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Online Methods

Fabrication of the Active Electrode Array

Doped silicon nano-ribbons on a silicon-on-insulator (SOI) wafer (Si(260
nm)/Si0,(1000 nm)/Si; SOITEC, France) were prepared using a high temperature diffusion
process (950-1000 °C) in a rapid thermal annealing (RTA) system. These nano-ribbons
were transfer printed onto a PI substrate (12.5 pm, Kapton, Dupont, USA) using spin-
coated, uncured polyimide (PI) as a glue layer. Once the PI is cured, gate oxide is
deposited with plasma enhanced chemical vapour deposition (PECVD, plasmatherm, USA).
Contact openings for the source and drain connects are made with a buffered oxide etchant
(BOE, Transene, USA). Finally, metal (Cr/Au, 5nm/150nm) is deposited using an
electron beam evaporator (Temescal, USA), creating n-type transistor arrays. FEach unit
cell contains 2 transistors, which are connected by metal lines. Subsequent layers of metal
interconnections are electrically isolated with polymeric inter-layer dielectric (1.2 pm,

polyimide, Sigma Aldrich, USA). Following two metal circuit interconnection layers, a
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water-proof encapsulation is formed with a photocurable epoxy (SU8, Microchem Corp),
protecting the device while submerged in conductive bio-fluids. The completed active
sensor array is connected to an interface circuit board through a flexible anisotropic

conductive film (ACF, elform, USA).

Multiplexing

The connections between four unit cells are illustrated in Supplementary Figure 15.
When connected to an external constant current sink the selected unit cell completes the
current path from +V to —V and forms a source-follower amplifier. The buffered voltage
output is from the same circuit node that is connected to the constant current sink. The 18
row select signals of the multiplexed electrode array were cycled at 5 kHz to sample all of
the electrodes on the array, yielding a sampling rate of ~277 Hz per active electrode, with
all 18 electrodes in a given column sampled sequentially. The multiplexer output settles
in less than 5 uS, allowing the row select signals to be cycled at > 200 kHz. With faster
analog to digital converters, the electrode sampling rate can be readily increased to > 10
kS/s per electrode without loss of SNR*', as validated using an analog to digital converter

capable of sampling at 1 MS/s.

Data Acquisition

The multiplexed analog signals were synchronously sampled at 100 kS/s using a
custom data acquisition system (see Supplementary Figs. 16 — 25 and supplemental
material online). 20 times oversampling per switch interval was used to improve the SNR
(yielding the 5 kHz cycling rate previously stated). Voltage data were recorded from all
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360 electrodes of the active electrode array. The reference (ground) electrode for the
acquisition system was clipped to nearby, exposed muscle. Except where otherwise
indicated, the hnECOG data for all experiments were band-pass filtered from 1 to 50 Hz
using a 6th order butterworth band-pass filter in the forward and reverse directions,
resulting in zero-phase distortion digital filtering (and effectively doubling the order of the

filter to a 12™ order filter).

Animal Experiments

Experiments were conducted in accordance with the ethical guidelines of the
National Institutes of Health and with the approval of the Institutional Animal Care and Use
Committee of the University of Pennsylvania. Surgical and stimulation methods were as
described in detail previously®',”>. Briefly, adult cats (2.5-3.5 kg) were anesthetized with
intravenous thiopental with a continuous infusion (3-10 mg/kg/hr) and paralyzed with
gallamine triethiodide (Flaxedil). Heart rate, blood pressure, end-tidal CO, and EEG were
monitored throughout the experiment to assure depth and stability of anesthesia and rectal
temperature was kept at 37-38°C with a heating pad. The surface of the visual cortex was
exposed with a craniotomy centered at Horsley Clarke posterior 4.0, lateral 2.0.

During visual stimulation, the corneas were protected with contact lenses after
dilating the pupils with 1% ophthalmic atropine and retracting the nictitating membranes
with phenylephrine (Neosynephrine). Spectacle lenses were chosen by the tapetal
reflection technique to optimize the focus of stimuli on the retina. The position of the
monitor was adjusted with an x-y-stage so that the areae centrals were centered on the

screen. Stimuli were presented on an Image Systems (Minnetonka, MN) model MO9LV
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monochrome monitor operating at 125 frames per second at a spatial resolution of 1024 x

786 pixels and a mean luminance of 47 cd/m’.

Bending Stiffness and Bending Strain

The cross section of the electrode array is shown in Supplementary Figure 1b. Since
the Au (500 nm and 150 nm), Si (260 nm) and SiO, (100 nm) layers between the top SUS8
and bottom Kapton are very thin, and are very close to the neutral mechanical plane, their
contribution to the bending stiffness can be approximated by polyimide (PI) within 1%
error. Therefore the complex multilayer electrode can be approximated by a two-layer
structure, composed of PI of thickness 4, and SUS of thickness /#;. The distance of neutral

mechanical plane from the Kapton bottom is yy, and is obtained as

1 Ephi + ESUShl(ZhZ + hl)
2 Eprhy + ESUE;hl .

Yo (Sl)

where E; = relates to Young’s modulus E; and Poisson’s ratio v;(i=PI for PI

2
l—Vl'

layer, i=SUS for SUS layer).

The bending stiffness of the electrode is

— 1 — 1
El = Epbh, (Ehzz —hyo + ygj + Esusbhy [Ehlz + hl(h2 - yo) + (hz - J’O)Z} ) (S2)

where =10 mm is the electrode width.

For the electrode bent to a radius of R, the strain at position of distance y from the

Kapton bottom is

(S3)

27



Mechanics of Electrode Insertion

The electrode is folded around a soft PDMS of Young’s modulus Eppys =100 kPa,
width B and thickness /ppys, and is inserted into the gap of thickness /g, between the
hemispheres of the brain. The insertion depth is d (see Supplementary Fig. 26a). Since
the thickness of brain (>10 mm) is much larger than that of the folded electrode (~ 0.7 mm),
the two hemispheres of the brain are modeled as semi-infinite solids, of Young’s modulus

Ey.n =3 kPa and Poisson’s ratio Vi, =0.35 53,

For a semi-infinite solid subject to
uniform pressure p at the top surface in the circular region of radius a =+/Bd , the surface

subsidence w at position of distance » from the circular center is

w= [4(1 —v,,zmm)p@}/(ﬂEmm )I:/z\/l —r’sin’ p/(Bd)dgp , whose average over the
pressure region is obtained as

16(1-v,. . )p~Bd
3rE ’

brain

W= (S4)
Since the electrode array is much stiffer and thinner than PDMS, its deformation due to
insertion is negligible compared to PDMS. Therefore, displacement continuity gives the

relation between the pressure at the interface p and the average subsidence w of the brain

surface due to electrode insertion to be LhPDMS +2W = hppys — b, » Which gives

gap >

PDMS
p — hPDM - hgap )
Pppus n 32(1- V;rain )\/Bd/” (S5)
E PDMS 37TE brain
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And the maximum compressive strain in the brain due to electrode insertion is obtained as

(S6)

|
—~
—
+
<
g
8
—
—_
[\
Eﬁ
g
S
+
[\
7N\
[\
<
g
8
S
N——
| W
—~
“u}‘
=}
S
|
mb‘
s
~—~—

Epr 32(1-v,,, ) /Bd
rain _+_
Eppus o 377 N

As the folded electrode inserts into the brain gap (insertion length d), the gap 4, between

the left and right brains decreases and approaches an asymptote /#,,, (i.e., minimal gap

distance). The brain gap 4, can be generally written as an exponentially decaying
function of the rubber insertion length d, 4, =h,, +(hPDMS —Egap)exp(—d /lmm), which

defines zero insertion length as rubber first touches the brain (ie., h,, =hp,,). For

hopys =700 um and B=16.2mm in experiment, the maximum compressive strain in the

brain versus the insertion depth of rubber is shown in Supplementary Figure 26b for

minimal brain gaps }_zgap =500 and 600 pm.

Circuit Design

The dimensions of the two transistors in the unit-cell (Fig. 1b, left frame) are equal
so that they will have matched performance. The width of both transistors was chosen to
be as large as possible at 200 um while still leaving room for large interconnections

between adjacent unit cells. The L was chosen at 20 um to be conservative for the
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processing technology. The resulting W/L ratio of 10 yielded reasonable levels of current
output.  The width of all metal lines and size of all VIAs was increased by 2 ~ 4x from
prior designs to improve reliability and ease manufacturing. The electrode spacing was
set at 500 um based on prior work and to match well with the 500 pm spacing of the ACF

ribbon cable, enabling a simple layout of the interconnections.

Current Sinks

The ideal current sinks shown in Supplementary Figure 15 can be implemented using
commercially available semiconductors as shown in the block diagram in Supplementary
Figure 17. This basic circuit that is implemented 20 times, one for each column of the
electrode array. The circuit makes use of several commercial semiconductors. The first
of which is the LM334 which is a 3-Terminal Adjustable Current Source (National
Semiconductor). It is used to set the constant current for the source follower. The
current is adjusted via a potentiometer on the third pin (not shown). The constant current
generated by the LM334 is mirrored by the current mirror section of the REF200 — Current
Reference (Texas Instruments). The REF200 is used because the LM334 cannot respond
to fast transients while supplying low amounts of current. The REF200 current mirror
bandwidth is 5 MHz, to enable fast multiplexing. The REF200 also contains two 100 pA
constant current sources, which are not used.

The output of a single column from the electrode array is connected to the current
mirror and the non-inverting input of a TLC2274 Op Amp as shown. The TLC2274 Op
Amp (Texas Instruments) is used to provide buffering for the output of the source follower
amplifier. This op-amp buffers the signal before the high pass filter. Additionally,
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adding this op-amp allows the buffering to occur as close as possible to the electrode array,
minimizing parasitic capacitance and maximizing the switching speed.

The output of the Op Amp is connected to a 0.01 Hz high-pass filter. This very low
frequency high pass filter is used to remove the average DC offset introduced by the source
follower configuration of the amplifiers on the electrode array. The high pass filter
frequency must be very low because it introduces aliasing for signals up to ~0.1 Hz.
Signals lower than this present on one multiplexed channel will be aliased onto the other
channels. However, any aliasing that occurs can be removed by a subsequent 1 Hz digital

high pass filter on the acquired data.

Data Acquisition System

The output of the high pass filter is connected using a short cable (2°) to a custom
data acquisition system interface (see Supplementary Figs. 16b, ¢ and Supplementary
Figs. 18 — 25). The signal will be buffered again by another TLC2274 op-amp to drive
the 15° cable from the acquisition system interface board to a set of four PXI-6289 data
acquisition cards (National Instruments, USA). This second stage of buffering prevents
any loading introduced by the long cable run from influencing the high pass filter stage.

The data acquisition system is controlled through custom LabVIEW software
(National Instruments).  The data are demultiplexed in software, in real-time. The first
and last sample in a given multiplexer switch interval are discarded since these samples are
adjacent to the row select signal transition and usable due to timing inaccuracies in the PXI-
6289 analog to digital converter. If an over-sampling ratio (OSR) greater than 3 is used,

the samples that remain after discarding the first and last samples are averaged in real-time,
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further reducing the recorded noise. A subset of the demultiplexed channels is shown in
real-time during the experiment. All data are saved for later offline filtering and analysis

using custom MATLAB software (The MathWorks).

Gain

The gain of the electrode array was measured by submerging the array in
conductive saline. A second electrode was submerged in the saline approximately 1” from
the electrode array. The second electrode was connected to a 100 mV peak to peak sine
wave at 3.14 Hz. This test presents a uniform signal for all of the electrodes on the array
to measure. The recording duration of this test was 80 seconds and the sampling rate was
~277 Hz per electrode.  The median signal level for all 360 channels on the array was 68
mV peak to peak, yielding a median gain of 0.68. The gain of the array can be increased
to ~1 with improvements to the biasing circuitry off of the electrode array. Significant
voltage gain is possible with alternative circuit designs.

The spatial distribution of the peak to peak amplitudes measured is shown in
Supplementary Figure 27 illustrating the uniformity of the gain across the electrode array.
~83% of the electrode channels were operational for this sample. Channels that were
determined to be not operational through this test were interpolated from neighboring
operational channels using a 2-D averaging spatial filter of window size 3 x 3 pixels prior

to all of the analyses presented in the main text.
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Power supplies

This electrode array design does not require symmetric power supplies. That is,
the +V supply does not need to be equal and opposite of the —V supply. In fact, the source
follower amplifier only requires that the +V supply is greater than Vj,, the input voltage
minus V,, the threshold voltage of the amplifying transistor. Given that Vi, is typically
within the range +/- 100 mV for neural signals, as long as V is greater than +100 mV
(typical values are ~0.7 V, Fig. 1b, center frame), +V can be directly connected to ground
(0V). However, if V, of the array is small or negative, the +V supply can be connected to
a separate, small positive voltage supply, such as 0.5V.

Directly connecting the array +V connection to GND or at least minimizing the
voltage of the positive supply has several advantages. The most important of which is that
it reduces the potential for leakage currents through the gate of the buffer transistor (Fig. 1b,
left frame) by reducing the voltage potential between the electrode (gate) and the silicon

substrate. Another advantage is simplifying the power connections for the electrode array.

Electrode Materials

The electrode base metal is gold and an additional coating of flat platinum has been
added to reduce the electrode impedance. Passive electrodes sized 250 um x 250 pm
using the same dimensions and materials processing steps were fabricated to measure the
impedance difference. Passive electrodes must be used to measure the impedance because
it is not currently possible to measure electrode impedance while integrated in the active

electrode.
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The mean impedance of the 250 um x 250 pm passive electrodes was 84 kOhm +
17% at 1 kHz, while the impedance of the same electrode design coated with flat platinum
was 29 kOhm + 9% at 1 kHz. Measurements were conducted with the array immersed in
normal saline (0.9%). The reduced impedance provided by the platinum coating should
increase the current output of the electrode and enable better signal transfer.

The electrodes in the active electrode array illustrated in Fig. 1a are 300 pm x 300
um. Based on linear extrapolation from prior measurements, we expect the impedance of
these electrodes to be ~69% of the measured value (29 kOhm) of the 250 pm x 250 pm
electrodes or ~20 kOhm at 1 kHz.

The output impedance of the active electrodes are significantly lower than 20 kOhm
due to the integrated buffer amplifier which allows the multiplexer to settle rapidly after

switching, despite driving large parasitic capacitances due to long interface cabling.
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SI Figure Captions

Supplementary Figure 1. Schematic of fabrication steps a, Microscope images of each
fabrication step. b, schematic cross-sectional information, red dotted line shows the

location of neutral mechanical plane (NMP).

Supplementary Figure 2. A single-trial visual evoked potential from a full-field drifting
grating. a, Spatial distribution of the visual evoked response, as determined by the root-
mean-square (RMS) value of the zero-meaned signal within the 40 ms to 160 ms window
after the stimulus. Data are anatomically orientated as shown in the inset of Figure 3b.
b, Individual visual evoked responses shown for the 49 electrodes located in the bottom,

left-hand corner of the electrode array, as highlighted by the dashed box above.

Supplementary Figure 3. Analysis of the frequency content of a sustained, counter-
clockwise spiral during a short seizure. The primary frequency component was 6 Hz. The
power spectral density was calculated using ‘pwelch’ with a window size of 1024 on each
channel of the electrode array individually. The resulting power spectra were averaged to

produce a single overall power spectral density.

Supplementary Figure 4 — 14. Delay maps for all of the spikes in each cluster indicated a
strong similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to
occur almost exclusively during seizures, while spikes in the other clusters appeared to

occur uniformly throughout the record.
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Supplementary Figure 15. Circuit diagram of four unit cells, showing multiplexing

connections.

Supplementary Figure 16. Photographs of data acquisition system components. a,
Photograph of custom circuit board that implements the off array constant current sinks,
buffering and high-pass filtering. b, Photograph of custom data acquisition interface circuit
board that generates row select signals and provides another stage of buffering (top) and ¢,

(bottom).

Supplementary Figure 17. Block diagram of constant current sink implementation. This

circuit is repeated 20 times, one for each column of the electrode array.

Supplementary Figures 18 — 25. Complete schematics of the custom data acquisition

interface circuit board.

Supplementary Figure 26. Folded electrode mechanical modeling results. a, A diagram
that shows parameter definitions for insertion model of folded electrode array. b, Strain
induced in the brain during insertion of the folded electrode array for two different brain

hemisphere spacings.

Supplementary Figure 27. Color map illustrating the spatial distribution of the electrode
response to a 100mV p-p, 3.14 Hz sine wave, demonstrating the spatial uniformity of the

gain of the electrode array.

Supplementary Movie 1. Movie of a short electrographic seizure showing numerous

complicated spatial patterns, including clockwise and counterclockwise spiral waves. The
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voltage for all 360 channels is plotted as a color map in the top of the frame, while the
average of all 360 electrodes is plotted at the bottom of the frame with a vertical bar

indicating the position in time for reference. The movie is presented ~18x slower than real-

time. (MPEG; 29.3 MB).
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Supplementary Figure 1. Schematic of fabrication steps a, Microscope images of each fabrication
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Supplementary Figure 4. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 5. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 6. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 7. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 9. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 10. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 11. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 12. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 13. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.
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Supplementary Figure 14. Delay maps for all of the spikes in each cluster indicated a strong
similarity within clusters. The spikes in clusters 2, 4, 12, 14, and 19 appeared to occur almost
exclusively during seizures, while spikes in the other clusters appeared to occur uniformly
throughout the record.



Supplementary Figure 15. Circuit diagram of four unit cells, showing multiplexing connections.
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board.
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Supplementary Figure 19. Complete schematics of the custom data acquisition interface circuit

board.
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Supplementary Figure 20. Complete schematics of the custom data acqu

board.
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Supplementary Figure 21. Complete schematics of the custom data acquisition interface c

board.
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Supplementary Figure 22. Complete schematics of the custom data acquisition interface circuit

board.
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Supplementary Figure 23. Complete schematics of the custom data acquisition interface circuit

board.
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Supplementary Figure 24. Complete schematics of the custom data acquisition interface c

board.
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Supplementary Figure 25. Complete schematics of the custom data acquisition interface circuit

board.
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Supplementary Figure 26. Folded electrode mechanical modeling results. a, A diagram that
shows parameter definitions for insertion model of folded electrode array. b, Strain induced in the
brain during insertion of the folded electrode array for two different brain hemisphere spacings.
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Supplementary Figure 27. Color map illustrating the spatial distribution of the electrode response
to a 100mV p-p, 3.14 Hz sine wave, demonstrating the spatial uniformity of the gain of the
electrode array.
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