Supplementary information for The nonproton ligand sensing domain is required for paradoxical stimulation of ASIC3 channels by amiloride

Wei-Guang Li^{1,3*}, Ye Yu^{1,2*}, Chen Huang³, Hui Cao^{1,3}, Tian-Le Xu^{1,3}

To whom correspondence should be addressed. E-mail: xu-happiness@shsmu.edu.cn (T.L.X.)

This file includes:

Supplementary Figures 1 to 3 and their legends

Supplementary Table 1

Supplementary Figure 1 by Li et al.

Supplementary Figure 1. Effects of amiloride (AMI) on the GMQ-mediated ASIC3 activation. A, CTypical recording for the effects of amiloride (3 mM, A; 0.3 mM, C) on the GMQ (1 mM, A; 5 mM, C)-induced currents in ASIC3-expressing CHO cells. B, D Dose-dependent inhibitory effects of amiloride on GMQ (1 mM, B; 5 mM, D)-evoked currents in ASIC3-expressing CHO cells. Data points are means \pm S.E.M. of four to five measurements and the solid lines are the fit to the Hill equation.

Supplementary Figure 2 by Li et al.

Supplementary Figure 2. Statistical analysis of effects of DTDP on the peak currents of ASIC3^{E79C} channels upon washout of AMI at 1 and 3 mM. *A*,*B* Pooled data from experiments in Fig. 6*C* and 6*D*, respectively. Data points are means \pm S.E.M. of six measurements of the peak currents induced after AMI washout, normalized to the peak currents upon washout of 3 mM AMI before DTDP treatment. **p* < 0.05, different between groups as indicated.

Supplementary Figure 3 by Li et al.

Supplementary Figure 3. Typical recordings showing the effect of MTSEA on WT (A) or G438C (B) mutant ASIC3 channel activation.

Supplementary Table 1 by Li et al.

Mutants	pH 5.0 (pA)	AMI-1 mM (pA)	AMI-3 mM (pA)
WT	11744 ± 1468	1579 ± 433	2002 ± 607
E79A	1618 ± 519	5.1 ± 1.8	41.4 ± 15.8
E79C	3606 ± 705	32 ± 8.5	133.2 ± 47.6
E79D	3298 ± 533	72.7 ± 16.5	138.8 ± 18.4
E79L	6255 ± 2620	398.0 ± 86.4	696.7 ± 140.1
E79Q	10082 ± 2173	184.3 ± 42.6	452.7 ± 137.1
E79R	4884 ± 875	59.4 ± 17.2	229.3 ± 53.8
E79S	6129 ± 529	150.4 ± 21.9	865.4 ± 85.8
E423A	9023 ± 913	14.8 ± 9.1	44.9 ± 16.4
E423C	4928 ± 1987	4.3 ± 1.3	11.0 ± 3.1
E423D	744.3 ± 195.4	1.5 ± 0.6	4.4 ± 1.6
E423L	12152 ± 648	9.3 ± 4.8	36.3 ± 21.1
E423Q	8675 ± 588	10.6 ± 2.5	72.7 ± 20.2
E423R	3754 ± 814	8.7 ± 1.9	15.7 ± 1.0
E423S	1254 ± 245	6.7 ± 0.7	16.4 ± 1.9

Supplementary Table 1. Current amplitude of ASIC3 mutants (data from Figure 3).