Text S1: Summary statistics of the seed dispersal kernel

Here, we present an analytical method to connect the moments of a seed dispersal kernel (P_s) with the time-dependent moments of an animal movement pattern (P_m) and the distribution of seed retention time (P_r) .

Suppose that $\Omega \in \mathbf{R}^d$, where $d \in \{1, 2\}$ is the number of spatial dimensions. In general, the mean, variance, and "excess" kurtosis of $P_s(\mathbf{x})$ in the x_i -direction (i = 1, 2) are defined to be

$$\mu_{si} = \int_{\Omega} x_i P_s(\mathbf{x}) d\mathbf{x}$$

$$\sigma_{si}^2 = \int_{\Omega} (x_i - \mu_{si})^2 P_s(\mathbf{x}) d\mathbf{x}$$

$$\kappa_{si} = \frac{1}{(\sigma_{si})^4} \int_{\Omega} (x_i - \mu_{si})^4 P_s(\mathbf{x}) d\mathbf{x} - 3$$
(1)

The constant 3 that appears in the equation for κ_{si} is present so that if P_s is Gaussian in the x_i -direction then $\kappa_{si} = 0$ or, in other words, it is a measurement relative to that of a Gaussian kernel. When d = 2, the covariance of P_s in the two directions x_1 and x_2 is defined to be

$$\sigma_{s12} = \int_{\Omega} (x_1 - \mu_{s1})(x_2 - \mu_{s2}) P_s(\mathbf{x}) d\mathbf{x}$$
 (2)

By expanding the polynomials that appear in the different integrands, all summary statistics can be expressed as summation of the moments $\int_{\Omega} x_i^m x_j^n P_s(\mathbf{x}) d\mathbf{x}$ of P_s with appropriate coefficients. For example, if we expand the integrand of Eq (2) we obtain

$$\sigma_{s12} = \int_{\Omega} (x_1 x_2 - \mu_{s1} x_2 - \mu_{s2} x_1 + \mu_{s1} \mu_{s2}) P_s(\mathbf{x}) d\mathbf{x}$$
 (3)

where the first term on the right hand side is a moment term with (m = 1, n = 1), the second with (m = 0, n = 1), the third with (m = 1, n = 0) and the last term with (m = 0, n = 0). Likewise, other summary statistics can also be written as combinations of different moment terms.

In general, the (m, n)th moment of P_s can be found by substituting Eq (1^*) (the asterisk symbol * denotes main text) into the preceding moment formula and then changing the order of integration,

$$\int_{\Omega} x_i^m x_j^n P_s(\mathbf{x}) d\mathbf{x} = \int_0^{\infty} \left(\int_{\Omega} x_i^m x_j^n P_m(\mathbf{x}, t) d\mathbf{x} \right) P_r(t) dt$$

Denoting the (m, n)th moment of a distribution P_{\bullet} by $\mu_{\bullet ij}^{mn}$, we obtain the following important relation between the moments of P_s and P_m ,

$$\mu_{sij}^{mn} = \int_0^\infty \mu_{mij}^{mn}(t) P_r(t) dt \tag{4}$$

Thus, the moments of P_s can always be computed provided that P_r and the (time-dependent) moments of P_m are known. It is not necessary to know P_m in full.

For notational simplicity we will write $\mu_{\bullet ij}^{mn}$ as μ_{\bullet}^{m} when d=1, and we will write it as $\mu_{\bullet i}^{m}$ or $\mu_{\bullet j}^{n}$ when d=2 and mn=0. In the latter case, we will omit the remaining superscript if it is equal to 1.