SUPPLEMENTARY MATRERIAL I

Derivation of oligomer distribution

According to the model in figure 4A, an oligomer consisting of n monomers is given by

$$A_n = (K_a)^{n-l} A_l = (\frac{\alpha'}{\beta})^{n-l} A_l$$

with $\alpha' = \alpha$ [Cry1Aa]. The above statement is equivalent to the equation

$$A_n = K_a A_{n-l} = \frac{\alpha'}{\beta} A_{n-l}$$

This can be shown for A_2 from the differential equation describing the temporal evolution of A_1 :

$$\frac{d}{dt}A_1 = -\alpha' A_1 + \beta A_2,$$

and in equilibrium

$$\frac{d}{dt}A_1 = 0$$
$$\implies A_2 = \frac{\alpha'}{\beta}A_1$$

We will show that this is true for A_{n+1} under the assumption that it is true for A_n .

$$\frac{d}{dt}An = \alpha' A_{n-1} - (\alpha' + \beta)A_n + \beta A_{n+1}$$
with
$$A_{n-1} = \frac{\beta}{\alpha'}A_n$$
follows
$$\frac{d}{dt}An = \beta A_n - (\alpha' + \beta)A_n + \beta A_{n+1}$$

which should equal zero in equilibrium, thus

$$A_{n+1} = \frac{\alpha'}{\beta} A_n$$

As it is true for A_2 , it is thus iteratively true for all A_n .

Calculation of the probability to observe x pentamers in an ensemble of N measurements.

The problem was to determine the order (4 or 5) of the binomial distribution that best fit the experimentally observed values. As the distribution of 1-4 subunits may be comparably well fitted by both distributions (but see main text for p-value dependence), the decisive observable is the number of pentamers observed for a given number of spots N analyzed. Let us assume that the distribution has been optimally fitted to a binomial distribution of the order n = 4 and 5. For each distribution, a probability for the observance of pentamers will be given. In the case of n = 4 this probability will be zero, in the case of n = 5, it is given by:

$$\langle x \rangle = N p^5$$
,

where N is the number of total spots analyzed and p the probability of a monomer to be detected.

We have to determine the probability prob(x) that the experimentally observed number of pentamers *x* can be explained by a binomial distribution of order n = 5 and probability *p*. To this end, we calculate the value of the Poisson probability density function with parameter $\langle x \rangle$, the expected value of pentamers, for the experimentally observed value *x*

$$prob(x) = \frac{\langle x \rangle^{x}}{x!} exp(-\langle x \rangle) = \frac{(Np^{5})^{x}}{x!} exp(-Np^{5})$$

prob(x) gives the probability to observe in an ensemble of N spots which are binomially distributed with order n = 5 exactly x pentamers.

The analysis of our experimental data following the above calculations resulted in values below 1% for each condition (mutant and lipid composition). What is more, for each analysis, the observed value x was on the lower end of the Poisson probability density function (Suppl. Fig. 2). We can thus conclude that the observed values are not consistent with a binomial distribution of order n = 5 or higher.

Naturally, the probability to observe exactly x pentamers in a binomial distribution or 4th order is zero. However, as explained in the main manuscript, the number of observed pentamers corresponds exactly with the number of pentamers expected due to unspecific labeling.