
Appendix S2.

S2.1 Distribution of α

Consider the following system:



dxα
dt = xα( ra(1− α)

βCin

β + Cin︸ ︷︷ ︸
Cin and O2 lmited aerobic growth

+ rgαC
in︸ ︷︷ ︸

Cin limited glycolytic growth

− d︸︷︷︸
death rate

− bαrgC
inEt[α]︸ ︷︷ ︸

death rate due to lactic acid toxicity

),

dCex

dt = g1(
C0 − Cex

N
)︸ ︷︷ ︸

Cex in�ow from blood

−( pgE
t[α]︸ ︷︷ ︸

glycolytic cells

+ pa(1− Et[α])︸ ︷︷ ︸
aerobic cells

)
Cex − Cin

k1 + (Cex − Cin)︸ ︷︷ ︸
total Cexuptake based on concentration di�erences

+ Cind︸ ︷︷ ︸
natural cell death︸ ︷︷ ︸

Cex recycled from cell death

dCin

dt = (pgE
t[α] + pa(1− Et[α]))

Cex − Cin

k1 + (Cex − Cin)︸ ︷︷ ︸
total Cin in�ow based on concentration di�erences

−sCin( raξ(1− Et[α])︸ ︷︷ ︸
Cinused aerobically

+ rgE
t[α]︸ ︷︷ ︸

Cinused glycolitically

).

(1)

where we assume that each clone is characterized by their own intrinsic value of the parameter α but

where there is no detectable toxicity from lactic acid (i.e., a case when bα = 0)

Let us introduce keystone variables g(t) and q(t), such that


dq(t)
dt = raβ

Cin

β+Cin ,

dg(t)
dt = rgC

in.

(2)

Then xα(t)
′ = xα(t)((1− α)q′(t) + αg′(t)− δ).

Consequently,

xα(t) = xα(0)e
(1−α)q(t)+αg(t)−δt (3)

Full population size of cells xα is then given by

N(t) =

ˆ
A

xα(t)dα = N(0)

ˆ
A

eq(t)−δteα(g(t)−q(t))P0(α)dα = N(0)eq(t)−δtM0[g(t) − q(t)] (4)

where Pα(0) = xα(0)
N(0) and where M0(g(t) − q(t)) =

´∞
0
eα(g(t)−q(t))Pα(0)dα is the moment generating

function (mgf) of the initial distribution of clones Pα(0) within the population. The �nal distribution
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would then be given by

Pt(α) =
xα(t)

N(t)
=

eα(g(t)−q(t))

M0[g(t)− q(t)]
(5)

System (1) thus becomes



dCex

dt = g1(
C0−Cex

N )− p Cex−Cin
k1+(Cex−Cin) + Cind,

dCin

dt = p Cex−Cin
k1+(Cex−Cin) − sC

in(raξ(1− Et[α]) β
β+Cin − rgE

t[α]),

dq
dt = raβ

Cin

β+Cin ,

dg
dt = rgC

in.

(6)

The expected value of α at each time t is calculated through Equation 5:

Et[α] =

ˆ
αPt(α)dα =

ˆ
P0(α)

αeα(g(t)−q(t))

M0[g(t)− q(t)]
=
M ′0(g(t)− q(t))
M0(g(t)− q(t))

. (7)

Let us assume that the initial distribution of the clones within the population is truncated exponential,

such that α ∈ [0, 1].

For initial truncated exponential distribution with parameter µ, the moment generating function

M0(t) is

M0(t) =
µ(eµ − eg(t)−q(t))

(eµ − 1)(µ− (g(t)− q(t)))
, (8)

and expected value of α is calculated by

Et[α] =
eµ − eg(t)−q(t)(g(t)− q(t)− µ− 1)

(eg(t)−q(t) − eµ)(g(t)− q(t)− µ)
. (9)

The parameter µ� 0 to ensure that the initial distribution of clones within the population is skewed

towards α → 0, that is, such that the majority of the cells have aerobic phenotype, which is what is to

be observed in the normal tissue.
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S2.2 Distribution of α when bα 6= 0

Now consider a case, when there is also increased cell mortality from the lactic acid that is produced

by the glycolytic clones. This is accounted for through the additional death term bα = B − b1α, where

B and b1 are constants, and where b1 <
B
α due to restriction on α ∈ [0, 1], which also incorporates the

assumption that the more lactic acid the cell produces, the less sensitive to its toxicity it is (the clones

that produce lactic acid and then die from it cannot persist in the population). Hydrogen transporters

are also up-regulated in cancer cells to pump out the acid from the cell.

In order to study this model, we need to introduce a third keystone equation in addition to System

(2):

dv

dt
= rgC

inEt[α]. (10)

Then the equation for x′α becomes

x′α = xα(q
′(1− α) + αg′ − d− (B − b1α)v′) (11)

Integrating this expression yields

xα(t) = xα(0)e
q(t)−dt−Bv(t)+α(g(t)−q(t)−b1v(t)). (12)

Full population size is then given by

N(t) = N(0)eq(t)−dt−Bv(t)M0(g(t)− q(t)− b1v(t)) (13)

and the distribution of clones is given by

Pt(α) =
xα(t)

N(t)
=

eα(g(t)−q(t)−b1v(t))

M0(g(t)− q(t)− b1v(t))
. (14)

The full system thus becomes
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

dCex

dt = g1(
C0−Cex

N )− p Cex−Cin
k1+(Cex−Cin) + Cind+ (Cin)2Et[b]Et[α],

dCin

dt = p Cex−Cin
k1+(Cex−Cin) − sC

in(raξ(1− Et[α]) β
β+Cin − rgE

t[α]),

dq
dt = raβ

Cin

β+Cin ,

dg
dt = rgC

in,

dv
dt = rgC

inEt[α].

(15)

The proposed system is used to address two di�erent questions: 1) whether the changes in nutrient

availability are su�cient to switch population composition towards glycolytic phenotype, and 2) whether

excessive toxicity from lactic acid can cause the population to commit evolutionary suicide. For the

purposes set out by the �rst question, parameter bα is taken to be zero. This is done to be able to more

clearly see, whether the shift can in fact occur to a signi�cant enough extent. When bα 6= 0, population

extinction due to acid toxicity occurs too quickly (around Et[α] ≈ 0.1 for the considered parameter

values), and the e�ects of excess nutrients cannot be evaluated very well.

4


