculating every P(h) for both, experiment e and control c, we can determine the false discovery rate (FDR) for 

positions of density h:

 ﾠ

FDR(h) =
Pc (h)
Pe (h)

A variation of the FDR method was introduced in the analysis of the CLIP-Seq data for FOX2 (Yeo et al., 2009). 

This method is used when there is no control sample to compare to. We randomize then the positions of the 

reads in a given pre-defined region, keeping fixed the length and the number of reads and avoiding internal 

repeat  elements  (optional  in  Pyicos);  generating  for  the  region  a  new  randomized  coverage  coverage 

distribution, nR  (i),  representing the number of positions with read-coverage i after randomization. We can then 

calculate for a read coverage h the randomized probability 

 ﾠ

PR(h)  as

P R(h )=
1
N ∑

h> i

nR(i )

If we repeat this process k times (by default we use k=100), we can obtain calculate PR(h,a) for each iteration 

a=1,...,k. Given the mean and standard deviation for all these iterations:

mR(h)=
1
k ∑a=1

k

P R(h , a)

s R(h)=√ 1
k ∑a=1

k

(P R(h , a)−mr(h)
2
)



we can define the modified FDR for a given density of reads h as:

 ﾠ

mFDR(h) =
mR (h) +s R (h)

P(h)

where P(h) is the probability for the experiment as defined above. We then calculate the lowest density h such 

that mFDR(h) < t, where t is the desired FDR limit, which is taken by default to be 0.01. 

The subtraction algorithm
We define nucleotide intervals covered by overlapping reads in computer memory by storing its label  in the 

genome or transcriptome (Ex: chromosome 1, GeneA...)  and the region start  coordinates. We then store in 

memory  n  2-tuples  that  represent  sub-intervals  of  the  interval  with  different  amounts  of  overlapping  reads 

covering them:

t 1=l1 , r1, t 2=l2 , r2... t n=ln , r n

Where the 2-tuple t i is  a sub-interval,  li is  the number of  positions  covered in  t i  and  ri is  the 

number of reads that overlap in this sub-interval. An example of this will be: chr1 550 {(50, 1), (15, 2) (20, 3)}, 

meaning: Chromosome 1 starting in position 550, has 1 read from position 550 to 600, 2 reads from position 601 

to position 615 and 3 reads ovelapping between positions 616 and position 636. 

We propose a novel algorithm to subtract 2 intervals A and B (A-B=C) in OB∗logA B time,  where A is 

the number of sub-intervals ta in A; and B is the number of sub-intervals  tb in B. The algorithm can be 

divided in 2 steps: the  subtract-intervals step (see below), where the actual subtraction happens and which 

accounts for the execution time B∗log(A ) ; and the clean-intervals step (see below), which joins together 

overlapping intervals with the same r and deletes redundant information, which accounts for the B in the 

execution time. The algorithm achieves single nucleotide precision, while offering fast and scalable performance. 

First the sub-intervals in A are copied to the “result” collection of sub-intervals, called C. The algorithm iterates 

through the sub-intervals in B until the start of the sub-interval is smaller than the rightmost sub-interval in A. 

When this is detected the subtraction ends. There are three cursors that store the position of the subtraction: 

One cursor that iterates through B (cursor-B), a cursor that iterates through C (cursor-C) and a “slow” cursor that 

saves the position of the sub-interval B (slow-cursor) that have been passed by the A intervals, allowing for less 

iteration and faster execution.

The objective of this algorithm is to pair sub-intervals iteratively as efficiently as possible and then subtract tb  

to ta when they overlap. There are 4 different conformations of the interval, which result in different number of 



of intervals after subtraction  (Supplementary Figure S20). 

Subtract-intervals

1 c-sub-intervals  copy of all a-sub-intervals ←
2 while number of sub-interval in B is bigger than B-cursor 
3 while sub-B is behind the slow-cursor 
4 advance slow-cursor 
5 if the end of interval B is reached, go to clean-intervals 
6 C-cursor  ← slow-cursor 
7    while number of sub-C is bigger than C-cursor and sub-B started before sub-C finished 
8       case sub-B and sub-C 
9            conformation-1 (B covers all C sub-interval) 
10                sub-C.height  (← sub-A.height - sub-B.height)            
11            conformation-2 (B starts before C and finishes before C) 
12                sub-C.height  ← (sub-A.height - sub-B.height) 
13                sub-C.end  ← sub-A.start 
14                add new sub-interval (new-sub) to C in position C-cursor + 1 
15                new-sub.height  ← sub-A.height 
16                new-sub.start  ← sub-B.end 
17                new-sub.end  ← sub-A.end 
18            conformation-3 (B starts after C and finishes after C) 
19                sub-C.height  (← sub-A.height - sub-B.height) 
20                sub-C.start  sub-B.start ←
21                sub-C.end  sub-B.end ←
22               add new sub-interval to C (new-sub) in position C-cursor 
23                new-sub.height  sub-A.height ←
24                new-sub.start  sub-A.start ←
25                new-sub.end  sub-B.start ←
26                advance C-cursor #Cursor advances so next sub-C is not the new one
27            conformation-4 (B starts after C and finishes before C) 
28                sub-C.height  (sub-A.height - sub-B.height) ←
29                sub-C.start  sub-B.start ←
30                sub-C.end  sub-B.end ←
31                add new sub-interval to C (new-sub1) in position C-cursor + 1 
32               new-sub1.height  sub-A.height ←
33                new-sub.start  sub-B.start ←
34                new-sub.end  sub-B.end ←
35                add new sub-interval to C (new-sub2) in position C-cursor 
36                new-sub2.height  sub-A.height ←
37                new-sub2.start  sub-A.start ←
38                new-sub2.end  sub-B.start ←
39 advance C-cursor 
40 advance B-cursor 
41 clean-intervals

clean-intervals
1  while the first sub-interval height <= 0
2            pop first sub-interval 
3  while last sub-interval height >= 0
4            delete last sub-interval
5  for all sub-intervals in C
6            if the height sub-C is equal to the previous height
7                  sub-C.start = previous-start
8                  delete previous-sub
9            else:
10                previous_length ← sub-C.start
11                previous_height ← sub-C.height



Figure S20. All 4 possible conformations when subtracting interval B from A, resulting in one (C), two ( C1 and C2 ) or three ( 

C1, C2 and C3 ) intervals of read clusters upon subtraction. For example, in conformation 1, the interval A has 50 reads 

within it, while the interval B has 47. Since the interval B fully covers the extension of the interval A, the result will be a single  

interval C of value 3. In the case of conformation 2, since the interval B (12 reads) does not fully cover A (20 reads), the 

subtraction results in 2 intervals, C1 (8 reads), with coordinates corresponding to the area of the intersection of A and B, and 

an interval C2, with the remaining part of area A and same number of overlapping reads. The conformation 3 is the mirror 

image of conformation 2. Conformation 4 can be understood as a combination of conformations 2 and 3. 

The split algorithm
Splitting clusters is a useful operation when trying to automatically identify sub-regions in a read covered dense 

area. The split algorithm is performed in 2 steps. First, all  possible local maxima are detected by scanning the 

cluster once. Then, between each pair of local maxima detected, local minima candidates are detected. These 

local minima represent a potential point of split. For each of the potential split points we calculate the decrease in 

height with respect to the lowest of the two flanking local maxima. If this reduction in height is equal or greater 

than the value set by the –split-proportion flag, the cluster is split in that position into two clusters. For example, 

if the split-proportion cut-off is 0.9, then if a local minima is 0.9 times smaller than the smallest of the flanking 

local maxima, the peak is split. By default read-clusters are not split in the callpeaks protocol, but it can be added 

to it or used as an independent operation.
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