
Text S6: Random movement in a home-range

Animals often have a home-range and/or a preferred territory for their movement [1; 2].
To model this we suppose animals performing random walks in one dimension (Ω = R) are
consistently attracted to a fixed point in space, such as their resting site (as with CRW,
we restrict our analysis to one dimension for analytical tractability). We assume that the
resting site is located at the origin and, much like a ball in a gravity well, the farther the
animal is from its resting site, the faster its rate of return. Such a motion with stochastic
effects may be modeled by the Ornstein-Uhlenbeck process [3]

dx

dt
= −γx+ η(t)

where x is position, γ−1 is a measure of average return-time to the resting site, and η(t) is
a Gaussian white noise with mean zero and variance 2D.

Let Pm(x, t) be the probability density of an animal being at location x ∈ Ω at time
t ≥ 0. The initial value problem that determines the evolution of Pm is given by

∂Pm

∂t
=

∂(γxPm)

∂t
+D

∂2Pm

∂x2
Pm(x, 0) = δ(x) and

∂Pm

∂t
(x, 0) = 0

and its solution is [3]

Pm(x, t) =
1√

2πσ(t)2
exp

(
− x2

2σ(t)2

)
where σ(t) =

√
D

γ
(1− e−2γt) (1)

Below, we compute the summary statistics of Ps.

Mean of Ps: Multiply Eq (1) by x and integrate over Ω to get

µm(0) = 0

It then follows from Eq (1) of Text S1 that µs = 0.

Scale of Ps: To determine σ2
s we first note that the second moment of Pm is

µ2
m(t) = σ(t)2 =

D

γ
(1− e−2γt) (2)

Straightforward calculations involving Eqs 1, 4 of Text S1, and (2), and (3*) lead to

σ2
s(D, γ) =

D

γ
(1− (1 + 2γb)−a) (3)

where a and b are parameters of gamma distributed retention times of Eq (3*). By intro-

ducing the dimensionless quantities z = µrγ = abγ and ξ2 = σ2
r

µ2
r
= 1

a
, we obtain

σ2
s(D/γ, z, ξ) =

D

γ
(1− (1 + 2zξ2)−1/ξ2)

1



Shape of Ps: To determine κs we first determine µ4
m(t) (the fourth moment of Pm).

Multiplying Eq (1) by x4, integrating over Ω, and then solving for µ4
s produces

µ4
s =

2D2

γ2

(
1− 2(1 + 2γb)−a + (1 + 4γb)−a)

)
Utilizing the dimensionless parameters z and ξ,

µ4
s =

3D2

γ2

(
1− 2(1 + 2zξ2)−1/ξ2 + (1 + 4zξ2)−1/ξ2)

)
(4)

Eq (1) of Text S1, (3), and (4) and the relation µs = 0 together imply that

κs(z, ξ
2) =

µ4
s

σ4
s

− 3 = 3

{
1− 2(1 + 2zξ2)−1/ξ2 + (1 + 4zξ2)−1/ξ2

(1− (1 + 2zξ2)−1/ξ2)2

}
− 3

As shown in Figures (2*) (recall that * represents the maintext) and (1) in this supple-
mentary text, the scale and kurtosis converge to their counterparts in the diffusion model
as γ → 0.

Form of Ps: For this movement model we are unable to obtain a closed form for the seed
dispersal kernel (Ps) but we can compute it using numerical integration (see Fig S(2)).
We see that its qualitative features, that larger seed retention time variability leads to a
larger dispersal probability beyond a certain distance, agrees with that of other movement
models.
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Figure S1: Scale (σs) and kurtosis (κs) of the seed dispersal kernel for animals moving
in their home-rage. Scale as a function of: (a) The diffusion constant, D; Parameters:
µr = 0.5 and σr = 1.0. (b) Mean seed retention time, µr; Parameters: D = 0.5 and
σr = 1.0. (c) Standard deviation (SD) of seed retention time, σr; Parameters: D = 1.0
and µr = 1.0. Excess kurtosis as a function of: (d) The diffusion constant, D; Parameters:
µr = 0.5 and σr = 1.0. (e) Mean seed retention time, µr; Parameters: D = 0.5 and
σr = 1.0. (f) Standard deviation (SD) of seed retention time, σr; Parameters: D = 1.0 and
µr = 1.0.
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Figure S 2: Random walk in home-range. (a) The seed dispersal kernel as a function
of distance from the source tree (|x|) and standard deviation in seed retention time (σr).
The case σr = 0 corresponds to a Gaussian kernel. (b) The seed dispersal kernel at larger
distances. The symbol xij (e.g., x02) indicates the distance at which a seed dispersal kernel
with σr = j (e.g., σr = 2) begins to have more long distance dispersal events than a seed
dispersal kernel with σr = i (e.g., σr = 0). Note that x02 < x12. Parameters: D = 1.0,
µr = 1.0 and γ = 1.0.
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