
Text S8: Seed retention time distribution (Pr)

We discuss the generality of results with respect to the choice of retention time dis-
tribution (Pr). For simplicity and analytical tractability, we assume that animals move
diffusively in two dimensions. We begin by recalling that the mean, scale and shape (kur-
tosis) of the seed dispersal kernel (see Texts S2, S3 and S4) depend on the summary
statistics of retention time distribution (Pr), but not on its specific form such as Gamma
distribution. Therefore our results that LDD is driven by variation in seed retention time
continues to hold.

We note that Gamma distribution has some specific features; a power-law decay with
an exponential cut-off (see the term ta−1 exp(−t/b) in Eq (3*)) and it allows for arbitrarily
large value of retention time. We ask to what extent our results that the seed dispersal
kernel has a power-law distribution are dependent on these features of Gamma distribution.

To do so we briefly mention a recent study that we came across while writing our
manuscript [1]. Authors in that study obtain expression for the spread of population density
(ñ(x, t)) when individuals move diffusively in two dimensions and that the population is
structured due to individual variations in diffusion constants (D),
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where φ(D) is the distribution of diffusivity constant in the population and x =
√
x21 + x22.

For a range of distributions φ(D), they show that the spread (or dispersal) of organisms,
at any given time t, exhibits an algebraic decay with distance (also see Text S7).

Note that they studied movement distribution of organisms but not the dispersal of
units carried by moving organisms. By an interchange of variables D and t, and the
corresponding distribution φ → Pr in Eq (1), it is easy to see that we can map the
movement distribution of organisms in their model to the seed dispersal kernel generated
by diffusively moving animals in our model i.e., ñ(x, t)→ Ps(x,D), or explicitly,
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which is of the form Eq (1*) with Pm(x, t) given by Eq (2*). Therefore we can borrow
their arguments to test generality of our results with respect to Pr.

Gaussian for Pr: We consider a Gaussian distribution for Pr
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which has a tail that decays at a rate faster than that of a Gamma distribution and
contains no in-built power-law features. Here µr and σr are mean and SD of retention
time, respectively. To find an expression for Ps we substitute Eq (2) of Text S3, and Eq (2)
above in Eq (1*), i.e.,
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We can not obtain a closed form expression for the above integral. For large distances,
however, it can be shown that [1]
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where xc =

√
2σrD and C0 is a constant depending on D and µr. This is indeed a power-

law decay with a cut-off function (exp(−3/4(x/xc)
4/3)) that is faster than an exponential

but slower than a Gaussian.

Finite boundedness in retention time: It can be shown that if Pr is a distribution
with finite bound on the retention time, it does not affect the qualitative nature of our
results. We will still find a power-law Ps; but in comparison to results arising from Gamma
distributed Pr, the range of spatial scales over which power-law occurs reduces. We refer
readers to [1] for technical details of derivation of this result; note that they consider
boundedness in diffusivity in their model.
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