Supporting Information

"Clickable", Polymerized Liposomes as a Versatile and Robust Platform for Rapid Optimization of Their Peripheral Compositions

Amit Kumar,^a Uriel J. Erasquin,^a Guoting Qin,^{a,b} King Li,^b Chengzhi Cai^{*a}

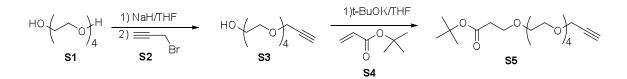
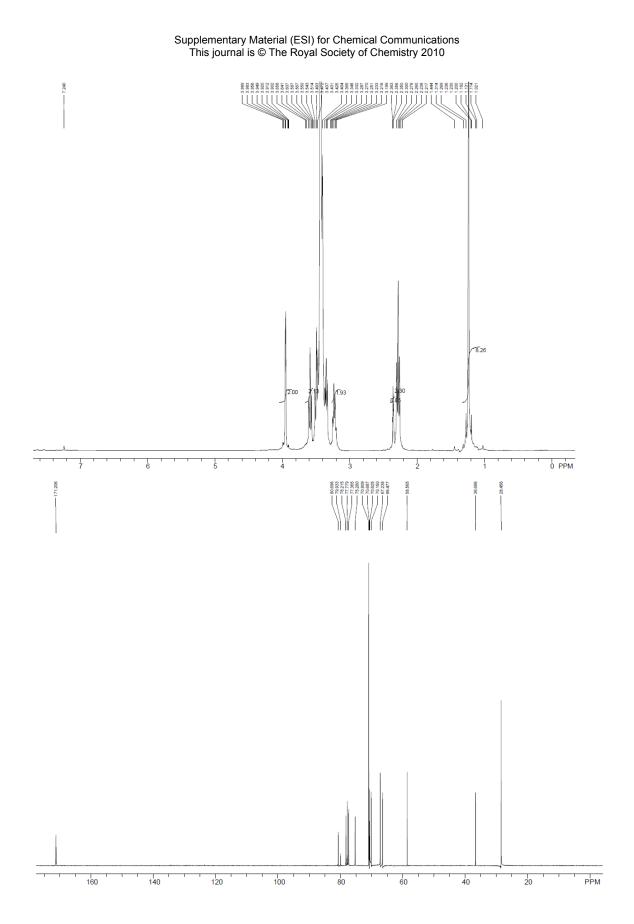
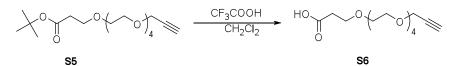
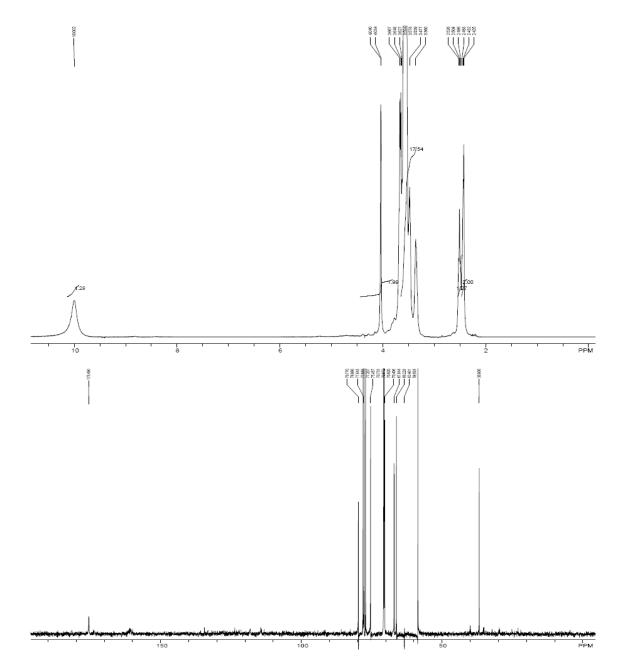

^aDepartment of Chemistry, University of Houston, Houston, TX 77204, USA.
^bDepartment of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA
Fax: 1 713 743 2709; Tel: 1 713 743 2710; E-mail: cai@uh.edu

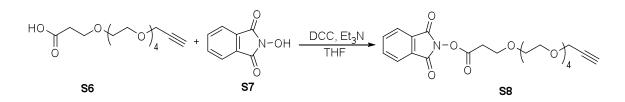
Table of content

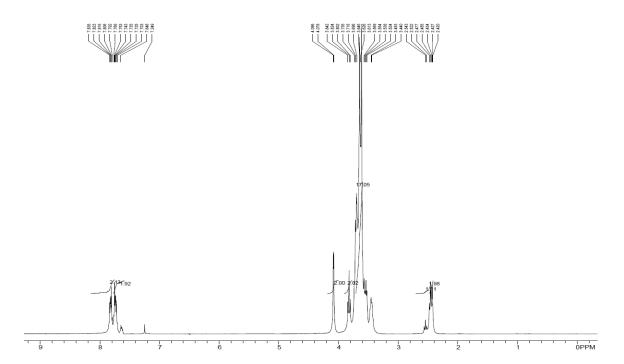

A. Synthesis	S2
B. Synthesis of clickable polymerized liposomes (CPL)	S14
C. Stability of the terminal alkyne under UV irradiation	S15
D. Optimization of click reaction conditions on CPL using the coumarin azide 3	. S15
E. Estimation of the yields of CuAAC reactions on CPL	S15
F. Liposome stability during CuAAC reaction conditions	S16
G. Verifying the ratio of GRGD and FITC on the CPL	S17
H. Anti-adhesion assay	. S18
References	S18

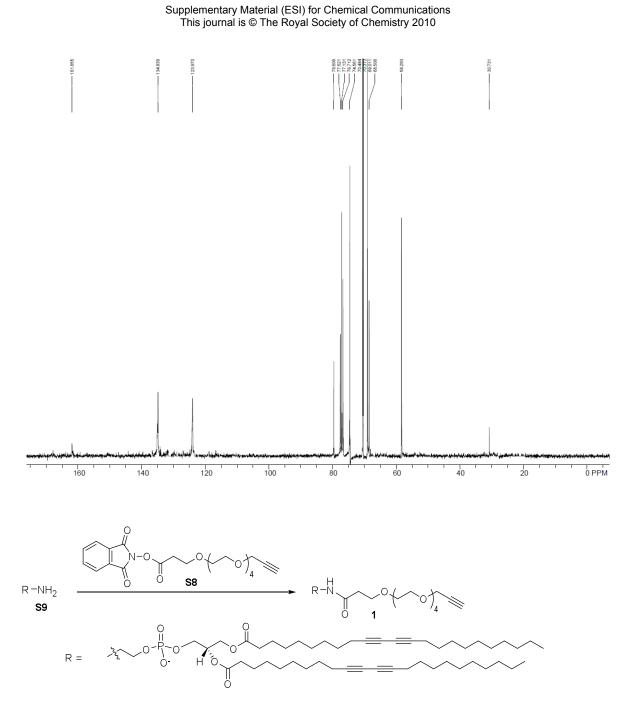
A. Synthesis


General: Air sensitive reactions were performed under a nitrogen atmosphere using Schlenk technique. **S4** and **S7** were purchased from Sigma-Aldrich (St. Louis, MO), **S16** from Thermo-Scientific (Pittsburgh, PA), **S14** from Quanta BioDesign Ltd. (Powell, OH), **S9**, **2** from Avanti Polar Lipids Inc. (Alabaster, Al) and **S1** from Alfa Aesar (Ward Hill, MA), and used without further purification. Flash chromatography was carried out on silica gel (60Å, Sorbent Technologies). All ¹H and ¹³C-NMR spectra were recorded in GE QE-300 in CDCl₃ (Cambridge Isotope Laboratories Inc.) using residual protons in the solvent as an internal standard. Mass spectroscopy (MS) measurements were carried out using electrospray ionization (ESI) technique on Deca XP Plus from Thermo Finnigan.

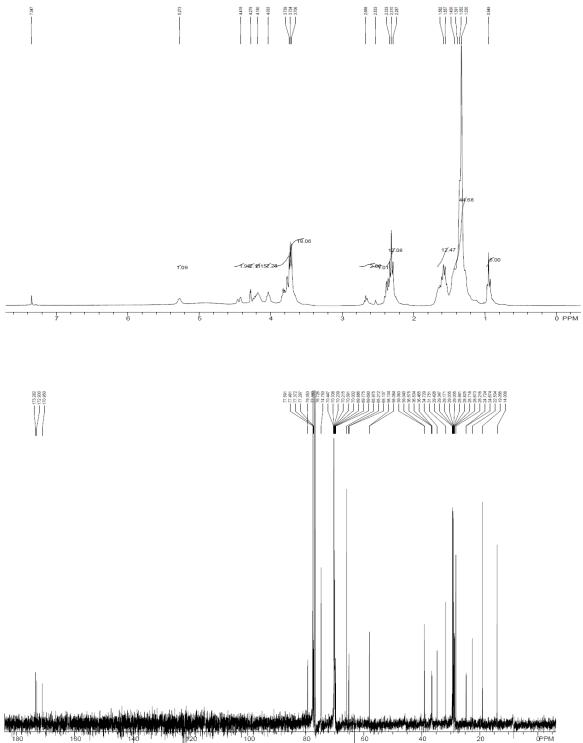

To a solution of the alkyne **S3**¹ (500 mg, 2.15 mmol) and ^{*t*}BuOK (12 mg, 0.11 mmol) under nitrogen in dry THF (1.0 mL) was drop-wise added tert-butyl acrylate (**S4**, 358 mg, 2.79 mmol). The mixture was stirred overnight at room temperature. The solution was neutralized with 1 N HCl, mixed with saturated brine solution, and extracted three times with CH₂Cl₂ (25 mL). The combined organic layers were dried over MgSO₄, filtered, and the solvent was removed under vacuum affording a crude product, which was purified by flash chromatography (ethyl acetate/methanol 9:1) to give the alkyne **S5** (442 mg, 1.22 mmol, 57%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 3.95 (t, *J* = 2.2 Hz, 2H), 3.58 (t, *J* = 6 Hz, 2H), 3.52-3.29 (m, 14H), 3.23 (t, *J* = 5.4 Hz, 2H), 2.35 (t, *J* = 2.2 Hz, 2H), 2.27 (t, *J* = 5.4 Hz, 2H). 1.23 (s, 9 H). ¹³C NMR (75 MHz, CDCl₃): δ 28.5, 36.7, 58.6, 66.5, 67.2, 70.2, 70.6, 70.7, 70.9, 75.3, 79.9, 80.7, 171.2. MS (ESI) *m/z* calcd for C₁₈H₃₂O₇: 360.2; found: 383.4 ([M + Na]⁺).

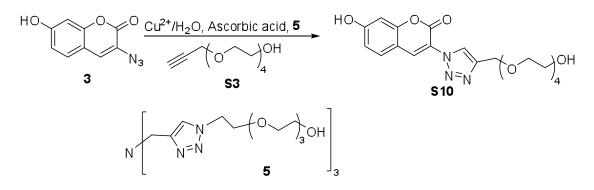

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010


To a solution of the alkyne **S5** (150 mg, 0.42 mmol) under nitrogen in dry CH₂Cl₂ (1 mL) was added drop-wise trifluoroacetic acid (1 mL). The mixture was stirred for 4 hours at room temperature. The solvent was removed under vacuum affording the acid **S6** in quantitative yields. ¹H NMR (300 MHz, CDCl₃): δ 9.99 (s, 1H), 4.03 (t, *J* = 2.2 Hz, 2H), 3.82-3.26 (m, 18H), 2.49 (t, *J* = 2.2 Hz, 2H), 2.41(t, *J* = 5.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 175.5, 79.8, 75.4, 70.7, 70.6, 70.4, 67.0, 66.2, 63.4, 58.6, 36.8. MS (ESI) *m/z* calcd for C₁₄H₂₄O₇: 304.1; found: 327.4 ([M + Na]⁺).



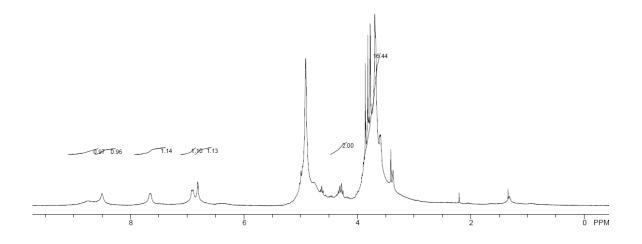
Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

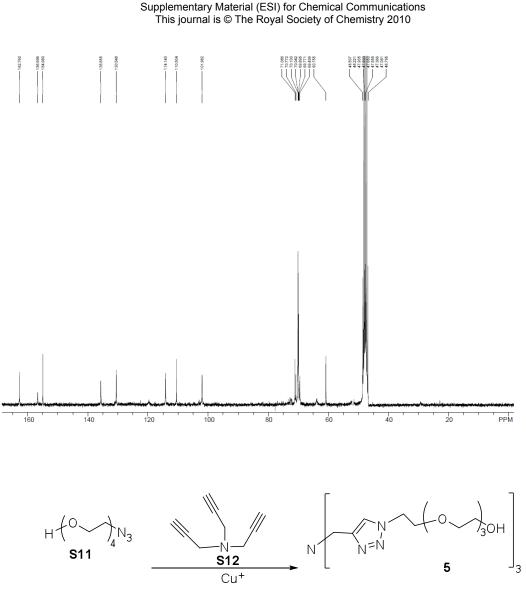

Et₃N (59 µL, 0.43 mmol), and DCC (89 mg, 0.43 mmol) were added to a solution of the acid **S6** (100 mg, 0.33 mmol) in THF (1 mL). A solution of **S7** (70 mg, 0.43 mmol) in THF (1 mL) was added, and the reaction mixture was stirred at room temperature for 12 h. The solution was filtered and the solvent was removed in vacuo, the residue was purified by flash chromatography (ethyl acetate/methanol 9:1) to give **S8** (104 mg, 0.23 mmol, 70%) as a colorless semisolid. ¹H NMR (300 MHz, CDCl₃): δ 7.90-7.75 (m, 2 H), 7.77 -7.70 (m, 2 H), 4.08 (t, *J* = 2.2 Hz, 2H), 3.82 (t, 2 H, *J* = 5.4 Hz) 3.76-3.37 (m, 16 H), 3.57-3.27 (m, 2 H), 2.42-2.48 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 161.9, 134.8, 123.9, 79.6, 74.6, 70.7, 70.6, 70.4, 69.0, 68.5, 58.2, 30.7. MS (ESI) *m/z* calcd for C₂₂H₂₇NO₉: 449.2; found: 472.3 ([M + Na]⁺).

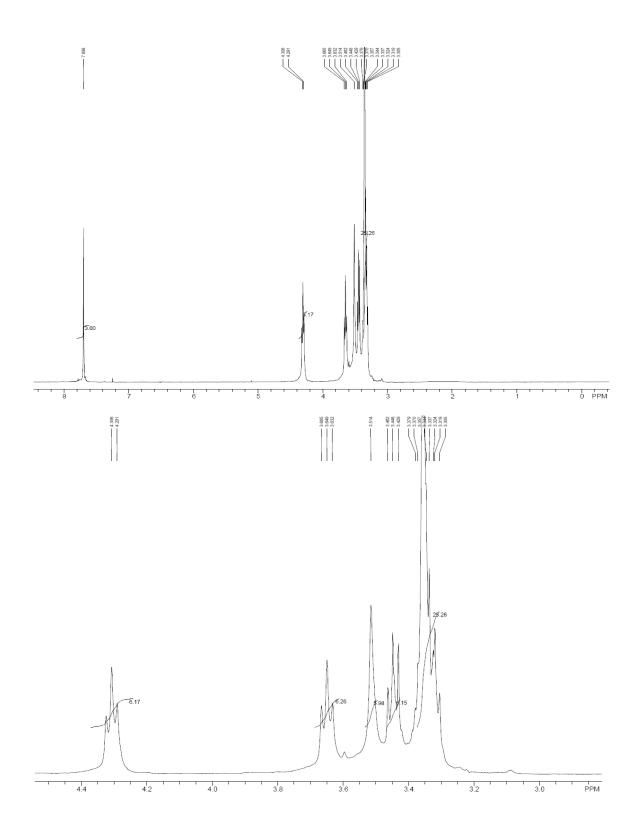


To a solution of the amine **S9** (50 mg, 0.06 mmol) and triethylamine (17 μ L, 0.12 mmol) in dry CHCl₃ (1 mL) at 0 °C under nitrogen was drop-wise added **S8** (35 mg, 0.09 mmol) dissolved in dry CHCl₃ (1 mL). After being stirred for 1.5 h at 0 °C, the solution was allowed to warm up and stirred overnight at room temperature. Saturated aqueous NH₄Cl (3 mL) was added, and the mixture was extracted three times with CHCl₃. The combined organic layers were washed with water, brine, and dried over Na₂SO₄. The solvent was removed under vacuum affording a crude product, which was purified by flash chromatography (chloroform) to give the alkyne **1** (53 mg, 0.05 mmol, 77%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 5.27 (m, 1H), 4.50-4.35 (m, 2H), 4.34-4.25 (m, 2H), 4.25-4.10 (m, 2 H), 4.03 (t, 2 H, *J* = 5.4 Hz), 3.90-3.40 (m, 18H), 2.67 (t, 2 H, *J* = 5.4

Hz), 2.53 (t, 1 H, J = 2.2 Hz), 2.46-2.05 (m, 12H), 1.75-1.50 (m, 12H), 1.50-1.20 (m, 44H), 0.95 (t, 6 H, J = 5.4 Hz) ¹³C NMR (75 MHz, CDCl₃): δ 173.3, 172.9, 170.9, 79.3, 74.8, 70.4, 70.3, 70.2, 70.1, 70.0, 69.9, 69.8, 69.7, 65.9, 65.2, 56.1, 39.0, 36.5, 34.7, 31.7, 29.4, 29.3, 29.2, 29.1, 29.0, 28.9, 28.8, 28.7, 28.6, 28.5, 28.4, 28.3, 28.2, 24.7, 22.5, 19.1, 14.0. MS (ESI) *m*/*z* calcd for (C₆₅H₁₀₇NO₁₄P)⁻: 1156.7; found: 1180.9 ([M + Na + H]⁺).




Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010


To a stirred solution of 3^2 (500 mg, 2.46 mmol) in H₂O (2.0 mL) was treated sequentially with the alkyne **S3** (600 mg, 2.58 mmol), ascorbic acid (114 mg, 650 µmol), CuSO₄ (20.8 mg, 130 µmol) and ligand **5** (309 mg, 260 µmol). After the mixture was stirred at room temperature for 6 hours, the solvent was evaporated, and the residue was purified by flash chromatography (ethyl acetate/methanol 9:1) to give **S10** (0.86 g, 1.96 mmol, 80%) as a light brown viscous liquid. ¹H NMR (300 MHz, CD₃COCD₃): δ 8.75 (s, 1 H), 8.42 (s, 1 H), 7.60 (d, 1 H, *J* = 7.1 Hz), 6.89 (d, 1 H, *J* = 7.1 Hz), 6.79 (s, 1 H), 4.27 (m, 2 H), 4.06-3.42 (m, 16 H); ¹³C NMR (75 MHz, CD₃OD): δ 162.8, 156.7, 154.9, 135.7, 130.5, 114.1, 110.5, 101.9, 71.1, 70.8, 70.1, 70.0, 69.9, 69.8, 69.4, 60.6; MS (ESI) *m/z* calcd for C₁₂H₂₄N₄O₄: 435.1; found: 458.3 ([M + Na]⁺).

8.746	8.499	7,639	6.815	4 191	4.279	3.859 3.815 3.774 3.771 3.689 3.677

To a stirred solution of tripropargylamine (S12, 250 mg; 1.91 mmol) in CH₃CN (2.5 mL) was treated sequentially with the azide S11³ (1.50 g, 6.87 mmol), 2,6-lutidine (735 mg, 6.87 mmol), and Cu(MeCN)₄PF₆ (27.7 mg, 0.07 mmol). After the mixture was stirred at room temperature for 24 hours, the solvent was evaporated, and the residue was purified by flash chromatography (ethyl acetate/methanol 9:1) to give **5** (0.93 g, 1.18 mmol, 62%) as a light brown viscous liquid. ¹H NMR (300 MHz, CDCl₃): 7.69 (s, 3 H), 4.30 (t, 6 H, J = 5.0 Hz), 3.64 (t, 6 H, J = 5.0 Hz), 3.46 (s, 6 H), 3.44 (t, 6 H, J = 5.0 Hz), 3.37-3.30 (m, 30 H); ¹³C NMR (75 MHz, CDCl₃): δ 143.6, 124.4, 72.3, 70.2, 70.0, 69.2, 61.1, 49.6, 47.2; MS (ESI) *m/z* calcd for C₃₃H₆₀N₁₀O₁₂: 788.4; found: 811.4 ([M + Na]⁺).

