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Methods for coupling predictions and folding proteins

Summary
The essential components of our method for the prediction of a 3D protein structure using evolutionary
sequence information without the use of structural templates are:

(1) Protein sequence alignment for the protein family containing the target protein.

(2) Formulation of a global statistical model for sequences in a protein family.

(3) Derivation of parameters that maximize entropy in this model, using direct coupling analysis (DCA).

(4) Derivation of a ranked set of evolutionarily inferred contacts (EICs).

(5) Secondary structure prediction using well-established methods.

(6) Implementation of weighted distance restraints from inferred contacts.

(7) Application of distance geometry and constrained molecular dynamics.

(8) Automated ranking of predicted structures to nominate a single predicted structure and a set of
lower-ranked alternatives.

(9) Evaluation, effectively blinded, of prediction accuracy.

The goal of our statistical analysis of co-variation in protein sequences is the inference of residue-residue
proximity within an iso-structural protein family. While it is plausible that residues in close proximity
tend to co-vary, the inverse is not necessarily true, i.e., residue correlations can and do occur between
amino acids that are not physically close. For example, co-variation may result from spatially distant
coupling via external interaction partners, such as oligomerization (homo- or hetero-), binding of
biomolecular substrates such as RNA/DNA, or via transitivity (see main text). In addition, residues close
in space do not necessarily co-vary. If inference were perfect, residue pairs with the highest correlation
scores would be physically close in the folded structure. In reality, however, the inference of spatial
proximity from residue pair correlations is susceptible to both false negative and false positives. The goal
of the statistical method and inference rules developed is to optimize prediction accuracy of the resulting
3D structures.

Starting from the observed residue counts for each sequence position in a multiple sequence alignment,
containing hundreds or thousands of members of a protein family, we quantify amino acid co-variation
between each pair of sequence positions generating an initial set of correlation scores. We then use a
maximum entropy approach, direct coupling analysis (DCA), to derive a set of essential pair couplings.
DCA aims to maximize the number of directly coupled pairs and to minimize the number of indirect
couplings, i.e., residues connected via directly coupled pairs, we term this transitivity. The principal result
is a minimal set of residue pairs whose coupling strengths (interactions) are sufficient to explain the
complete set of observed amino acid co-variation values. From the set of DCA coupling scores (Eqn. 22)
we derive and rank a set of evolutionary inferred contacts (EICs) - residue pairs predicted to be in
physical proximity in the folded structure. This set of EICs is converted to distance restraints, which are
used as input to distance geometry and simulated annealing calculations. These calculations start with the
fully extended polypeptide chain of a single target protein of interest, chosen from the family, and results
in a set of folded structures. Typically 2*L structures (120 for a 60-residue protein, 440 for a 220-residue
protein) are generated, from which a single, top-ranked predicted structure can be selected.

Evidence suggests that accuracy of contacts is not sufficient to evaluate the ability of the contacts to
predict a protein fold. Hence the real assay to test the ‘accuracy for folding’ is to predict the 3D structure
from the contacts alone.



Principle: From co-evolution to distance constraints

How and why do patterns of amino acid co-evolution contain information about residue-residue contacts
in 3D? Imagine a simple evolutionary scenario in which one or more residues of a protein sequence
randomly mutate, affecting the fitness of the protein. Functional or structural constraints on this protein
could require other residues to change in response to the first change to ‘rescue’ the functional phenotype
of the protein in the context of the evolving organism. For example, in response to increasing the size of
residue i in the protein interior, say from ALA to ILE, a neighboring residue j might need to reduce in size,
say LEU to ALA, keeping the overall volume occupancy of the pair ij approximately constant. Similarly a
+/- charge pair could evolve to -/+ charge pair, maintaining a favorable interaction. Inspection of known
3D structures and homologous sets of protein sequences reveals many cases of physically interacting
residues that co-evolve, perhaps the first published observation is by Bloomer et al. [1].

However, there are several other plausible causes of residue correlations. A particularly important one is
transitivity, where primary correlations in two proximal residue pairs, say (ij) and (j,k), lead to significant
correlation between residues i and k, despite their lack of proximity [Box1 in main text, also termed
‘indirect correlation’]. In addition, residue pair correlations can be caused by physical contact between
two monomers in a protein complex; or, other, more complicated constraining interactions, such as
substrate binding. As a consequence, the inverse inference, from pair correlation to physical contact
within one protein chain, will often be incorrect, generating false positives, as discussed in Main text.
After computation of all pair correlations from a multiple sequence alignment we are therefore faced with
the difficult statistical problem of ascertaining which pairs consist of residues in close physical proximity.

A simple estimate illustrates the numerical complexity of the problem. A protein family with, say, 100
aligned residues, has just under 5,000 different pairs (ij). A globular protein of this size has
approximately 600 physical residue-residue contacts, where a contact is defined as the two residue
centers (C, atoms) being within 8 A of each other. So in this example, if the inference were perfect, we
would expect the top ~ 10% of residue correlations to imply residue-residue contacts. Reconstruction
from known contacts has shown that one needs in the order of 25-40% of real contacts, selected
randomly, to reconstruct the protein fold [2,3,4], so a protein of ~100 residues may need as many as 50-
150 correct constraints.

We therefore face the challenge of ranking residue-residue pair correlations computed from multiple
sequence assignments such that the top N constraints accurately predict proximity in 3D space. To meet
this challenge, we look for a minimal set of pair interactions that, through transitivity, will produce all the
observed pair correlations. The maximum entropy expansion addresses this requirement by requiring a
minimally constrained probability model that is consistent with the observed pair counts fj;(4,B). This
principle has been used previously for other biological problems, such as genetic regulation and
correlations between neuronal spikes [5,6,7] and here is applied to co-variation in residue positions,
earlier termed correlated mutations [1,8,9,10,11]. The mean field approximation implements a particular
functional form for the maximum entropy pair terms, using the notion of effective pair interactions for
any pair (ij) in an average single residue field at i and j, which reflect the influence of all other
interactions [12].This leads to an efficient computational procedure for inferring a set of basic residue-
residue interaction parameters.

Direct coupling analysis (DCA) to infer 3D contacts (EICs)

Protein family alignments

We chose a diverse set of protein families from the PFAM collection [13] for the purposes of testing and
analyzing the predictive power of the DCA-EIC method using these criteria: (i) size of the protein family
M, currently set at M=1000 sequences per protein family; (ii) range of protein sizes L; (iii) inclusion of the
main protein fold families, such as all-a, a/f, a+f and all-B; (iv) availability of experimentally derived
(PDB) structures for at least one family member to allow blinded accuracy tests, Table S1. The PFAM
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collection of multiple sequence alignments for more than 10,000 protein domain families has the
advantage of being pre-computed, archived, regularly updated, easily accessible and widely used. Each
PFAM alignment contains a large number of sequences and may reach low levels of sequence similarity
(below 20% sequence identity in some families). Each PFAM family is assumed to be iso-structural, so
that all protein structures in a family form a tight and distinct cluster in protein structure space [14],
though this is a simplifying assumption which can be revisited in future work. We find that the 2011
PFAM collection provides a huge increase in evolutionary information since the time of earlier attempts
to predict residue contacts from multiple sequence alignments [15] [9]., and is increasing exponentially.

Multiple sequence alignments

The multiple sequence alignment is organized as a M X L matrix {Ai'"} of amino acid residues in

proteins m=1,M (rows) at sequence positions i=1,L (columns). Each matrix element
Ae{A,C,D,E,F.G,H,I,K,LL,M,N,P,Q,R,S,T,V,W,Y,—} can take q=21 values, for the 20 amino

acids and a sequence gap. The starting points of the algorithm are the single and pair residue frequencies

£(4) == 5(4r.4) Eq (1)
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at sequence positions 1<, j < L, and where A is a variable for the amino acid residue type at position i,

and B a variable for the amino acid residue type at position j. Counting is formalized using a delta function
5(a,b), equals 1 when @ = b and zero otherwise. If columns i and j were statistically independent, the

joint empirical frequency distribution f;(4,B) would be approximately equal to the product of the
individual frequency distributions fi(4) - fi(B). In general, departure from equality measures the statistical

correlations between sequence positions.

Weighting protein sequences

We wish to optimize the detection of correlations in multiple sequence alignments, which arise due to
evolutionary constraints. However, spurious correlations may also arise for reasons independent of
maintaining protein structure and function such as: (i) phylogenetic correlations from residue pairs that
appear correlated after species divergence because of a low mutation rate; (ii) uneven sampling in the
space of natural sequences, due to experimental ascertainment bias in sequencing projects as a result of
sequencing many closely related species; and, (iii) ‘transitive’ correlations that arise via direct
correlations.

To reduce the influence of spurious correlations that arise due to sampling bias in the sequence
alignment, we assign a lower weight to highly similar sequences and a higher weight to sequences
dissimilar to other family members. Several weighting schemes are available in the literature, e.g. [16].
Here we take a straightforward approach, if L is the sequence length, we set a similarity threshold x,
where 0 < x <1, and group together sequences with more than xL identical residues. More precisely, for
each sequence m in the alignment we compute the number of sequences kn whose similarity to sequence
m, quantified as the total number of aligned identical residues relative to m, is larger than xL; formally,



M
k, 529 25(A1.’”,Af)—xL Eq (3)

where 0 is the unit step function. We then redefine frequency counts in equations (1) and (2) by down-
weighting each sequence m by the inverse neighborhood density 1/k» in sequence space, as:

£(A) __ L &+§:L5(A.’” A)
’ A+M\q 4ok, v Eq (4)
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where Meﬁ, = Zanzl i is the effective number of sequences in the MSA after reweighting at the
m

relevant position(s). The lambda term (pseudo-count) is used to regularize the data for finite data sets as

described in [9]. Numerical tests on a variety of different MSAs led to the choice of x ~ 0.7, and A ~ 0.5.

Setting x ~ 0.7 translates to treating all sequences with more than 30% identical residues to a sequence m

as having unit weight as a group.

Mutual information
A popular measure of correlation among pairs of randomly distributed variables is the mutual
information (MI) which is defined in terms of the empirical frequency distributions in equations 4 & 5 as:

J;(A.B)

MI,; = gf,-j(A,B)ln f,(Tfj(B) Eq (6)

The mutual information, or information gain, Mj; between residue positions i and j is a relative entropy is
equal to the divergence (Kullback-Leibler) Dk.(f; || fifi), between the co-occurrence probability
distribution f; and the factorized model distribution fif; .

Maximum entropy sequence model

Several methods have been used to perform unsupervised inference of residue-residue contacts from
multiple sequence alignments (MSAs), ranging from purely local statistical analysis of correlations
[9,17,18,19,20,21] to more global approaches that use Bayesian and maximum entropy techniques
[22,23,24]. Here, 'local' means that positions i and j are considered independently, while 'gobal’ means
that the score for the pair i and j depends on the rest of the alignment. Recent work suggests that the
latter methods are better at inferring residue-residue contacts from MSAs than local statistical methods
[24]. Our maximum entropy model aims to identify a minimal set of coupled pairs, as the result of a global
inference calculation, from which we infer residue proximity. In this respect it is conceptually different
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from approaches that calculate the correlation of each pair of residues independently, without global
considerations (e.g. methods based on the MI defined in equation 6). The local methods, reviewed in [20],
are intrinsically unable to distinguish between 'causal’ (direct) correlations and transitive correlations.

The statistical model for each protein family describes the probability of occurrence of the amino acid
sequence of any particular family member as a joint probability distribution P(4j,...,Ar). In general the
estimate of such function is an intractable task, as the number of parameters specifying this joint
probability distribution is g. The problem simplifies considerably if one limits the objective to estimating
a probability distribution which describes the single and pair residue frequencies observed in the MSA.
We thus define

Pi(Ai) = ZP(AI,...,AL) = fi(Ai) Eq (7)

{A,=1,....q k=i

P(A.A)= Y P(A.A)=f,(A.A) Eq (8)

{A=1..q}|ki,j

where the sum is over all possible sequences, i.e, over all possible amino acid values Ak at each position k,
except for those constrained by the left hand side of the equation. In principle one could also consider
triplet terms, i.e., correlations between 3 residues or, in general, k-residues correlations with k=2.
However, even for k=3, the number of parameters to be inferred would grow enormously, scaling like

L
~ (3}]3, where L is the sequence length.

There is a large number of probability distributions, which are consistent with these data. We choose the
maximally flat distribution (consistent with the empirical data constraints), that is the model with
maximum entropy S, where:

S=— Y P(A,..A)InP(A,...,A,) Eq (9)

{A;li=1,...,L}

The solution to this maximization problem is standard and explained in textbooks [25]. Lagrange
multipliers hi(A;) and e;(A; A;) are introduced allowing enforcement of the crucial compatibility condition
with the empirical one- and two-residues frequency distributions, i.e., with the empirical data. The joint
probability distribution can be written as:

1
P(Al""’AL):EeXp Zeij(A,-,Aj)+ Zhi(Ai) Eq (10)

1<i< j<L 1<i<L

Z= Yexpi De(A.AD+ D (Al poay

{Ali=1,...L} |1<i<j<L 1<i<L



where the choice of the parameters ej h; is such that the constraints in equations 7 & 8 are satisfied and Z
is the normalization constant which depends only on the model parameters. The main challenge in
satisfying the constraints in equations 7 & 8 is to efficiently compute from equation 10 the one- and two-
residue marginals (Pi(A) and P;(A,B)), and the partition function Z. Formally, the marginals of this
distribution are given by:

dinZ
m——ﬂ(f\i)

Eq (12)

VA
dh;(A;)oh;(A;)

~F (A A)+ F(A)P(4))

Eq (13)

However, the direct computation of equations 12 & 13 is computationally prohibitive. Different strategies
have been implemented to address this problem: in [23] the Bethe approximation strategy, originally
proposed in [26,27] was chosen. In addition researchers have tried Monte Carlo sampling [6], and
perturbative schemes [28,29].

As discussed in [9] the model has a scaling ambiguity, a so called ‘gauge invariance’ that, without loss of
generality, can be addressed by the following relations:

€ (Aq)= € (gA)=h(q)=0 Eq (14)

for the sequence positions 1 <i <j < L, and amino acid types A={1...q}.

Mean field approximation

Our approach considers a Taylor expansion of the free energy, proposed by Plefka [30], and subsequently
by Georges and Yedidia [31] in the context of the Ising spin-glass model (which in this context
corresponds to the q = 2 case). The Plefka expansion to first order provides what is known in physics as
the mean-field approximation, where the couplings are assumed to be zero. While there exist different
techniques for deriving the same approximation, the Plefka approach is particularly elegant and simple.
We introduce a small parameter a into equation 11:

Z()= Yexpia e (A,A)+ D h(A) Eq (15)

{A,li=l,...L} 1<i< j<L 1<i<L

Now consider the Legendre transform of -In Z:

G(OC) = an(OC) - Z Z h,(A,)P,(Al) Eq (16)

{i=l,..L} A, =1...(q-1)

We are now interested in approximating G(«) to first order in « using a Taylor series expansion:
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In this approximation, considering the gauge invariance in equation 14, one obtains the key result, for i=f
and ISAI;Aqu-l:

(C_l)ij(Ai’Aj)‘oc:O = _eij(Ai’Aj) Eq (18a)

and on the diagonal, for i=j and, again, for 1s4;4;sq-1:

A A, 1

+
P(A)  Flq) ratien)

(C_l)ij (Ai’ Aj )‘a -0

Where we defined C;(A,,A;) = f,;(A,A;)— f,(A)f;(A)).Itis of technical interest that without the

1

restriction to -1 amino acids the correlation matrix C would not be invertible.

In practice the computation of the inferred couplings involves the following steps:

(i) compute the observed residue counts in single columns and pairs of colums, f; and f;;, from the multiple
sequence alignment (equations 4 & 5);

(ii) build the empirical correlation matrix C;;(A;,A;)= f,(A,A))— f,(A)f;(A))

1

(iii) invert this matrix to obtain the couplings el.j.

Inferred residue pair couplings
The estimation of the e; couplings allows us to rank the coupling strength of the residue pairs through the
‘direct information’ (DI) [9]. For any pair of residues i, j we introduce an effective two residue model:

P; ir(Ai’Aj) = %exp{elj(Ai,Aj) + ﬁi(Ai) + ﬁj(Aj)} Eq (19)

The new fields hi,hj can be computed imposing the single residue marginal frequency count

compatibility condition:

q .
AZ,IP;)W(AI"A]') = fi(Ai) Eq (20)



4 .
EIPUDW(APAJ') = fj(Aj) Eq (21)

and the term Zl./, by normalization. Finally, we define the direct information between residues i and j, DIj;

as the relative entropy between the distributions P;?" and the independent site distribution fif;:

a P>(ALA.
DI, = Ai;fjplr(Ai,Aj)ln fl(JA,()f](A]J)) Eq (22)

The DI, ranked by their numerical values, describe the evolutionary couplings inferred for the alignment
of interest [12] and are the basis for inferring evolutionarily maintained contacts EIC.

From Direct Information (DIs) to Inferred Contacts (EICs)

The algorithm described above reduces the set of empirically correlated residue pairs, to the minimal set
of pairs most likely to co-vary due to evolutionary constraints. The full set of resulting pair correlation
scores for the set of proteins in Table S1 is available at http://cbio.mskcc.org/foldingproteins (Appendix
A1). This section details the information derived from the protein sequence, which is used to remove high
scoring pairs that are unlikely to be close in the folded structure. The resulting set of EIC pairs contain
information about which residues are most likely to be in close proximity of each other (Appendix Al).
This information is subsequently used to reduce the space of possible 3D conformations that this protein
can assume.

Use of Primary Sequence Position

Sequence neighbors are likely to co-vary due to the nature of the polypeptide chain. Empirically we
observe that residue pairs separated by four or five positions in sequence often have high DI scores
without being in close physical proximity in the folded protein. We therefore set the DI scores of all pairs
separated by five or fewer positions in sequence to zero. The DCA algorithm makes no use of connectivity
in the polypeptide chain, but could be adapted to do so in future algorithmic developments.

Conservation filter

Conserved residues, on average, are more likely to be located in the interior of a globular protein and to
have more spatial neighbors than residues on the surface [32,33]. So one might hope to be able to use
conserved residues for contact prediction [20]. However, completely conserved residues produce no
correlation signal whatsoever, as they do not vary. Nearly conserved residues may produce a correlation
signal but this is subject to statistical uncertainty, because of the small number of varying positions [20].
To deal with this uncertainty, we do not use correlations involving residue positions i orj that are highly
conserved, i.e., where more than 95% of sequences have the dominant residue at position i or j. We make
an exception for cysteine residues which are more than 95% conserved by allowing a single distance
constraint to one other cysteine residue. (Excluded constraints are marked in the DIscores file with ‘888’
in column 8, Web Appendix A1)

Cysteine pairs and disulfide bonds

As each Cys side chain is only able to form a disulfide bond with one other Cys side chain, we allowed
each cysteine residue to be paired with at most one other cysteine residue. Thus for each cysteine residue
we allowed its highest ranking cystein-cystein pairing, and ignored other pairs involving this residue in
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the ranked DI pair list. For example, in trypsin inhibitor, for Cys 55, we allow the highest ranking cysteine
pair interaction for Cys 55, which pairs Cys 55 with Cys 5, but do not use any of the lower ranked cystein
pairs, such as Cys 55 with Cys 30. Such pairs are marked with 222 in column 9 of the relevant the
DIScores.txt file (Web Appendix Al).

Secondary Structure prediction

We use two algorithms, PredictProtein and PsiPred, to calculate the secondary structure assignments for
each amino acid from the primary sequence [34,35]. The residue assignments from these predictions are
in Web Appendix A9 at http://cbio.mskcc.org/foldingproteins. Predicted secondary structures are used
to derive local distance constraints between residues in these structures. We empirically observe that two

residues in a secondary structure segment may coevolve without being close in structure, e.g. residues at
opposite sides of a helix. Therefore, potential conflicts between predicted secondary structure and
predicted EIC constraints are resolved by given precedence to the secondary structure prediction (details
in Table S2). These rules were always applied irrespective of whether the predicted secondary structure
was (in retrospect) correct, consistent with a blind prediction approach; clashes are marked as 999 in
column 7 of the DIScores.txt files, Web Appendix Al

We anticipate that analogs of the four empirical rules involving primary sequence position, near-perfect
conservation, Cys pairs and secondary structures can be incorporated in a more comprehensive theory in
a future version of the DCA/EIC method.

Folding the Proteins

The distance constraints from EICs

Our prediction is that two residues i and j of a high-scoring EIC pair are in close spatial proximity in the
protein structure. To generate all-atom 3D structures we constrained the space of possible 3D structures
by requiring that the distance between the Co atoms of i and j is less than 74, set as a harmonic constraint
at 4 A, (distance constraint files are in Appendix 3, http://cbio.mskcc.org/foldingproteins). A similar
constraint was set for the Cf3 atoms of pairs that did not contain a glycine. The assumption is that amino

acids co-vary because they are in close physical proximity suggests the side chain atoms are proximal to
each other in the structure. As the shape and size of side chains varies considerably among amino acids,
therefore we also applied residue specific constraints to particular atoms for different amino acid pairs.
Details of which atoms are provided in full in the CNS input files, see Web Appendix A10.

Distance constraints from secondary structure

Predicted secondary structure elements were used to supplement the EIC distance constraints, building
on the high accuracy of secondary structure prediction methods [34,35]. We surveyed the distances
between specific atom pairs within a-helices and (3-strands in a set of protein structures. The means and
standard deviations found in this survey were used to set distance constraints for pairs of residues
predicted to lie in the same secondary structure unit, Table S2 and Web Appendix A9
http://cbio.mskcc.org/foldingproteins. These constraints were always applied irrespective of whether
the predicted secondary structure was (in retrospect) correct, consistent with a blind prediction
approach.

Number and ranking of inferred contacts

The number of constraints (EIC pairs, N¢) sufficient to successfully fold up a protein is of considerable
theoretical and practical interest. The number may depend on many aspects, such as the distribution of
EIC scores, the domain size, and the type of representative fold. In our unbiased and blinded approach
structures are generated using a range of N¢ values for each protein, and subsequently ranked using fully
automatic quality metrics. In particular, for each protein we generate candidate structures using values of
N¢ that is up to 100% of the sequence length We calculated 20 structures for N¢c = 30 up to L in steps of 10
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where L is the length of the protein in the PFAM alignment. For instance, for protein of length 100 , we
calculated 160 structures (20 structures per bin size). This range is comparable to the number of true
distances needed as constraints to reconstruct a known protein structure, which is between 15-30% of
the number of residues in the protein [2,3] as discussed above. We extended the analysis to calculate
structures for very few constraints (<=20) and for larger numbers of constraints to test whether with
hindsight a better number produced more accurate structures. We find that the computation of accurate
structures is robust to a wide range numbers of constraints (see the graph of Cq-rmsd error of resulting
candidate structures against the number of EIC pairs used as distance constraints, Figure 7 and Figure
S16). While the computation of a larger number of candidate structures, is of interest in studying the
robustness of the folding protocol, a single effectively blind prediction is always provided as the one
structure with the highest rank.

Distance geometry to generate trial structures

Historically, distance geometry methods have been used in experimental structure determination by
nuclear magnetic resonance spectroscopy (NMR) to generate trial structures. The approach is based on
the premise that any three-dimensional structure can be defined as a set of inter-atomic distances.
Conversely, a set of inter-atomic distances can be ‘embedded’ into three-dimensional space, (though not
necessarily uniquely) to give the atomic coordinates of the protein. In NMR, to account for uncertainty of
experimental distance constraints two distance matrices are generated, a matrix of lower bounds and a
matrix of upper bounds. These matrices are then interpolated, or smoothed, so that the distances are
consistent with each other. After ‘smoothing’ of the upper and lower bound matrices, a distance matrix
that gives rise to a single trial structure is generated by selecting a random distance that lies between the
upper and lower restraints for each residue pair.

We used the implementation of the Havel and Crippen distance geometry algorithm [36] in the NMR
section of the cns_solve.1.21 suite of programs [37]. This distance geometry algorithm uses the distance
constraints to ‘embed’ the extended starting structure within the ranges set by the constraints. We set the
initial embedding algorithm to produce 20 trial structures The same parameter settings were used for all
proteins evaluated (details of all parameter values used are in the ‘dgsa.inp’ file at
http://cbio.mskcc.org/foldingproteins, Web Appendix A2).

Annealing

Simulated annealing with standard protocols is used to regularize and refine the structures given by the
starting coordinates generated by the distance geometry procedure. We observed empirically that the
distribution of EIC scores for each protein has a long tail, data not shown. This suggests that the top
scoring EIC pairs are more likely to represent true evolutionary constraints. To reflect this observation,
we weighted the constraints for the simulated annealing part of the protocol using a function that
emphasized the highest ranked EICs with a simple function, 10/i, where i is the rank of the predicted
contact, Web Appendix A11). The protocol begins with a starting temperature of 2000K and slowly
increases the van der Waals scale factor ( K, ) from 0.003 to 4.0 over 20 cycles of molecular dynamics

(1000 steps). The temperature is lowered in steps of 25K until it reaches 300K. The high temperature
scale factor for dihedrals is 5. This scale factor gradually increases to 200 during the slow cooling stage.
The restraints are divided into two classes, those derived from the EICs and those derived from predicted
secondary structure. The relative weights of the contributions to the potential energy shift during the
annealing process, for example the dihedral constraints are up weighted relative to the EIC and secondary
structure distance constraints, hence the influence of these distance constraints decreases during the
structure refinement process.

Energy minimization

Energy minimization is performed in two stages after the simulated annealing protocol using the CNS
default force field: 10 cycles of 200 steps of Powell minimization. The two classes of distance restraints
are weighted as for the annealing steps. A further minimization protocol is then applied once hydrogen
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atoms have been added to the candidate structures without the distance restraints; all scripts for CNS
protocols are available in Web Appendix Al, and all final candidate structures in Appendix A3.

Assessment of contacts and folded structures
Ranking predicted structures

In summary

In the blinded prediction tests reported here, we construct a small set, from 40-480 of candidate 3D
models for each protein. Candidate structures are generated using between 30 and L constraints, in
increments of ten constraints, where L is the length of the domain. Structures are ranked using the quality
of virtual torsion angles along predicted a-helices, and between predicted f3-strands.

a-helix and (-sheet twist angle criteria

Distance geometry methods generate candidate structures that satisfy all distance constraints yet are
topological mirror images of the correct structures [38]. These mirror images occur at different scales of
organization of the protein and arise when constraints are sparse, as in this study. All-by-all 3D alignment
of the set of candidate structures reveals clear clusters of predicted structures, one of which will contain
the most accurate structures. Within mirror-inverted substructures, we observed secondary structure
elements and pairs of secondary structure elements, notably {3 strand pairs, with the opposite chirality to
that usually observed in proteins. This suggests that simple topological rules, based on the chirality of
secondary structure units and pairs of units, can discriminate structures with mirrored sections versus
those without, and can be used for objective ranking within a set of predicted structures.

To quantify such topological differences, we developed a simple method that measures the chirality of a
helices and the twist between {3 strand pairs predicted to be adjacent in 3 sheets [39] and combine thes
together in a weighted score which reflects the relative composition of predicted a and 3 elements in the
protein. Firstly, we measure the handedness of predicted a-helices using the virtual dihedral angle
k(a)(i) defined by four consecutive Cq-atoms at position i, i+1, i+2 and i+3. Right-handed helices have a
range around k(a) ~ +1.5 radians, while left handed helices ~ -1.5 radians. The quality of the helices is
quantified and scored with a decreasing function around the idealized o-helix, see Appendix AX for
precise values.

Secondly, we compute a virtual ‘twist angle’ between pairs of 3 strands. To calculate this we developed an
algorithm which first detects the most likely pairing of 8 strands. For each residue i predicted to liein a 8
strand, our algorithm finds the nearest other predicted (3 strand, if any, with a residue j that has its Ce-
atom within 7 A of the Co-atom of residue i. The virtual dihedral angle k(B)(i,j) between the four Ca-atoms
i, i+2 and j, j-2 (for anti-parallel strand pairs) or j, j+2 for parallel pairs of B strands defines the strand-
strand twist. Directionality of strands is computed as follows: if the distance between (i+2) and (j+2) is
larger than the distance between (i+2) and (j-2), then the strands are anti-parallel, otherwise they are
parallel (code available on request). Good structures tend to have negative values of k(5), corresponding
to a right handed twist of the strand pair when viewed along the strand direction, while mirror inversions
tend to have positive values [40]. The algorithm calculates the proportion of § twist dihedrals which lie
within an acceptable range with a deceasing function around an idealized twist dihedral.

Finally these o and {3 twist dihedrals are combined in a score weighted by the proportion of predicted a-
helical residues and potential  twist dihedrals in the protein, all values for a and § virtual torsion and
combined scores are available in Web Appendix A5. Since this is a blind prediction and we do not know
the number of § twist dihedrals in an observed crystal structure, we estimate this based on the maximum
number of  twist dihedral, which can be measured in any of the predicted structures. the top scoring
candidate is then nominated as our top ranked structure as in Table S1, and all scores are available in
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Web Appendix A5. Plots for each protein show visually the accuracy of this measure when compared to
Ca-atom error (Figures S5).

The weighted scores derived from the a and  twist values, was found to correlate with the Co-rmsd
prediction error for 13 of the 15 proteins in the present study. The all helical and smaller proteins did
poorly, Figure S5. Since a-helical handedness is a local geometric measure, it's not surprising that the
helical score alone is insufficient to robustly rank predicted structures. This is in contrast to the 3 twist
score for putative paired {8 strands, which is a less local three dimensional criteria and correlates more
robustly with structure accuracy. This approach can probably be further developed, also using the
handedness of B-strand cross-over connections, which are predominantly right-handed [41] as well as
chiral relationships in helical bundles. We anticipate improvements of ranking criteria will include energy
criteria, and quantitative assessments of constraint violations.

Blind detection of B sheets in predicted structures

To test the potential identification of  sheets for further refinement of our predicted structures, we
developed an algorithm which calculates the most probable strand pairing and registration for predicted
[ strands in our predicted structures. As proof of principle, we applied this protocol to three test case
protein families which contain  strands in very different topologies, PF00071 (Ras), PF00028 (Cadherin)
and PF00076 (Elav4). The blind prediction of 3 sheets was conducted on the top ranked predicted
structures for those families, structure numbers PF00071_P01112_130_17.pdb,
PF00028_P12830_70_4.pdb and PF00076_P26378_40_12.pdb, (Table S1). Step (1) uses a combination of
geometric criteria to identify an initial set of candidate strand pairs and their orientation., similar to the
identification of nearest strands in the (8 twist algorithm used for ranking) These candidate pairs of 8
strands are then pruned to remove false positive associations and conflicting pairings, using similar
criteria as in the  twist algorithm used for discrimination. Step (2) uses f-strand interaction potentials
[1] and the Pfam multiple sequence alignment to score alternative possible registrations and hydrogen
bonding patterns for each strand pair. Global optimization over these scores yields a consistent
registration and hydrogen bond patterning of all connected strand pairs in a sheet. In Ras and cadherin,
the identified strand pairs, their registration and hydrogen bonding pattern are predicted correctly, with
28/31 and 26/34 hydrogen bonds correct, respectively (Table S3). Some residue pairs and hydrogen
bonds at the ends of the strands are missing due to strand under-prediction. Elav4 was also successful for
the pairing of strands 2 and 3, and cannot match strand 1 with 3, most likely because our predicted
structure starts midway in strand one.

Folding without secondary structure

We were interested to determine how much of an accurate overall fold was possible without using
predicted secondary structure constraints. To do this we followed the same protocol as described for the
main experiments with the example of the Ras protein, except in this case, omitting all constraints on
residues in predicted secondary structural elements.

Some candidate structures showed reasonable overall topological predictions to the known structure. For
example the lowest Ce-rmsd error for the RAS domain family is
~ 5A Ce-rmsd error to 5p21.pdb, using just the EIC distance constraints without using predicted
secondary structures. This is consistent with the notion that a large portion of the information about the
correct 3D fold is in the EIC distance constraints, while secondary structure prediction may primarily aid
in the process of structure refinement using simulated annealing, perhaps analogous to the physical
folding process.

Algorithm performance comparison
Here we examine the performance of the DCA/EIC algorithm across the predicted structures considered
and compare the contact accuracy with other with other contact prediction algorithms.
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To support the assertion that it is important to use a global model when calculating residue pair
correlation scores, we include a comparison of the DCA/EIC algorithm with the BNM algorithm developed
by Burger et al.,, [24] and with two other commonly used local methods, MI and SCA [42,43].

More precisely, in local methods the correlation score of each pair of residues depends only on the
observed amino acid distributions for that pair of residues and can be calculated independently of the
rest of the alignment. These different measures of pair correlation may have useful applications for
certain problems, but our assessment here focuses on their potential for the prediction of which pairs of
residues are in spatial proximity in the folded protein. For clarity, we do not make comparison with other
local methods for the analysis of correlated mutations, some of which have been expertly compared to
each other and to mutual information by Fodor and Aldrich [20], nor with excellent hybrid methods that
combine the analysis of correlated mutations with aspects of sequence fit to full or partial 3D structures
(fragment search, threading), [44,45]. Contacts predicted by MI, BNM (code kindly provided by Burger
and van Nimwegen) and SCA algorithm, were then treated identically to predictions made by the DCA
algorithm for the calculations below.

Visualizing contacts in predicted folded structures

The native 3D structure of a protein can be visualized as a network of contacts between amino acids, e.g.,
as two dimensional ‘contact maps’ (Figure S2), based on the binary information of whether each pair of
residues is spatially proximal (‘in contact’) or not. We define two residues to be in contact if the minimum
all-atom distance (including side chain atoms) between them is less than 5A. Contact maps provide a
visually intuitive window into the three dimensional protein structure and are an excellent way of
assessing the ability of an algorithm such as EIC to predict the contacts derived from an experimentally
determined structure. Similarly Figures S1, S11 and S12 show the top scoring MI, BNM and SCA pairs
respectively for all 15 proteins. For each domain, the black rectangle depicts the boundaries of the PFAM
alignment used to predict EIC pairs, residues outside this rectangle cannot be in EIC pairs. Perhaps
surprisingly, in some cases, we were able to fold proteins for which the PFAM domain is significantly
smaller than the sequence in the PDB structure that we were comparing to.

Analysis of accuracy of inferred contacts in 2D contact space

The simplest assessment of the accuracy of inferred contacts is to count the number of residue pairs
predicted to be in contact that are not in close proximity in the crystal structure (Figures S6 and S7). Note
that the accuracy of inferred contacts depends on the number of contacts predicted, Nc. Typically the
accuracy is excellent for the top-ranked EICs (Figure S7) and decreases as the number of EIC pairs
included increases. The optimal cutoff in the number of EICs used is a tradeoff between accuracy of
contact prediction and number of inferred distance constraints, and we discuss the optimal choice use in
the main text. Beyond N¢ ~ 0.5-0.7L, both contact prediction accuracy and accuracy of 3D structure
coordinates are a slowly varying function of N¢, such that the predictions are fairly robust with respect to
the number of constraints used.

An interesting technical consideration, also important for future improvements of the algorithm, relates
to the damage a false positive contributes to prediction accuracy. All true positive residue pairs translate
into distance constraints that describe the same subspace, that is the subspace containing the true protein
fold. In contrast, each false positive will likely translate to a distance constraint that describes a different
subspace than the true subspace. The crucial observation is that while different false positives could
describe the same incorrect subspace, it is more likely that each false positive describes a different
incorrect subspace. False positives are somehow less damaging if they describe contradictory subspaces,
in particular if they are outnumbered by true positives that describe the same correct subspace.

Quantitative measure of false positives
In addition, from the contact maps we observe that false positives are not equal in terms of their
detrimental effect on structure prediction (Figure S2). It is plausible that EIC pairs that lie close to
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experimentally observed ('real’) contacts in the contact map are less damaging than those that are far
from the true contacts [2,4,44]. This effect can be quantified for each false positive pair by measuring the
distance to the nearest true contact using a simple 2-dimensional Euclidean metric is sequence-position
space. We plot the mean of all the distances of each contact for each Nc for all four prediction methods
(Figure S9, Appendix A8). The extent of the false positives of predicted contacts plausibly correlates more
strongly with the accuracy of 3D structure coordinates.

Quantitative measure of contact prediction spread

Similar to the measure for false positives, we developed a metric for how well spread the predicted
contacts are in the protein. Theoretically one could have 100% true positives but they could be clustered
in one part of the protein and hence give no information about necessary contacts to determine the 3D
structure of the protein. Hence true positive rate alone will not be sufficient. We measure the distance
from every true contact (from crystal structure) to every predicted constraint, for each N¢, using a simple
2-dimensional Euclidean metric is sequence-position space. We then plot the mean of this for each Nc, for
all 4 contact prediction methods and all proteins,( Figure S10, Appendix A8). The accuracy of distribution
of predicted contacts plausibly correlates more strongly with the accuracy of 3D structure coordinates.

Control calculations folding proteins using observed residue contacts

To investigate the performance of the second part of our method, which uses a set of predicted contacts to
generated all-atom 3D structures, we reconstructed (not predicted) each protein structure from the set of
observed Ca-Ca contacts ('real' contacts) deduced from the crystal structure. Using all residue-residue
contacts and adding an upper and lower bound tolerance of 1 A, we are able to fold the proteins to within
1 A Co-rmsd of the PDB structure, which supports the efficacy of our folding pipeline (data not shown).
Subsequently we wished to calibrate the performance of our folding methodology using binary contact
information, similar to that inferred from the DCA/EIC algorithm, but with perfect accuracy of contacts.
From the crystal structure we extracted all residue pairs for which the C, atoms are within 8 A of each
other, and then discarded pairs with residues within five sequence positions of each other. The
corresponding distance constraints require each pair of C, atoms to be within 7 A of each other. This is
analogous to the distance constraints used in the actual prediction pipeline, but without false positives or
false negatives.

The distance constraints implied by these observed Ca-Ca pairs contain significantly more information
that the predicted EIC pairs. In addition we included the secondary structure distance constraints
constructed from the predicted secondary structure for each domain. Despite this surplus of information
and the lack of false positive constraints, we are only able to reconstruct proteins to an accuracy of about
2 - 3 A Ce-rmsd error (Table S5). This suggests that (1) our method for refining 3D structures can be
further improved, as is true for molecular dynamics methods in general, and (2) our sets of EIC pairs
perform better at predicting a fold than might be expected, as the error of 3D structure prediction
achieved in some cases is near this practical lower bound.

Mapping between PDB and PFAM

We have used PFAM protein family alignments to extract reduced pairs correlations using the DCA
algorithm, as this is a well-established and well-maintained database. However, one drawback is that the
PFAM domain, and hence the alignment, rarely covers the entire protein domain structure (as in the
Protein Data Bank, PDB). This effect is related to the radius of sequence differences coverage in a multiple
sequence alignment. Coverage gaps of around 10% at each end of the sequence can provide a significant
impediment to folding, especially of residues at the beginning and end of a domain are in 3D contact, but
not covered by the sequence alignment.

To test this effect and check the impact on the ability to predict the protein fold, we devised the following
control calculation. Previous work has shown that it is possible to fold a protein with around 20% of the
actual close distances that are long range in sequence [2,3,4]. For example, for the thioredoxin family
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alignment, using the sequence of 1o8w.pdb we were able to fold the structure by choosing 20% of
observed residue-residue contacts at random. We then repeated this experiment, restricting ourselves to
contacts within the middle 80% of the protein. The number of close contacts used was kept the same, yet
the Co-rmsd error increased from around 2 A to more than 5 A when contacts were drawn from just the
middle 80% of the protein, data not shown. We conclude that future applications of our methodology to
3D structure prediction should included an assessment of domain boundaries and, possibly, adjustment
of parameters in profile alignment methods such as HMMs (hidden Markov models) to increase sequence
coverage.

For each PFAM domain there is a range of structures, some of which are present in the PDB. Our folding
constraints are restricted to those amino acids in the PDB structure that align to the hidden Markov
model (HMM) states of the PFAM domain. PFAM HMM states that did not occur in our chosen PDB
structure were considered by the algorithm (to ensure the results are truly global to the alignment) but
pair scores involving these states were discarded. Different structures might represent different states of
a protein domain, as is the case for the structures 1e6k and 1mb0.

Future work will explore the relationship between protein family sequence and structure spaces across
evolution.
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